Supplementary material - Multilabel Classification by Hierarchical
Partitioning and Data-dependent Grouping

A Constant Weight Construction

In this supplement, we first describe two constant weight constructions, where each group has the
same number of labels, and each label belongs to the same number of groups. Such constructions
have been shown to perform well in the group testing problem [36, 38].

A.1 Randomized construction

The first construction we consider is based on LDPC (low density parity) codes. Gallagher proposed
a low density code with constant weights in [10]. We can develop a constant weight GT matrix A
based on this LPDC construction as follows: Suppose the matrix A we desire has d columns with
constant ¢ ones in each column, and 7 ones in each row. The LDPC matrix will have dc/r rows in
total. The matrix is divided into ¢ submatrices, each containing a single 1 in each column. The first
of these submatrices contains all the ones in descending order, i.e., the ith row will have ones in the
columns (¢ — 1)r + 1 to ér. The remaining submatrices are simply column permutations of the first.
We consider this construction in our experiments.

A.2 SAFFRON construction

Recently, in [23], a biparitite graph based GT construction called SAFFRON (Sparse-grAph codes
Framework For gROup testiNg) was proposed. [38] extended this SAFFRON construction to form
left-and-right-regular sparse-graph codes called regular-SAFFRON. The adjacency matrices corre-
sponding to such graphs give us the desired constant weight constructions. The regular-SAFFRON
construction starts with a left-and-right-regular graph G...(d, m1), with d left nodes called variable
nodes, and m right nodes called bin nodes. The d.c edge connections from the left and m,.r edge
connections from the right are paired up according to a random permutation.

Let T € {0,1}™1%4 be the adjacency matrix corresponding to the left-and-right-regular graph
Gcr(d,mq). Then, T has ¢ ones in each column and r ones in each row. Let U € {0, 1;’”2 Xd pe the
universal signature matrix (see [4, 38] for definition). If ¢; is the ithe row of T = [t , . tT]T

s Vmyg
then the GT matrix A is formed as A = [AT,..., AL |7, where the submatrix A; = Udiag(t;) of
size my X d. The total tests will be m = my - mo. We have the following recovery guarantee of this
construction:

>

Proposition 1. Suppose we wish to recover a k sparse binary vector y € {0,1}%. A binary
testing matrix A formed from the regular-SAFFRON graph with m = Tl.klog% tests recovers
1 — € proportion of the support of y correctly with high probability (w.h.p), for any € > 0. With
m = Toklog k log %, we can recover the whole support set w.h.p. The constants T, and 1o depend

on c,r and the error tolerance €. The computational complexity of the decoding scheme will be
O(klog %)

Proof of the proposition can be found in [38]. The decoding algorithm was discussed in the main text.

B Proof of Theorem 1

Next, we sketch the proof of Theorem 1 in the main text.

Proof. Let us denote the entries of H and A as Bi}j and a; j respectively,t = 1,...,m;j =1,...,n.

From our construction: Pr(a; ; = 1) = h; ; and Pr(a; ; =0) =1 — h; ;.

First, let us find the probability that z; = 0. Since z; will be 0 if and only if the support of ith row of
A has no intersection with the support of y, hence,

Pr(z;=0)= [[Pra;=0= T[] -h)

j€supp(y) Jj€supp(y)

13

Now note that, b; = > | a; jz;. Therefore, E[b;] = >0 Ela; jzi] = > i, Pr(a; jz; = 1). It
turns out that,

Pr(a;jz =1) =Pr(a;; =1,z =1)
=Pr(a;; =1)Pr(zi =1 a;; =1)
=hij(1=Pr(zi =0]a;; =1)).
Now, we consider two cases. When j € supp(y), Pr(z; =0 a;; = 1) = Pr(Vj € supp(y), a; ;
0] a;,; = 1) = 0. On the other hand, when j ¢ supp(y), Pr(z; =0 | a;; = 1) = Pr(z; = 0)
[icsuppn (X — hi.). Therefore,

hij j € supp(y)
Pr(a; iz =1) = 2 ~]
(7) {Hlesupp(y)(l - hi,l)] ¢ Supp(y)

Hence, when j € supp(y),

But when j ¢ supp(y),

E bj] = ipr(ai,jzi =].)
=3 M 0-ho<y TT ewh)

i=1 l€supp(y) 1 lesupp(y)
m m
:Zexp(— Z) Zexp yh() . 0
=1 1esupp(y)
We can make stronger claims to bolster this theorem. Since the random variables b;,7 = 1,...,n are

all Lipschitz functions of independent underlying variables, by using McDiarmid inequality [25] we
can say that they are tightly concentrated around their respective average values.

C Additional experimental results

Here, we present additional results and further discuss the results we presented in the main text for
the proposed methods. We then give few results which help us better understand the parameters that
affect the performance of our MLGT method. First, we describe the evaluation metrics used in the
main text and here for comparison.

Evaluation metrics: To compare the performance of the different MLC methods, we use the most
popular evaluation metric called Precison@k (P@k) [1] with & = {1, 3,5}. It has been argued that
this metric is more suitable for modern applications such as tagging or recommendation, where one
is interested in only predicting a subset of (top k) labels correctly. P@Xk is defined as:

1
POk = > K2
leranky (g)

where g is the predicted vector and y is the actual label vector. This metric assumes that the vector ¢
is real valued and its coordinates can be ranked so that the summation above can be taken over the
highest ranked k entries of ¢. For the hierarchical approach, we weight and rank the labels based on
repeated occurrence (in the overlapping set .S).

In general, MLGT method returns a binary label vector 3 of predefined sparsity, there is no ranking
among its non-zero entries. Hence, we also use a slightly modified definition:

IQk := 1rmn (k, Z u), 3)
l€tops(9)

where tops(§) is the 5 nonzero co-ordinates of ¢ predicted by MLGT assuming that the predefined
sparsity is set to 5. To make the comparison fair for other (ranking based) methods, we sum over the
top 5 labels based on their ranking (i.e. we use ranks instead of ranky, in the original definition).

14

Precision Bibtex Test data

Precision Bibtex Test data

Precision@3

oss| = wror
—&—ower
—&—spar

Precision RCV1x Test data

o

Precision@1
Precision@3

—F— NMF-GT
—&—cwar -
0.65 —&—spaT K —&—spaT | |

06 L L L L 03 L L L L
100 150 200 250 300 350 100 150 200 250 300 350

Figure 4: TIQ1 and T1@3 for test data instances for bibtex (top two) and RCV1x (bottom two) datasets
as a function of number of groups m. Error bar over 10 trials.

Table 4: Comparisons between GT constructions. Metric: Modified Precision

[Dataset | Metrics [NMF-GT CW-GT SP-GT [[OvA |

Bibtex 11a1 0.7354 0.7089 0.6939 0.6111
d =159 I1@3 0.3664 0.3328 0.3034 || 0.2842
m =120 I1@5 0.2231 0.2017 0.1823 0.1739
Dy (A) 10.610 12.390 12.983 —
Tiotal 5.13s 4.01s 3.98s 8.22s
Thest 0.13s 0.13s 0.13s 0.18s
Mediamill | TIQ1 0.8804 0.8286 0.6358 0.8539
d =101 I1@3 0.6069 0.5413 0.2729 0.5315
m = 50 I1as 0.3693 0.3276 0.1638 0.3231

Py (A) 10.377 11.003 10.876 —
Tiotal 17.2s 15.7s 15.82s 29.4s
Tiest 0.17s 0.17s 0.17s 0.54s

RCVIx | Hal 0.9350 09205 0.8498 || 0.9289
d=2016 | II@3 0.6983 0.6596 0.5732 || 0.6682
m =250 | TI@5 0.4502 04104 03449 | 0.4708
By (A) | 53.916 58459 58.671 —
Thotal 88.4s 77.5s 74.2s || 363.2s
Thest 1.20s 1.04s 1.10s || 6.37s
Eurlex a1 0.8477 08430 0.6792 || 0.8535
d=3993 | TI@3 0.5547 05582 0.3933 || 0.6132
m =350 | II@5 0.3444 03597 02758 || 0.4085
By (A) | 80.023 80.732 82.257 —
Trotal 227.3s 99.65 90.4s || 560.1s
Thest 0.94s 0.93s 0.93s || 7.26s

Comparing group testing constructions: In Table i} we compare the three constructions dis-
cussed in this paper on four datasets. We also include the One versus All (OvA) method (which
is computationally very expensive) to provide a frame of reference. In the table, we list PQk for
k = {1, 3,5}, the correlation metric ®y (A), the total time T},:q; as well as the time T} taken to

15

Test data o4 Precision Test data Precision Test data

recision@k

IYT-ATA

Figure 5: Analysis: (Left) Relation between P@k and the correlation metric ®y (A), (Middle)
Relation between P@k and column sparsity c, and (Right) Performance of NMF for larger m.

predict the labels of nt test instances. Figure [4|is the enlarged version of Figure 1 in the main text,
where a smaller version of the plots were given due to space constraint.

The NMF-GT method performs better than both methods, because it groups the labels based on the
correlation between them. This observation is supported by the fact that the correlation metric ®y (A)
of NMF-GT is the lowest among the three methods. Also note that even though NMF-GT has longer
training time compared to the other GT methods (due to the NMF computation), its prediction time is
essentially the same. We also note that the runtimes of all three MLGT methods are much lower than
OvA, particularly for larger datasets as they require much fewer (O(log d)) classifiers.

Results discussion: In table 2 of main text, we summarized the results obtained for six methods
for different datasets. We note that NMF-GT performs very well given its low computational
burden. PfastreXML and Parabel, on the other hand, yield slightly more accurate results but require
significantly longer run times.

Note that, when compared to the MLGT, the other methods require significantly more time for
training. This is because, the tree based methods use k-means clustering recursively to build the label
tree/s, and require several OvA classifiers to be trained, one per each label in the leaf nodes. OvA
methods are obviously expensive since they learn d number of classifiers. Moreover, the prediction
time for MLGT is also orders of magnitude less than many of the popular methods. In addition, the
other methods have several parameters that need to be tuned (we used the default settings provided
by the authors). We also note that the main routines of most other methods are written in C/C++
language, while MLGT was implemented in Matlab and hence the run times can be further improved
to enable truly real-time predictions.

In Table 3 of the main paper, for the large two datasets, the label set was divided into blocks of sizes
roughly around 40K . We also used negative sampling of the training data for each block as done
in many recent XML works [28, 15]. We also reduced the feature dimension via. sketching. For
hierarchical partitioning, we used the vertex separator approach described in the main text, using
the FORTRAN code provided by the author of [11]. The reordering for the four datasets in Table 3
are given in Figure 1 for the main text. The approach is extremely fast, and the runtime for the four
datasets for reordering and partitioning were:

Eurlex: 0.5s; Wikil0: 4.11s; WikiLSHTC: 40.3s; and Amazon670: 15.5s.

For Eurlex and Wikil0, the accuracy and runtime results for SLEEC, PfastreXML and Parabel were
computed by us using their matlab codes. Results for these three methods for the remain two datasets,
and all results for the additional four methods (Dismec, PPD-sparse, XT and XML-CNN) were
obtained from [28] and [40]. All runtimes are based on single core implementation.

MLGT Analysis: We conducted several numerical tests to analysis the performance of MLGT
with respect to various settings. Figure [5] presents few of these numerical analysis results, which
help us understand the performance of MLGT better. In the left figure, we plot the P@k achieve
by MLGT with different GT constructions, as a function of the the correlation metric ®y (A). The
different points (circle) in the plot correspond to different GT matrices with different @y (A). These
GT matrices were formed by randomly permuting k-disjunct matrices, and changing its size. We
observe that GT matrices with lower ®y (A), yield better classification. These results motivated us to
develop the data-dependent grouping approach.

16

Table 5: Average Hamming loss errors in reduction v/s training

Dataset NME-GT CW-GT
d R-Loss | T-Loss | R-Loss | T-Loss
Bibtex 159 3.49 3.68 2.95 4.30

RCV1-2K | 2016 3.99 4.72 3.96 491
EurLex-4K | 3993 1.38 4.77 1.05 5.03

Precision Bibtex Test data Precision RCV1x Test data

09 I

Precision@1
Precision@1

I I I I
01 02 03 0.4 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
fraction of training points fraction of training points

Figure 6: Prec@1 for test data instances for bibtex (left) and RCV1x (right) datasets as a function of
fraction of training data used. Error bar over 5 trials

In the middle plot, we have the performance of the NMF-GT method for different column sparsity
c. We clearly note that as c increases, the performance first increases, and then reduces for larger
c. This is because, for larger c, the GT matrix will have higher coherence between the columns. As
indicated in our analysis, the performance of the GT construction will depends on this coherence.
This analysis motivated us to use the search technique described in Remark 1, to select the optimal
column sparsity c.

In the right plot, we compare the performance of NMF-GT vs CW-GT as a function of number of
groups m for the Eurlex dataset. We observe that for smaller m, NMF-GT performs better. However,
for larger m and more so for larger number of label d, NMF-GT becomes less accurate. This is
due to the difficulty in computing accurate NMF for such large matrices. NMF is known to be an
NP hard problem. This result likely explains why the NMF-GT’s performance on larger datasets is
less accurate. A possible approach to improve the accuracy of NMF-GT is to use the Hierarchical
approach described above and split the large label set into smaller disjoint subsets, and apply NMF-GT
independently.

In table [5] we list the average Hamming loss errors we suffer in label reduction (and decoding)
when using NMF-GT and CW-GT for the three datasets. That is, we check the average error in the
group testing procedure (label reduction and decoding), without classifiers. We also list the average
Hamming loss in the training data after classification for comparison. We observe that, the NMF-GT
has worse reduction loss compared to CW-GT. This is because, NMF-GT is data dependent, and
is not close to being k-disjunct as oppose to CW-GT, which is random. However, we note that the
training loss of NMF-GT is better. This shows that, even though the reduction-decoding is imperfect
(introduces more noise), NMF-GT results in better individual classifiers. These comparisons show
that data-dependent grouping will indeed result in improved classifiers.

Implementation details: All experiments for NMFGT and He-NMFGT were implemented in
Matlab, and conducted on a standard work station with Intel i5 core 2.3GHz machine. The timings
reported were computed using the cputime function in Matlab. For the SLEEC method, we could not
compute [IQF as in eq. [3] since the source code did not output the score matrix. The IIQFk reported
for SLEEC in Table 4 were the P@Xk returned by source code. Also, for the last 2 examples, SLEEC
was run for 50 iterations (for the rest it was 200).

17

D Learning with less training data

In supervised learning problems such as MLC, training highly accurate models requires large
volumes of labeled data, and creating such volumes of labeled data can be very expensive in many
applications [21, 41]. As aresult, there is an increasing interest among research agencies in developing
learning algorithms that achieve ‘Learning with Less Labels’ (LwLL)"} Since MLGT requires training
only O(k log d) classifiers (as opposed to d classifiers in OvA or other methods), we will need less
labeled data for training the model. In section 5, we present preliminary results that demonstrate how
MLGT achieves learning with less data for MLC.

Here, we present preliminary results that demonstrate how MLGT achieves more accurate (higher
precision) with less training data compared to the OvA method (see Table d]in suppl). Figure 6] plots
the precision (Prec@1) for test data instances for the bibtex (left) and RCV1x (right) datasets, when
different fractions of training data were used to train the MLGT and OvA models. We note that
MLGT achieves the same accuracy as OvA with only 15-20% of the number of training points (over
5x less training data). We used the same binary classifiers for both methods, and MLGT requires
only O(k log d) classifiers, as opposed to OvA, which needs d classifiers. Therefore, MLGT likely
requires fewer training data instances.

’darpa.mil/program/learning-with-less-labels

18

darpa.mil/program/learning-with-less-labels

	Constant Weight Construction
	Randomized construction
	SAFFRON construction

	Proof of Theorem 1
	Additional experimental results
	Learning with less training data

