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Appendix

In the appendix, we start from the proofs of theorem 2.1 and theorem 2.2 in section A. Then, we
prove the correctness of proposition 2.2 and proposition 2.3 in section B. After that, the detailed
derivation of our proposed loss is provided in section C. At last, the sensitivity of some important
parameters is discussed in section D.

A Proofs of Theorems

Before providing the proofs of the theorems, we restate some important notations first. In the
following, denote by C the set of N contexts, I the set of M items and Ic interacted items in a
context c. The objective function of IRGAN is as follows:

min
G

max
D
J (D,G) =

∑
c∈C

Ei∼Ptrue(·|c) logD(i|c) + Ej∼PG(·|c) log (1−D(j|c)) ,

where Ptrue(·|c) is an underlying true relevance distribution over candidate items and PG(·|c) is a
probability distribution used to generate negative samples. D(i|c) = σ(gφ(c, i)) =

1
1+exp(−gφ(c,i))

estimates the probability of preferring item i in a context c.
Theorem A.1 (Theorem 2.1). Assume G has enough capacity. Given the discriminator D,
minG J (D,G) yields the optimum of G as follows

PG?(·|c) = one-hot(argmax
i

(gφ(c, i))).

Proof. From the definition of J (D,G), when the discriminator D is fixed, the first expectation is
independent to G so that it can be omitted when minimizing J w.r.t. G. Thus, the objective function
is equivalent to

min
G

∑
c∈C

Ej∼PG(·|c) log(1−D(j|c)).

Let hc(j) = log(1−D(j|c)), j? = argminj hc(j) so that hc(j?) ≤ hc(j),∀j ∈ I . Note that hc(j)
is a decreasing function w.r.t. gφ(c, j), so j? = argminj hc(j) = argmaxj gφ(c, j). Then, in a
context c, we have:

Ej∼PG(·|c)hc(j) =
∑
j∈I

PG(j|c)hc(j) ≥
∑
j∈I

PG(j|c)hc(j?) = hc(j
?) =

∑
j∈I

one-hot(j?)hc(j).
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Therefore, the optimum of G follows PG?(·|c) = one-hot(argmaxi(gφ(c, i))).

Theorem A.2 (Theorem 2.2). AssumeG has enough capacity and let fc(i) = − log (1−D(i|c)) =
log(1 + exp(gφ(c, i))). Given the discriminator D, minG J (D,G) − T · H(PG(·|c)) yields the
optimum of G as follows

PG?T (i|c) =
exp (fc(i)/T )∑
j exp (fc(j)/T )

.

Proof. From the definition of J (D,G), when the discriminator D is fixed, the first expectation is
independent to G so that it can be omitted when minimizing J w.r.t. G. Thus, the objective function
is equivalent to

min
G

∑
c∈C

(
Ej∼PG(·|c) log(1−D(j|c))− T · H(PG(·|c))

)
,

where H(PG(·|c)) = −
∑
i∈I PG(i|c) logPG(i|c) is the entropy regularization controlled by the

temperature T . For simplicity of writing, regarding a certain context c, let x = [x0, x1, ..., xM−1]
where xj = PG(j|c) and y = [y0, y1, ..., yM−1] where yj = log(1−D(j|c)) = −fc(j). Then, we
can formalize the primal problem for the context c as follows:

min
x

x>y + T

M−1∑
k=0

xk log xk,

s.t.

M−1∑
k=0

xk = 1,

− xk < 0, k = 0, ...,M − 1.

This is a constrained optimization problem, so we can define the Lagrange L as follows:

L(x, α0, ..., αM−1, β) = x>y + T

M−1∑
k=0

xk log xk −
M−1∑
k=0

αkxk + β(

M−1∑
k=0

xk − 1),

where {α0, α1, ..., αM−1, β} are the Lagrange multipliers. Obviously, the primal problem is convex
and the equality constraint is affine so that the KKT conditions are also sufficient for the points to be
primal and dual optimal. Suppose x̂k, α̂k, β̂ are any primal and dual optimal, then, we have:

∂L
∂x̂k

= yk + T (log x̂k + 1)− α̂k + β̂ = 0, k = 0, ...,M − 1

α̂kx̂k = 0, k = 0, ...,M − 1

α̂k ≥ 0, k = 0, ...,M − 1

x̂k > 0, k = 0, ...,M − 1∑M−1
k=0 x̂k − 1 = 0

⇒


α̂k = 0, k = 0, ...,M − 1

x̂k = exp(−yk−β̂−TT ), k = 0, ...,M − 1∑M−1
k=0 exp(−yk−β̂−TT ) = 1

⇒x̂k =
exp(−yk/T )∑M−1

k′=0 exp(−yk′/T )
, k = 0, ...,M − 1

Since xk = PG(k|c) and yk = −fc(k), the optimal solution PG?T (i|c) =
exp(fc(i)/T )∑
j exp(fc(j)/T ) .
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B Proofs of Propositions

Here, we also restate some important notations first. Sc is a set of samples drawn from the generator
QG(·|c) in the context c. Our approximated loss and its variance are as follows:

VT (D,S) =
∑
c∈C

− 1

|Ic|
∑
i∈Ic

logD(i|c)−
∑
j∈Sc

wcj log (1−D(j|c))

 ,

wcj =
exp

(
fc(j)/T − log Q̃G(j|c)

)
∑
i∈Sc exp

(
fc(i)/T − log Q̃G(i|c)

) ,
Var (VT (D,S)) =

∑
c∈C

1

|Sc|
∑
i∈I

PG?T (i|c)
2(fc(i)− µc)2

QG(i|c)
,

where S =
⋃
c∈C Sc and Q̃G(j|c) is the unnormalized QG(j|c).

Proposition B.1 (Proposition 2.2). Var (VT (D,S)) ≥
∑
c∈C

1
|Sc|Ei∼PG?T (·|c)(|fc(i)−µc|)2, where

the equality holds if QG(i|c) ∝ PG?T (i|c)|fc(i)− µc|.

Proof. According to Cauchy–Schwarz inequality, let X and Y be random variables, then we have
the following inequality

E(X2)E(Y 2) ≥ |E(XY )|2.
Now, let Y ≡ 1 and suppose all contexts are IID, so we have:

Var (VT (D,S)) =
∑
c∈C

1

|Sc|
∑
i∈I

PG?T (i|c)
2(fc(i)− µc)2

QG(i|c)

=
∑
c∈C

1

|Sc|
Ei∼QG(i|c)

(∣∣∣∣PG?T (i|c)(fc(i)− µc)QG(i|c)

∣∣∣∣2
)

≥
∑
c∈C

1

|Sc|
Ei∼QG(i|c)

(∣∣∣∣PG?T (i|c)(fc(i)− µc)QG(i|c)

∣∣∣∣)2

=
∑
c∈C

1

|Sc|
Ei∼PG?

T
(i|c)(|fc(i)− µc|)2

When QG(i|c) ∝ PG?T (i|c)|fc(i)− µc|, let

QG(i|c) =
PG?T (i|c)|fc(i)− µc|∑
j∈I PG?T (j|c)|fc(j)− µc|

=
PG?T (i|c)|fc(i)− µc|
Ej∼PG?

T
(·|c) |fc(j)− µc|

.

Then, the variance becomes

Var (VT (D,S)) =
∑
c∈C

1

|Sc|
∑
i∈I

PG?T (i|c)
2(fc(i)− µc)2

QG(i|c)

=
∑
c∈C

1

|Sc|
∑
i∈I

PG?T (i|c)|fc(i)− µc|Ej∼PG?T |fc(j)− µc|

=
∑
c∈C

1

|Sc|
Ej∼PG?

T
|fc(j)− µc|Ei∼PG?

T
|fc(i)− µc|

=
∑
c∈C

1

|Sc|
Ei∼PG?

T
(|fc(i)− µc|)2.
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Proposition B.2 (Proposition 2.3). If ∀c, Sc drawn i.i.d from uniform(I), then wcj =
exp(fc(j)/T )∑
i∈Sc exp(fc(i)/T ) and ∀0 < T1 < T2 < +∞,

lim
T→+∞

VT (D,S) < VT2
(D,S) < VT1

(D,S) < lim
T→0
VT (D,S).

Proof. To prove this proposition, we just have to prove that VT (D,S) is a decreasing function w.r.t.
T ∀T > 0.

∂VT (D,S)
∂T

=
∑
c∈C

∑
j∈Sc

∂wcj
∂T

fc(j).

Considering the second summation, for simplicity of writing, let fj = fc(j) for a certain context c.
Then, for a context c, we have

∑
j∈Sc

∂wcj
∂T

fj =
∑
j∈Sc

exp(
fj
T )(− fj

T 2 )
(∑

i∈Sc exp(
fi
T )
)
− exp(

fj
T )
(∑

i∈Sc exp(
fi
T )(− fi

T 2 )
)

(∑
i∈Sc exp(

fi
T )
)2 fj

=
1(∑

i∈Sc exp(
fi
T )
)2 ∑

j∈Sc

∑
i∈Sc

exp(
fi + fj
T

)(
fifj − f2j

T 2
).

When i = j, it is obvious that the addend equals 0. Regarding the rest of addends, we can rearrange

them into a set of pairs. Specifically, let h(i, j) = exp(
fi+fj
T )(

fifj−f2
j

T 2 ). ∀i, j ∈ Sc ∧ i 6= j,

h(i, j) + h(j, i) = exp(
fi+fj
T )(

−(fi−fj)2
T 2 ) < 0. Therefore, we have

∑
j∈Sc

∂wcj
∂T fj < 0 so that

∂VT (D,S)
∂T < 0. In other words, VT (D,S) is a decreasing function w.r.t. T .

C Derivation of the Proposed Objective Function

Here, we illustrate the detailed derivation of our approximated loss for learning the discriminator.
For each context c, considering items in Ic are observed data sampled from Ptrue(·|c) which are IID,
items in Sc are sampled from QG(·|c). Then, we have:

Ei∼Ptrue(·|c) logD(i|c) ≈ 1

|Ic|
∑
i∈Ic

logD(i|c),

Ej∼PG?
T
(·|c) log(1−D(j|c)) ≈ 1

|Sc|
∑
j∈Sc

PG?T (j|c)
QG(j|c)

log(1−D(j|c)),

PG?T (j|c) =
exp(fc(j)/T )∑
i∈I exp(fc(i)/T )

.

In particular, the normalization constant of PG?T (·|c) (denoted as ZG?T ) can be approximated by the
samples Sc as:

ZG?T =
∑
i∈I

exp(fc(i)/T ) = Ei∼QG(·|c)
exp(fc(i)/T )

QG(·|c)
≈ ZQ

1

|Sc|
∑
i∈Sc

exp(fc(i)/T−log Q̃G(i|c)),

where Q̃G(i|c) is the unnormalized QG(i|c) such that Q̃G(i|c) = ZQQG(i|c). Then, we can

approximate
PG?

T
(j|c)

QG(j|c) as follows:

PG?T (j|c)
QG(j|c)

≈ exp(fc(j)/T )

QG(j|c)ZQ 1
|Sc|

∑
i∈Sc exp(fc(i)/T − log Q̃G(i|c))

=
exp(fc(j)/T − log Q̃G(j|c))

1
|Sc|

∑
i∈Sc exp(fc(i)/T − log Q̃G(i|c))

.
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To sum up:

J (D,G?T ) =
∑
c∈C
−Ei∼Ptrue(·|c) logD(i|c)− Ej∼PG?

T
(·|c) log (1−D(j|c))

=
∑
c∈C
−Ei∼Ptrue(·|c) logD(i|c)− Ej∼QG(·|c)

PG?T (j|c)
QG(j|c)

log (1−D(j|c))

≈ VT (D,S) =
∑
c∈C

− 1

|Ic|
∑
i∈Ic

logD(i|c)−
∑
j∈Sc

wcj log (1−D(j|c))

 ,

wcj =
exp

(
fc(j)/T − log Q̃G(j|c)

)
∑
i∈Sc exp

(
fc(i)/T − log Q̃G(i|c)

) .
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Figure 1: Effects of different hyper parameters.

D Parameter Sensitivity

Here, we explore the sensitivity of some important parameters including the embedding size, the
number of negative samples for the discriminator, and the number of samples for the generator. We
report the results on two datasets (i.e., CiteULike and Gowalla). For the other datasets, similar
observations can be found.

Figure 1(a) demonstrates the effects of the embeddings size (i.e., K). We vary the dimension of user
and item embeddings in the set {16, 32, 64, 128, 256}. We can observe when the embedding size
increases, the performance improves quickly at first and then slows down. Considering that when the
embedding size becomes larger, the training and inference stages will spend more time. Thus, it is
significant to choose an appropriate size in practice.

Figure 1(b) shows the effects of the number of item sample set for learning the discriminator. It has a
similar tendency to the embedding size. We vary the number of negative samples from 1 to 20 with a
step 5. The results demonstrate that when Sc is larger than 5, the improvements is limited, and even a
slight drop. This observation implies feeding more negative samples with weight scores can improve
the recommendation performance.

Figure 1(c) reports the effects of the number of item and context sample set for learning the generator.
We set |Sc| = |Si| and vary the numbers in the set {8, 16, 32, 64, 128}. We can find SD-GAR is not
sensitive to this hyper-parameter. This observation ensures that it is effective to utilize sampling
techniques for approximation when updating the generator. In addition, this conclusion also reveals
the computation cost can be further reduced by cutting down the sample number.
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