
R1: Motivation Learning disentangled representations in cross-domains is useful for real-world problems such as1

image translation (demonstrated in the paper) and language translation. CdDN is one of the recent promising work on2

the cross-domain disentanglement task. However, it is a GAN-based architecture with the gradient reversal layer, which3

is not ideal for training in our opinion. Our work, IIAE, has a much simpler architecture with a more direct training4

scheme. The advantage of IIAE can be appreciated by the quality of results, compared to CdDN in Tables 6 and 7.5

R1: Learned representations for image retrieval We think we can still check whether the learned representations6

are disentangled in the image retrieval task. In Table 2, we also report the retrieval accuracy using the exclusive7

representation (numbers in the parenthesis), which is closed to a random guess (100/N%) showing the successful8

disentanglement. In contrast, the results from CdDN are noticeably high or low, suggesting that it was relatively9

unsuccessful in disentangling the representations. Please see below for additional experiments.10

R1: Clarification on the data We assume that the pairing is not unique, as in the CdDN paper.11

Translation pix2pix [23] CdDN [12] IIAE

X → Y 0.24987 ± 0.00780 0.23517 ± 0.00799 0.21478 ± 0.00844
Y → X 0.21524 ± 0.00704 0.19295 ± 0.00687 0.15277 ± 0.00774

R1: Quantitative evaluation12

We report quantitative evalua-13

tion on the quality of samples,14

as request by R1. We followed15

the exact experimental setting16

for the Cars dataset as in [12], except we use freshly generated training data (the data from [12] was unavailable) and17

the updated version of the evaluation metric LPIPS. Thus, please understand that the numbers here do not exactly match18

those in [12]. The results show that the sample quality of IIAE clearly exceeds the quality of GAN-based methods.19

R2: Limitations For Cars and Sketchy datasets, we randomly paired samples within categories, which is a straightfor-20

ward way to use our method for unpaired samples. Extending to semi-supervised learning tasks and scaling to multiple21

domains remain as future work. As for the quantitative comparison with SOTA, please see our response to R1 above.22

R2: Correctness of the lower bound optimization Our training objective is II minus MI, whose lower bound23

(ELBO with regularization) is derived taking the standard steps for obtaining variational lower bounds. Thus, this lower24

bound has the same tightness property as ELBO and VIB.25

Please note that our approach is independent of the choice of the prior, although all the experiments used the Gaussian26

prior for the simplicity in the implementation. Yet, in all of our experiments, we were not able to observe any of the27

sample diversity issues even under the Gaussian prior. Please refer to Table 1, 4, and 6 demonstrating that our method28

generates diverse samples depending on zx and zy .29

R3: Comparison to TC regularization FactorVAE and β-TCVAE are for the single-domain disentanglement task,30

which minimize the total correlation (TC) among all dimensions of the latent variable to make them independent.31

The cross-domain disentanglement aims to decompose domain-specific and domain-invariant factors of variation into32

three latent variables (one shared and two exclusives for two domains). Minimizing TC is not directly applicable to33

cross-domain disentanglement. To the best of our knowledge, our work is the first to introduce the notion of interaction34

information for the cross-domain disentanglement task.35

Metric II II-MI ELBO+λII ELBO+λ(II-MI)

mAP 0.517 0.534 0.516 0.573
P@100 0.605 0.616 0.595 0.659

R3: Ablation Study We conducted ablation36

study on the effect of terms in the IIAE objective,37

using the ZS-SBIR dataset. II represents optimiz-38

ing interaction information only, and II-MI is the39

objective in (11). Last two columns represent taking40

weighted sum with the ELBO, treating λ = 2 as the hyperparameter. The final column is the objective of IIAE.41

Comparing to Table 3, all settings significantly outperform SOTA, and shows that subtracting MI from II always help.42

Facades(Val) BicycleGAN CdDN IIAE

F→ L (%) - 95.0 (1.0) 100.0 (1.0)
L→ F (%) 45.0 97.0 (1.0) 100.0 (0.0)

R3: Additional comments on Table 9 Please note43

that we re-trained DRIT using the paired data in order44

to make a fair comparison (stated in the text), via minor45

modification to the author’s code to take advantage46

of the paired data. Regarding the numbers from the47

Facades dataset, they are different from the original paper since we used test set rather than the validation set (stated in48

the footnote). The table on the right shows the result on the validation set, which matches the numbers in the original49

paper. Finally, thank you very much for catching typos, which will be fixed in the final version of the paper.50


