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Abstract

Geometric Deep Learning has recently made striking progress with the advent of
continuous Deep Implicit Fields. They allow for detailed modeling of watertight
surfaces of arbitrary topology while not relying on a 3D Euclidean grid, resulting
in a learnable parameterization that is not limited in resolution.
Unfortunately, these methods are often not suitable for applications that require
an explicit mesh-based surface representation because converting an implicit field
to such a representation relies on the Marching Cubes algorithm, which cannot be
differentiated with respect to the underlying implicit field.
In this work, we remove this limitation and introduce a differentiable way to pro-
duce explicit surface mesh representations from Deep Signed Distance Functions.
Our key insight is that by reasoning on how implicit field perturbations impact
local surface geometry, one can ultimately differentiate the 3D location of surface
samples with respect to the underlying deep implicit field. We exploit this to define
MeshSDF, an end-to-end differentiable mesh representation which can vary its
topology.
We use two different applications to validate our theoretical insight: Single-View
Reconstruction via Differentiable Rendering and Physically-Driven Shape Opti-
mization. In both cases our differentiable parameterization gives us an edge over
state-of-the-art algorithms.

1 Introduction

Geometric Deep Learning has recently witnessed a breakthrough with the advent of continuous Deep
Implicit Fields [35, 29, 8]. These enable detailed modeling of watertight surfaces, while not relying on
a 3D Euclidean grid or meshes with fixed topology, resulting in a learnable surface parameterization
that is not limited in resolution.

However, a number of important applications require explicit surface representations, such as tri-
angulated meshes or 3D point clouds. Computational Fluid Dynamics (CFD) simulations and the
associated learning-based surrogate methods used for shape design in many engineering fields [3, 49]
are a good example of this where 3D meshes serve as boundary conditions for the Navier-Stokes
Equations. Similarly, many advanced physically-based rendering engines require surface meshes to
model the complex interactions of light and physical surfaces efficiently [33, 36].

Combining explicit representations with the benefits of deep implicit fields requires converting
the implicit surface parameterization to an explicit representation, which typically relies on one of
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Figure 1: MeshSDF. (a) We condition our representation on an input image and output an initial
3D mesh, which we refine via differentiable rasterization [22], thereby exploiting MeshSDF’s end-
to-end differentiability. (b) We use our parameterization as a powerful regularizer for aerodynamic
optimization tasks. Here, we start from an initial car shape and refine it to minimize pressure drag.

the many variants of the Marching Cubes algorithm [28, 32]. However, these approaches are not
fully differentiable [24]. This effectively prevents the use of continuous Deep Implicit Fields as
parameterizations when operating on explicit surface meshes.

The non-differentiability of Marching Cubes has been addressed by learning differentiable approxi-
mations of it [24, 51]. These techniques, however, remain limited to low-resolution meshes [24] or
fixed topologies [51]. An alternative approach has been to reformulate downstream tasks, such as
differentiable rendering [19, 26] or surface reconstruction [30], directly in terms of implicit functions,
so that explicit surface representations are no longer needed. However, doing so is not easy and may
even not be possible for more complex tasks, such as solving CFD optimization problems.

By contrast, we show that it is possible to use continuous signed distance functions to produce explicit
surface representations while preserving differentiability. Our key insight is that 3D surface samples
can be differentiated with respect to the underlying deep implicit field. We prove this formally by
reasoning about how implicit field perturbations impact 3D surface geometry locally. Specifically, we
derive a closed-form expression for the derivative of a surface sample with respect to the underlying
implicit field, which is independent of the method used to extract the iso-surface. This enables us to
extract the explicit surface using a non-differentiable algorithm, such as Marching Cubes, and then
perform our custom backward pass through the extracted surface samples, resulting in an end-to-end
differentiable surface parameterization that can describe arbitrary topology and is not limited in
resolution. We will refer to our approach as MeshSDF.

We showcase the power and versatility of MeshSDF in the two different applications depicted by
Fig. 1. First, we exploit end-to-end differentiability to refine Single-View Reconstructions through
differentiable surface rasterization [22]. Second, we use our parameterization as powerful regularizer
in physically-driven shape optimization for CFD purposes [3]. We will demonstrate that in both cases
our end-to-end differentiable parameterization gives us an edge over state-of-the art algorithms.

In short, our core contribution is a theoretically well-grounded technique for differentiating through
iso-surface extraction. This enables us to harness the full power of deep implicit surface representation
to define an end-to-end differentiable surface mesh parameterization that allows topology changes.

2 Related Work

From Discrete to Continuous Implicit Surface Models. Level sets of a 3D function effectively
represent watertight surfaces with varying topology [43, 34]. As they can be represented on 3D grids
and thus easily be processed by standard deep learning architectures, they have been an inspiration
for many approaches [5, 10, 13, 40, 42, 46, 52, 53]. However, methods operating on dense grids have
been limited to low resolution volumes due to excessive memory requirements. Methods operating on
sparse representations of the grid tend to trade off the need for memory for a limited representation
of fine details and lack of generalisation [41, 42, 46, 47].

This has changed recently with the introduction of continuous deep implicit fields, which represent
3D shapes as level sets of deep networks that map 3D coordinates to a signed distance function [35]
or occupancy field [29, 8]. This yields a continuous shape representation wrt. 3D coordinates that is
lightweight but not limited in resolution. This representation has been successfully used for single
view reconstruction [29, 8, 55] and 3D shape completion [9].
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However, for applications requiring explicit surface parameterizations, the non-differentiability of iso-
surface extraction so far has largely prevented exploiting the advantages of implicit representations.

Converting Implicit Functions to Surface Meshes. The Marching Cube (MC) algorithm [28, 32]
is a widely adopted way of converting implicit functions to surface meshes. The algorithm proceeds
by sampling the field on a discrete 3D grid, detecting zero-crossing of the field along grid edges, and
building a surface mesh using a lookup table. Unfortunately, the process of determining the position
of vertices on grid edges involves linear interpolation, which does not allow for topology changes
through backpropagation [24], as illustrated in Fig. 2(a). Because this is a central motivation to this
work, we provide a more detailed analysis in the Supplementary Section.

In what follows, we discuss two classes of methods that tackle the non-differentiability issue. The
first one emulates iso-surface extraction with deep neural networks, while the second one avoids the
need for mesh representations by formulating objectives directly in the implicit domain.

Emulating Iso-Surface Extraction. Liao et al. [24] map voxelized point clouds to a probabilistic
topology distribution and vertex locations defined over a discrete 3D Euclidean grid through a 3D
CNN. While this allows changes to surface topology through backpropagation, the probabilistic
modelling requires keeping track of all possible topologies at the same time, which in practice limits
resulting surfaces to low resolutions. Voxel2mesh [51] deforms a mesh primitive and adaptively
increases its resolution. While this enables high resolution surface meshes, it prevents changes of
topology.

Reformulating Objective Functions in terms of Implicit Fields. In [31], variational analysis
is used to re-formulate standard surface mesh priors, such as those that enforce smoothness, in
terms of implicit fields. Although elegant, this technique requires carrying out complex derivations
for each new loss function and can only operate on an Euclidean grid of fixed resolution. The
differentiable renderers of [20, 27] rely on sphere tracing and operate directly in terms of implicit
fields. Unfortunately, since it is computationally intractable to densely sample the underlying volume,
these approaches either define implicit fields over a low-resolution Euclidean grid [20] or rely on
heuristics to accelerate ray-tracing [27], trading off in accuracy. 3D volume sampling efficiency
can be improved by introducing a sparse set of anchor points when performing ray-tracing [25].
However, this requires reformulating standard surface mesh regularizers in terms of implicit fields
using computationally intensive finite differences. Furthermore, these approaches [20, 25, 27] are
tailored to differentiable rendering, and are not directly applicable to different settings that require
explicit surface modeling, such as computational fluid dynamics.

3 Method

Tasks such as Single-View Reconstruction (SVR) [21, 17] or shape design in the context of CFD [3]
are commonly performed by deforming the shape of a 3D surface mesh M = (V, F ), where
V = {v1,v2, ...} denotes vertex positions in R3 and F facets, to minimize a task-specific loss
function Ltask(M). Ltask can be, e.g., an image-based loss defined on the output of a differentiable
renderer for SVR or a measure of aerodynamic performance for CFD.

To perform surface mesh optimization robustly, a common practice is to rely on low-dimensional
parameterizations that are either learned [4, 35, 2] or hand-crafted [3, 49, 39]. In that setting, a
differentiable function maps a low-dimensional set of parameters z to vertex coordinates V , implying
a fixed topology. Allowing changes of topology, an implicit surface representation would pose a
compelling alternative but conversely require a differentiable conversion to explicit representations in
order to backpropagate gradients of Ltask.

In the remainder of this section, we first recapitulate deep Signed Distance Functions, which form
the basis of our approach. We then introduce our main contribution, a differentiable approach to
computing surface samples and updating their 3D coordinates to optimize Ltask. Finally, we present
MeshSDF, a fully differentiable surface mesh parameterization that can represent arbitrary topologies.

3.1 Deep Implicit Surface Representation

We represent a generic watertight surface S in terms of a signed distance function (SDF) s : R3 → R.
Given the Euclidean distance d(x, S) = miny∈S d(x,y) of a 3d point x, s(x) is d(x, S) if x is
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Figure 2: Marching cubes differentiation vs Iso-surface differentiation. (a) Marching Cubes
determines the position vx of a vertex v along an edge via linear interpolation. This does not allow for
effective back-propagation when topology changes because its behavior is degenerate when si = sj

as shown in [24]. (b) Instead, we adopt a continuous model expressed in terms of how signed distance
function perturbations locally impact surface geometry. Here, we depict the geometric relation
between local surface change ∆v = v′ − v and a signed distance perturbation ∆s < 0, which we
exploit to compute ∂v

∂s even when the topology changes.

outside S and −d(x, S) if it is inside. Given a dataset of watertight surfaces S , such as ShapeNet [6],
we train a Multi-Layer Perceptron fθ as in [35] to approximate s over such set of surfaces S by
minimizing

Lsdf({zS}S∈S , θ) =
∑
S∈S

1

|XS |
∑

x∈XS

|fθ(x, zS)− s(x)|+ λreg

∑
S∈S
‖zS‖22 , (1)

where zS ∈ RZ is the Z-dimensional encoding of surface S, θ denotes network parameters, XS

represent 3D point samples we use to train our network and λreg is a weight term balancing the
contribution of reconstruction and regularization in the overall loss.

3.2 Differentiable Iso-Surface Extraction

Once the weights θ of Eq. 1 have been learned, fθ maps a latent vector z to a signed distance field
and the surface of interest is its zero level set. Recall that our goal is to minimize the objective
function Ltask introduced at the beginning of this section. As it takes as input a mesh defined in terms
of its vertices and facets, evaluating it and its derivatives requires a differentiable conversion from
an implicit field to a set of vertices and facets, something that marching cubes does not provide, as
depicted by Fig. 2(a). More formally, we need to be able to evaluate

∂Ltask

∂z
=

∑
v∈V

∂Ltask

∂v

∂v

∂fθ

∂fθ
∂z

. (2)

In this work, we take our inspiration from classical functional analysis [1] and reason about the
continuous zero-crossing of the SDF s rather than focusing on how vertex coordinates depend on
the implicit field fθ when sampled by the marching cubes algorithm. This results in a differentiable
approach to compute surface samples v ∈ V from the underlying signed distance field s. We then
simply exploit the fact that fθ is trained to emulate a true SDF s to backpropagate gradients from
Ltask to the underlying deep implicit field fθ.

To this end, let us consider a generic SDF s, a point v lying on its iso-surface S = {q ∈ R3| s(q) =
0}, and see how the iso-surface moves when s undergoes an infinitesimal perturbation ∆s. Intuitively,
∆s < 0 yields a local surface inflation and ∆s > 0 a deflation, as shown in Fig. 2(b). In the
Supplementary Section, we prove the following result, relating local surface change ∆v to field
perturbation ∆s.

Theorem 1. Let us consider a signed distance function s and a perturbation function ∆s such that
s + ∆s is still a signed distance function. Given such ∆s, we define the associated local surface
change ∆v = v′ − v as the displacement between v′, the closest point to surface sample v on the
perturbed surface S′ = {q ∈ R3| s+ ∆s(q) = 0}, and the original surface sample v. It then holds
that

∂v

∂s
(v) = −n(v) = −∇s(v) , (3)

where n denotes the surface normals.
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Figure 3: Topology-Variant Parameterization. We minimize (a) a surface-to-surface or (b) an
image-to-image distance with respect to the latent vector z to transform a sphere (genus-0) into
a torus (genus-1). This demonstrates that we can backpropagate gradient information from mesh
vertices to latent vector while modifying surface mesh topology.

Because fθ is trained to closely approximate a signed distance function s, we can now replace ∂v
∂fθ

in
Eq. 2 by −∇fθ(v, z), which yields

∂Ltask

∂z
=

∑
v∈V
−∂Ltask

∂v
∇fθ(v, z)

∂fθ
∂z

(v, z) . (4)

In short, given an objective function defined with respect to surface samples v ∈ V , we can back-
propagate gradients all the way back to the latent code z, which means that we can define a mesh
representation that is differentiable end-to-end while being able to capture changing topologies, as
will be demonstrated in Section 4.

When performing a forward pass, we simply evaluate our deep signed distance field fθ on an
Euclidean grid, and use marching cubes (MC) to perform iso-surface extraction and obtain surface
meshM = (V, F ). Conversely, we follow the chain rule of Eq. 4 to assemble our backward pass.
This requires us to perform an additional forward pass of surface samples v ∈ V to compute surface
normals ∇fθ(v) as well as ∂fθ

∂z (v, z). We implement MeshSDF following the steps detailed in
Algorithms 1 and 2. Refer to the Supplementary Section for a detailed analysis of the computational
burden of iso-surface extraction within our pipeline.

Algorithm 1: MeshSDF Forward
1: input: latent code z
2: output: surface meshM = (V, F )
3: assemble grid G3D

4: sample field on grid S = fθ(z, G3D)
5: extract iso-surface (V, F ) = MC(S,G3D)
6: ReturnM = (V, F )

Algorithm 2: MeshSDF Backward

1: input: upstream gradient ∂L∂v for v ∈ V
2: output: downstream gradient ∂L∂z
3: forward pass sv = fθ(z,v) for v ∈ V
4: n(v) = ∇fθ(z,v) for v ∈ V
5: ∂L

∂fθ
(v) = −∂L∂v n for v ∈ V

6: Return ∂L
∂z =

∑
v∈V

∂L
∂fθ

(v)∂fθ∂z (v)

4 Experiments

We first use a simple example to show that, unlike marching cubes, our approach allows for differen-
tiable topology changes. We then demonstrate that we can exploit surface mesh differentiability to
outperform state-of-the-art approaches on two very different tasks, Single View Reconstruction1 and
Aerodynamic Shape Optimization2.

4.1 Differentiable Topology Changes

In the experiment depicted by Fig. 3, we used a database of spheres and tori of varying radii to train a
network fθ that implements the approximate signed function s of Eq. 1. As a result, fθ associates to
a latent vector z an implicit field fθ(z) that defines spheres, tori, or a mix of the two.

1main corresponding author: edoardo.remelli@epfl.ch
2main corresponding author: artem.lukoianov@epfl.ch
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We now consider two loss functions that operate on explicit surfaces S and T

Ltask1 = min
s∈S

d(s, T ) + min
t∈T

d(S, t) , (5)

Ltask2 = ‖DR(S)− DR(T )‖1 , (6)

where d is the point-to-surface distance in 3D [38] and DR is the output of an off-the-shelf differen-
tiable rasterizer [22], that is Ltask1 is the surface-to-surface distance while Ltask2 is the image-to-image
distance between the two rendered surfaces.

In the example shown in Fig. 3, S is the sphere on the left and T is the torus on right. We initialize
the latent vector z so that it represents S. We then use the pipeline of Sec. 3.2 to minimize either
Ltask1 or Ltask2, backpropagating surface gradients to the underlying implicit representation. In both
cases, the sphere smoothly turns into a torus, thus changing its genus. Note that even though we rely
on a deep signed distance function to represent our topology-changing surfaces, we did not have to
reformulate the loss functions in terms of implicit surfaces, as done in [31, 20, 27, 25]. We now turn
to demonstrating the benefits of having a topology-variant surface mesh representation through two
concrete applications, Single-View Reconstruction and Aerodynamic Shape Optimization.

4.2 Single-View Reconstruction

Single-View Reconstruction (SVR) has emerged as a standardized benchmark to evaluate 3D shape
representations [10, 11, 15, 50, 8, 29, 37, 14, 41, 56, 47]. We demonstrate that our method is
straightforward to apply to this task and validate our approach on two standard datasets, namely
ShapeNet [6] and Pix3D [45]. More results, as well as failure cases, can be found in the Supplementary
material.

Differentiable Meshes for SVR. As in [29, 8], we condition our deep implicit field architecture on
the input images via a residual image encoder [16], which maps input images to latent code vectors z.
These latent codes are then used to condition the architecture of Sec. 3.1 and compute the value of
deep implicit function fθ. Finally, we minimize Lsdf (Eq. 1) wrt. θ on a training set of image-surface
pairs. This setup forms our baseline approach, MeshSDF (raw).

To demonstrate the effectiveness of the surface representation proposed in Sec. 3.2, we exploit
differentiability during inference via differentiable rasterization [22]. We refer to this variant as
MeshSDF. Similarly to our baseline, during inference, the encoder predicts an initial latent code
z. Different to our baseline, our full version refines the predicted shapeM, as depicted by the top
row of Fig. 1. That is, given the camera pose associated to the image and the current value of z, we
project vertices and facets into a binary silhouette in image space through a differentiable rasterization
function DRsilhouette [22]. Ideally, the projection matches the observed object silhouette S in the
image, which is why we define our objective function as

Ltask = ‖DRsilhouette(M(z))− S‖1 , (7)

which we minimize with respect to z. In practice, we run 400 gradient descent iterations using
Adam [23] and keep the z with the smallest Ltask as our final code vector.

Comparative results on ShapeNet. We report our results on ShapeNet [7] in Tab. 1. We com-
pare our approach against state-of-the-art mesh reconstruction approaches: reconstructing surface
patches [15], generating surface meshes with fixed topology [50], generating meshes from vox-
elized intermediate representations [14], and representing surface meshes using signed distance
functions [56]. We used standard train/test splits along with the renderings provided in [56] for
all the methods we tested. We evaluate on standard SVR metrics [47], which we define in the
Supplementary Section. We report our results in Tab. 1. MeshSDF (raw) refers to reconstructions
using our encoder-decoder architecture, which is similar to those of [29, 8], without any further
refinement. Our full method, MeshSDF, exploits end-to-end differentiability to minimize Ltask with
respect to z. This improves performance by at least 12% over MeshSDF (raw) on all metrics. As a
result, our full approach also outperforms all other state-of-the-art approaches.

Comparative results on Pix3D. Whereas ShapeNet contains only rendered images, Pix3D [45] is
a test dataset that comprises real images paired to 3D models. We follow the evaluation protocol and
metrics proposed in [45], which we detail in the supplementary material.
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Table 1: Single view reconstruction results on ShapeNet Core. Exploiting end-to-end differentia-
bility to perform image-based refinement allows us to outperform all prior methods.

Metric Method plane bench cabinet car chair display lamp speaker rifle sofa table phone boat mean

IoU ↑

AtlasNet [15] 20 13 7 16 13 12 14 8 28 11 15 14 17 15
Mesh R-CNN [14] 24 25 17 21 21 21 20 15 32 19 26 26 26 23
Pixel2Mesh [50] 29 32 22 25 27 27 28 19 40 23 31 36 32 29

DISN [56] 40 33 20 31 25 33 21 19 60 29 25 44 34 30
MeshSDF (raw) 32 32 19 30 24 28 20 18 45 26 24 48 28 28

MeshSDF 36 38 22 32 28 34 25 22 52 29 31 54 30 32

EMD ·102 ↓

AtlasNett [15] 6.3 7.9 9.5 8.3 7.8 8.8 9.8 10.2 6.6 8.2 7.8 9.9 7.1 8.0
Mesh R-CNN [14] 4.5 3.7 4.3 3.8 4.0 4.6 5.7 5.1 3.8 4.0 3.9 4.7 4.1 4.2
Pixel2Mesh [50] 3.8 2.9 3.6 3.1 3.4 3.3 4.8 3.8 3.2 3.1 3.3 2.8 3.2 3.4

DISN [56] 2.2 2.3 3.2 2.4 2.8 2.5 3.9 3.1 1.9 2.3 2.9 1.9 2.3 2.6
MeshSDF (raw) 3.3 2.5 3.2 2.2 2.8 3.0 4.2 3.5 2.6 2.7 3.1 1.9 2.9 3.0

MeshSDF 2.5 2.1 3.0 2.0 2.4 2.4 3.2 2.9 1.9 2.4 2.7 1.7 2.3 2.5

CD-l2 · 103 ↓

AtlasNett [15] 10.6 15.0 30.7 10.0 11.6 17.3 17.0 22.0 6.4 11.9 12.3 12.2 10.7 13.0
Mesh R-CNN [14] 13.3 8.3 10.5 7.2 9.8 10.9 16.4 14.8 6.9 8.7 10.0 6.9 10.4 10.3
Pixel2Mesh [50] 12.4 5.5 8.2 5.6 6.9 8.2 12.3 11.2 6.0 6.8 7.9 4.7 7.9 8.0

DISN [56] 6.3 6.6 11.3 5.3 9.6 8.6 23.6 14.5 4.4 6.0 12.5 5.2 7.8 9.7
MeshSDF (raw) 10.6 9.5 8.8 4.2 8.2 12.4 25.9 20.4 8.9 11.5 14.6 6.2 17.1 12.0

MeshSDF 6.3 5.4 7.8 3.5 5.9 7.3 14.9 12.1 3.4 7.8 10.7 3.9 10.0 7.8

Input Pixel2Mesh [50] DISN [56] MeshSDF (Ours)

Figure 4: Pix3D Reconstructions. We compare our refined predictions to the runner-up approaches
for the experiment in Tab. 2. MeshSDF can represent arbitrary topology as well as learn strong shape
priors, resulting in reconstructions that are consistent even when observed from view-points different
from the input one.

For this experiment we use the same function fθ as for ShapeNet, that is, we do not fine-tune our
model on Pix3D images, but train it on synthetic chair renders only so that to encourage the learning
of stronger shape priors. We report our results in Tab. 2 and in Fig. 4. Interestingly, in this more
challenging setting using real-world images, our simple baseline MeshSDF (raw) already performs
on par with more sophisticated methods using camera information [56]. As for ShapeNet, our full
model outperforms all other approaches.

Table 2: Single view reconstruction results on Pix3D Chairs. Our full approach outperforms all
prior methods in all metrics.
Metric Pix3D [45] AtlasNet [15] Mesh R-CNN [14] Pixel2Mesh [50] DISN [56] MeshSDF (raw) MeshSDF

IoU ↑ 0.282 - 0.240 0.254 0.333 0.337 0.407
EMD ↓ 0.118 0.128 0.125 0.115 0.117 0.119 0.098
CD-
√
l2 ↓ 0.119 0.125 0.110 0.104 0.104 0.102 0.089

4.3 Shape Optimization

Computational Fluid Dynamics (CFD) plays a central role in designing cars, airplanes and many
other machines. It typically involves approximating the solution of the Navier-Stokes equations using
numerical methods. Because this is computationally demanding, surrogate methods [48, 54, 3, 49]
have been developed to infer physically relevant quantities, such as pressure field, drag or lift, directly
from 3D surface meshes without performing actual physical simulations. This makes it possible to
optimize these quantities with respect to the 3D shape using gradient-based methods and at a much
lower computational cost.
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optimized shapeinitial shape

0.597

0.852

0.889

Figure 5: Drag minimization. Starting from an initial shape (left column), Ltask is minimized using
three different parameterizations: FreeForm (top), PolyCube (middle), and our MeshSDF (bottom).
The middle column depicts the optimization process and the relative improvements in terms of Ltask.
The final result is shown in the right column. FreeForm and PolyCube lack a semantic prior, resulting
in implausible details such as sheared wheels (orange inset). By contrast, MeshSDF not only enforces
such priors but can also effect topology changes (blue inset).

In practice, the space of all possible shapes is immense. Therefore, for the optimization to work well,
one has to parameterize the space of possible shape deformations, which acts as a strong regularizer.
In [3, 49] hand-crafted surface parameterizations were introduced. It was effective but not generic
and had the potential to significantly restrict the space of possible designs. We show here that we can
use MeshSDF to improve upon hand-crafted parameterizations.

Experimental Setup. We started with the ShapeNet car split by automatic deletion of all the
internal car parts [44] and then manually selected N = 1400 shapes suitable for CFD simulation. For
each surfaceMi we ran OpenFoam [18] to predict a pressure field pi exerted by air travelling at 15
meters per second towards the car. The resulting training set {Mi, pi}Ni=1 was then used to train a
Mesh Convolutional Neural Network [12] gβ to predict the pressure field p = gβ(M), as in [3]. We
use {Mi}Ni=1 to also learn the representation of Sec. 3.2 and train the network that implements fθ of
Eq. 1.

Finally, we introduce the aerodynamic objective function

Ltask(M) =

∫∫
M

gβ nx dM+ Lconstraint(M) , (8)

where the integral term approximates drag given the predicted pressure field, nx denotes the projection
of surface normals along airflow direction, and Lconstraint is designed to preserve the required amount
of space for the engine and the passenger compartment. Minimizing the drag of the car can now be
achieved by minimizing Ltask with respect toM. We provide further details about this process and
the justification for our definition of Ltask in the Supplementary Section.

Comparative Results. We compare our surface parameterization to several baselines: (1) vertex-
wise optimization, that is, optimizing the objective with respect to each vertex; (2) scaling the surface
along its 3 principal axis; (3) using the FreeForm parameterization of [3], which extends scaling
to higher order terms as well as periodical ones and (4) the PolyCube parameterization of [49] that
deforms a 3D surface by moving a pre-defined set of control points.

We report quantitative results for the minimization of the objective function of Eq. 8 for a subset of
8 randomly chosen cars in Table 3, and show qualitative ones in Fig. 5. Not only does our method
deliver lower drag values than the others but, unlike them, it allows for topology changes and produces
semantically correct surfaces as shown in Fig. 5(c).
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Table 3: CFD-driven optimization.We minimize drag on car shapes comparing different surface
parameterizations. Numbers in the table (avg ± std) denote relative improvement of the objective
function L%

task = Ltask/Lt=0
task for the optimized shape, as obtained by CFD simulation in OpenFoam.

Parameterization None Scaling FreeForm [3] PolyCube [49] MeshSDF

Degrees of Freedom ∼ 100k 3 21 ∼ 332 256

Simulated L%
task ↓ not converged 0.931± 0.014 0.844± 0.171 0.841± 0.203 0.675± 0.167

5 Conclusion

We introduce a new approach to extracting 3D surface meshes from Deep Signed Distance Functions
while preserving end-to-end differentiability. This enables combining powerful implicit models
with objective functions requiring explicit representations such as surface meshes. We believe that
MeshSDF will become particularly useful for Computer Assisted Design, where having a topology-
variant explicit surface parameterizations opens the door to new applications.
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7 Broader Impact

Computational Fluid Dynamics is key to addressing the critical engineering problem of designing
shapes that maximize aerodynamic, hydrodynamic, and heat transfer performance, and much else
beside. The techniques we propose therefore have the potential to have a major impact in the field of
Computer Assisted Design by unleashing the full power of deep learning in an area where it is not
yet fully established.
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