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We thank all the reviewers for their efforts and constructive comments, and for recognizing the contribution of our2

comprehensive mathematical and experimental analysis in support of SVD+(M). We first address the concerns of3

relevance and novelty mentioned by two reviewers: [R2] “overall not surprising. . . an artifact of the incentives in4

computer vision research,” and [R4] “whether the contributions. . . warrant publication in this venue.”5

Surprising: There is ample evidence that our contribution would be received as surprising by the research community.6

Deep learning research for vision/robotics applications is judged on the output (e.g. 3D reconstruction, depth estimates,7

skeleton pose), not by their network’s internal rotation representation. Thus the incentive is to use the best available8

representation. That domain experts do not consider SVD (L40, [19,4,30,24]) indicates our results would be surprising.9

This is supported by other reviewers, e.g. [R1] “quite surprised by the result (understandably, as many others).”10

Novel: In addition to the thorough experimental analysis, the mathematical analysis is an important component of the11

exposition and is also a novel contribution. The error analysis derivation (Sec 3.3, e.g. Corollary 1: SVD+ error is 3σ,12

GS+ error is 6σ), the theoretical and empirical gradient analysis (Sec 3.2, Supp. 3.1), and discussion on continuity (Sec13

3.4), are all novel contributions. This analysis provides the theoretical grounding supporting SVD+ in neural networks.14

Relevant: Rotation estimation in neural networks has [R3] “broad applicability to many NeurIPS-related subject15

areas,” and is [R1] “a central question in 3D computer vision.” Given the surprising and comprehensive empirical16

findings, along with a novel mathematical analysis tailored for deep learning and for comparison to state-of-art methods17

(SVD vs GS [47]), this work is very relevant to the NeurIPS community.18

[R3] “if the continuity described in section 3.4 is the same type of ’global right-inverse’ continuity described in [47].”19

We use “continuity” in the conventional sense of continuous functions and differentiability. The global right-inverse20

condition imposed by [47] automatically applies to our setting since our 9D representation space by definition contains21

SO(3) as a subspace (and SO(3) itself is fixed by the projection functions SVD(M), SVD+(M))22

[R1] “does not seem to investigate why SVD-plus is better (albeit for a comparison with [47] in Corrolary 3).” Prior23

work [47, 20] has carefully analyzed the limitations of classic SO(3) representations in neural networks, so we focused24

our comparative analysis on GS+(M) [47] since GS is closely related to SVD and is the current state of the art. We25

believe our analysis (SVD as the natural robust projection onto SO(3), stable gradients, etc) explain its success in the26

experiments. We will include a discussion placing our analysis in the context of classic representations.27

[R1] “[L110] the noise distribution over M is Gaussian. . . Bingham and Langevin distributions are better suited to28

model errors over SO(3).” Here the noise model represents errors introduced by networks when predicting unconstrained29

9D outputs rather than errors in SO(3). We will add the references and include a clarification discussion.30

[R3] “Peretroukhin et al, RSS2020. . . published contemporaneously.” Thanks for the suggestion. Although this paper31

appeared after the NeurIPS deadline, we will include a discussion and add it to all experiments in the final version.32

Preliminary results indicate it ranks 2nd for Pt. Clouds (Table 1): mean/med err of 1.97/1.06◦ vs 1.63/0.89 for SVD+(M).33

[R3] L207: “large errors. . . due to representation discontinuities.” The ShapeNet airplanes used by [47] contain34

spaceships with perfect 180◦ symmetry. We will add images to the supplemental, and rephrase the text to indicate that35

in general, errors for an unseen test set can depend on representation, model generalization, and data ambiguities.36

[R1] “For Euler angles . . . it is prudent to know of the parameterization.” We treat the network output as XYZ Euler37

angles. We did not consider alternatives since we were following previously established experimental settings, e.g. [47],38

but we will include alternatives (Cayley) in the final version. We thank R1 for the references on state estimation and39

control theory, and will include a discussion in our related work and analysis.40

[R1] “empirical analysis . . . would hold for special cases of rotations (eg. about a fixed axis. . . .” The KITTI dataset41

(Table 7) is mostly planar motion. We will add other special cases in supplemental by simulating data with 3D shapes.42

[R1] “if this approach can be extended to . . . SE(3) . . . Sim(3).” SVD+(M) could be deployed in a straightforward way43

for regression to product spaces involving SO(3) by simply decoupling SO(3) from the other terms (e.g. regressing R344

and SO(3) separately). We leave it to future work to analyze different approaches in practice.45

[R4] how “rotation estimation impacts other ’downstream’ computations.” Inverse Kinematics and KITTI depth (Tables46

6 and 7) are examples of established applications where accurate rotation estimates impact downstream objectives.47

[R3] “[LR, other] hyper-parameters.” The conclusions remained with/without LR-decay (Tab. 1 and Supp 4.2), different48

losses (Supp 4.3) and encoding models (Supp 4.4.2). We will include an experiment with granular change in LR.49

Other points: We will release the experiment code as well (R2). We sample random rotations according to the Haar50

measure on SO(3) (R3). We found no change between chordal and geodesic loss (Supp Sec 4.3) (R3). We will51

restructure the paper according to the helpful suggestion from R4 to include more details in the main body. We will52

update the analysis summary (L174–176) to reiterate the least-squares optimality of SVD is well-known. (R2).53


