
We thank the reviewers for their valuable time and thoughtful feedback. We are encouraged by the positive comments1

w.r.t. our novel ideas and application of group testing to multilabel classification (MLC)([R3],[R4]), our method’s2

scalability ([R4]), impressive runtimes ([R2]), and efficiency ([R3]). Please see our response below:3

[R1],[R2],[R3] Novel Contributions: Our main contributions are: (a) the development of a (non-trivial) data-dependent4

group testing scheme, that improves label grouping for MLGT significantly (vs. [35]), and can use the recently proposed5

log-time decoding algorithm; (b) the use of matrix reordering techniques to hierarchically partition the label space, so6

that we can apply MLGT to subsets of labels independently, in order to scale to very large label sets. These innovations7

lead to a significantly faster training algorithm (Table 3) compared to most existing methods (∼ 50min vs. 370-730 hrs8

for DISMEC, which has the highest accuracy), yet yield comparable results. Note that (more accurate) OvA methods9

require O(d) classifiers to be trained (taking many hours). The tree methods use k-means clustering to create label10

clusters (we use fast matrix reordering heuristics) and OvA classifiers at each leaf nodes (# classifiers ∼ o(d) vs. our11

O(k log d)). Our method also has a provably log-time prediction algorithm, enabling almost real-time predictions.12

[R1],[R2],[R3] Similarity to [35]: As we build on the MLGT algorithm of [35], where group testing was first proposed13

for MLC, the core idea of creating O(k log d) label groups is similar. However, the method in [35] yields poor accuracy14

on large datasets due to random label grouping, and does not scale to extreme settings. We overcome these issues by first15

developing a data-dependent grouping scheme (NMFGT) to improve the method’s accuracy, and then use hierarchical16

partitioning to scale the method to very large problems. Sampling a group testing matrix that (a) captures the label17

correlations, (b) has distinctive columns, and (c) satisfies the SAFFRON construction, is non-trivial. We propose a18

technique that uses a normalized NMF basis (capturing label correlations) as a potential function for sampling columns19

of the GT matrix that are distinct and have fixed average sparsity c (left regular graph). Computing a good GT matrix20

via NMF for large d is difficult, and we use label partitioning in order to apply NMF-based MLGT to smaller problems.21

[R1] Weakness 1,2: We develop the NMFGT and also the HE-NMFGT (NMFGT + hierarchical partitioning) to (a)22

tackle large datasets and (b) get better accuracy on large datasets, and thus describe both. Weakness 3 - Experimental23

study: We first show that NMFGT is better (See Fig 2. & suppl.) than earlier GT method in [35]. Also, SP-GT24

results do not match with [35] as the modified prediction algorithm in this paper is better (we get better accuracy than25

[35,Table 1]. We next use label partitioning to improve over NMF-GT for larger datasets (Table 2). Finally, we show26

that partitioning+NMFGT has significantly faster training and prediction times than other methods (Table 3). We27

believe that low training times (saving many hours) and fast predictions in return for a limited loss (few points) in28

accuracy will be critical in many "related search" applications. Weakness 4: We use HE-NMFGT only when # labels is29

too large to apply NMFGT. We do mention that for Mediamill and RCV1x there were no clear label partitions.30

[R3], [R4] Trade off and improvements: We thank the reviewers for these suggestions. In the figures below we plot31

precisions (Π@1,Π@3,Π@5) versus runtimes (in secs) for Eurlex (left) and wiki10 (middle) datasets, by increasing32

groups m in each partition. Indeed, we notice a clear trade-off: as we increase runtimes, accuracy improves. But33

beyond a point, the accuracy gain is limited as m is increased. In the paper, we chose smallest m (vertical line) for34

which our accuracy is close to the SOA tree methods. Improved accuracy can be achieved for higher runtimes (when35

m is much more than k log d). We also plot Π@k versus # partitions ` for Wiki10 (right). For smaller `, it is hard to36

compute a good NMF for large matrices, and with many partitions, we will miss certain label correlations.37

0 50 100 150 200 250 300 350 400 450 500
Time (in secs)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n

Modified Precision Eurlex Test data

@1
@3
@5

300 400 500 600 700 800 900 1000 1100 1200 1300
Time (in secs)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n

Modified Precision Wiki10 Test data

@1
@3
@5

1 2 3 4 5 6 7
Partitions l -->

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n

Modified Precision Wiki10 Test data

@1
@3
@5

38

[R4] Solution merger: The output of MLGT will be a binary vector {0, 1}di , hence, comparing scores across disjoint39

subsets of labels will not an issue. For the shared labels across partitions, we indeed use weights for the label outputs40

such that these weights add to 1. Due to space constraints these details were only briefly discussed (in sec. 4). Label41

partitions: The matrix reordering method recursively partitions the labels, hence discovering a hierarchy. The code we42

use produces the partitions (and sizes), in addition to the permutations depicted in Fig. 1. So the process is automatic.43

[R2] Ensemble methods, missing details/comparisons: The ensemble idea is an exciting direction we have not44

investigated! Linear SVM was used for classifiers (same as SOA tree methods). For large datasets the partition sizes45

were ∼ 40k labels. We had to defer the implementation details to supplement due to space constraints. We will include46

a comparison to AnnexML (Tagami, 17) if the paper is accepted.47

