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A Upper bounds on the separation rank

A.1 The function realized by a deep multi-headed self-attention network

In this subsection, we prove facts on the general structure of the function realized by the analyzed
self-attention architecture that will be of use to us in the upcoming proofs. For a cleaner presentation,
we will rewrite eq. 3 of the main text in vectorized notation:

Y =

H∑
h=1

WO,hWV,hXXT
(
WK,h)T WQ,hX (1)

where X,Y (X) ∈ Rdx×N denote matrices respectively holding xj ,yj
(
x1, ...,xN

)
in their j’th

column. Similarly treating eq. 4 of the main text, we will denote by Y L,dx,H,Θ (X) ∈ Rdx×N the
matrix holding yj,L,dx,H,Θ

(
x1, ..., xN

)
in its j’th column.

We begin by proving a lemma that reveals the structure of gL presented in eq. 4 of the main text:

Lemma 1. Defining C (L) := 3L−1
2 , any depth L composition of the self-attention layers defined in

eq. 3 of the main text can be written as:

Y L,dx,H,Θ =
∑

h∈[H][C(L)]

B(0,h)TM (1,h) · · ·M (C(L),h)A(0,h)X (2)

where ∀h ∈ [H]
[C]

0 ≤ c ≤ C (L) : M (c,h) = A(c,h)XXTB(c,h)T and A(c,h), B(c,h) ∈ Rda×dx .

Proof. By Induction on L. Base case:

Y (1) (X) =

H∑
h=1

WO,h︸ ︷︷ ︸
BT

WV,hXXT
(
WK,h)T︸ ︷︷ ︸

M

WQ,h︸ ︷︷ ︸
A

X

Y (L+1) (X) =

H∑
h=1

WO,hWV,hY (L) (X)Y (L) (X)
T (
WK,h)T WQ,hY (L) (X)

Now, substituting in the induction hypothesis on the structure of Y (L) (X) yields:

=

H∑
h=1

WO,hWV,h

 ∑
h1∈[H][C(L)]

B(0,h1)TM (1,h1) · · ·M (C(L),h1)A(0,h1)X


 ∑
h2∈[H][C(L)]

XTA(0,h2)TM (C(L),h2)T · · ·M (1,h2)TB(0,h2)

(WK,h)T WQ,h

 H∑
h3∈[H][C(L)]

B(0,h3)TM (1,h3) · · ·M (C(L),h3)A(0,h3)X


Finally unifying the summations over h, h1h2, h3 to single sum over [H]

[C(L)·3+1=C(L+1)] gives∑
h∈[H][C(L+1)]

WO,hWV,hB(0,h)T︸ ︷︷ ︸
∈Rdx×da

M (1,h) · · ·M (C(L),h)A(0,h)XXTA(0,h)T︸ ︷︷ ︸
in the desired form ofM

M (C(L),h)T · · ·M (2,h)T

(3)

M (1,h)TB(0,h)
(
WK,h(0)

)T
WQ,hB(0,h)T︸ ︷︷ ︸

in the desired form ofM

M (1,h) · · ·M (C(L),h)A(0,h)X

(4)
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Note that the number ofM units, each with a summation on a different index j ∈ [N ], is 3C (L)+1 =

C (L+ 1), implying C (L) = 3L−1
2 as needed.

Corollary 1. Defining C (L) := 3L−1
2 , any depth L composition of L self-attention layers can be

written as:

yi,L,dx,H,Θ
(
x1, ...,xN

)
=

N∑
j1,...,jC=1

gL
(
xi,xj1 , ...,xjC

)
(5)

Where

gL
(
xi,xj1 , ...,xjC

)
:=

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

[
B(0,h)

]
r1,p

C(L)∏
c=1

〈
A(c,h)
rc ,x(jc)

〉〈
B(c,h)
rc+1

,x(jc)
〉〈A(0,h)

rC(L)+1
,x(i)

〉

Proof. To get the required form, we will use lemma 1 above and write the matrix multiplication in
eq. (2) explicitly.

M (c,h)
r1,r2 =

N∑
j=1

[
A(c,h)X

]
r1,j

[
XTB(c,h)T

]
j,r2

=

N∑
j=1

〈
A(c,h)
r1 ,x(j)

〉〈
B(c,h)
r2 ,x(j)

〉

Therefore

yi,L,dx,H,Θp

(
x(1), ...,x(N)

)
=

∑
h∈[H][C(L)]

B(0,h)T
p M (1,h) · · ·M (C(L),h)A(0,h)x(i)

=

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1[

B(0,h)
]
r1,p

C(L)∏
c=1

〈
A(c,h)
rc ,x(jc)

〉〈
B(c,h)
rc+1

,x(jc)
〉〈A(0,h)

rC(L)+1
,x(i)

〉

In the next two subsections, we will use the above lemma 1 to prove the two competing upper bounds
on the separation rank of self-attention networks.

A.2 Proof of the upper bound in theorem 1

In the following theorem, we show how an upper bound on the separation rank is implied by the form
of eq. (2) in the statement of lemma 1.

Theorem 1. Defining C (L) := 3L−1
2 , for any depth L ≥ 1 input size N > 1 partition P ·∪Q = [N ]

and output locations i ∈ [N ] , p ∈ [dx], the following holds:

sep
(
yi,L,dx,H,Θp , P,Q

)
≤ (H (da + 1))

C(L)

Proof. We begin by writing the matrix multiplication in eq. (2) explicitly.

M (c,h)
r1,r2 =

N∑
j=1

[
A(c,h)X

]
r1,j

[
XTB(c,h)T

]
j,r2

=
∑
j∈P

〈
A(c,h)
r1 ,x(j)

〉〈
B(c,h)
r2 ,x(j)

〉
+
∑
j∈Q

〈
A(c,h)
r1 ,x(j)

〉〈
B(c,h)
r2 ,x(j)

〉
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Therefore, rewriting the summation to be over {Pc ∈ {P,Q}}C(L)
c=1 that correspond to the two

partition segments P/Q.

yi,L,dx,H,Θp

(
x(1), ...,x(N)

)
=

∑
h∈[H][C(L)]

B(0,h)T
p M (1,h) · · ·M (C(L),h)A(0,h)x(i)

=
∑

h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

∑
P1,...,PC(L)∈{P,Q}

B(0,h)
r1,p

C(L)∏
c=1

∑
j∈Pc

〈
A(c,h)
rc ,x(j)

〉〈
B(c,h)
rc+1

,x(j)
〉〈A(0,h)

rC(L)+1
,x(i)

〉

Now we reorder the above sum by summing over indices of swaps between P and Q, i.e. β ∈ [C]

such that Pβ 6= Pβ+1, and split the multiplication
∏C(L)
c=1 according to the crossing indices:

=
∑

h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

C(L)∑
b=0

∑
0=βb+1<βb≤βb−1...≤β1<β0=C(L)

B(0,h)
r1,p

b b2c∏
m=0

β2m∏
c=β2m+1+1

∑
j∈P

〈
A(c,h)
rc ,x(j)

〉〈
B(c,h)
rc+1

,x(j)
〉〈A(0,h)

rC(L)+1
,x(i)

〉
d b2e−1∏

m=0

β2m+1∏
c=β2m+2+1

∑
j∈Q

〈
A(c,h)
rc ,x(j)

〉〈
B(c,h)
rc+1

,x(j)
〉

Where we assume w.l.o.g that i ∈ P and therefore Pβ1 , Pβ1+1, . . . , Pβ0−1, Pβ0 = P . The above
reordering allows pushing the summation of non swapping rc indices into the P,Q parentheses:

=
∑

h∈[H][C(L)]

C(L)∑
b=0

∑
0=βb+1<βb≤βb−1...≤β1≤β0=C(L)

da∑
rβ1+1,...,rβb+1=1

B(0,h)
r1,p (6)


da∑

rC(L)+1=1︸ ︷︷ ︸
just for β1<C
otherwise ignore

da∑
r1=1︸︷︷︸

used either
in P orQ


b b2c∏
m=0

da∑
rβ2m+1+2

...
rβ2m

=1

β2m∏
c=β2m+1+1

∑
j∈P

〈
A(c,h)
rc ,x(j)

〉〈
B(c,h)
rc+1

,x(j)
〉

〈
A(0,h)
rC(L)+1

,x(i)
〉


︸ ︷︷ ︸
function of P

da∑
r1=1︸︷︷︸

used either
in P orQ

d b2e−1∏
m=0

da∑
rβ2m+2+2,...,rβ2m+1

=1

β2m+1∏
c=β2m+2+1

∑
j∈Q

〈
A(c,h)
rc ,x(j)

〉〈
B(c,h)
rc+1

,x(j)
〉


︸ ︷︷ ︸
function ofQ

Since the separation rank of each term in the above summation is 1, we proved the following upper
bound on the separation rank:
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sep
(
yi,L,dx,H,Θp , P,Q

)
≤

∑
h∈[H][C(L)]

C(L)∑
b=0

∑
0=βb+1<βb≤βb−1...≤β1≤β0=C(L)

da∑
rβ1+1,...,rβb+1=1

1

= HC(L)

C(L)∑
b=0

(
C (L)

b

)
(da)

b
= HC(L) (da + 1)

C(L)
= (H (da + 1))

C(L)

We note that unlike the da case, the same H index can affect nonconsecutive M (c1,h),M (c2,h),
therefore we can’t simply push the h indices as done for the r indices in eq. (6).

From here, the upper bound in theorem 1 of the main text follows by

log3

(
sep

(
yi,L,dx,H,Θp , P,Q

))
≤ log3

(
(H (da + 1))

C(L)
)

=
3L − 1

2
log3 (dx +H) (7)

A.3 Proof of the upper bound in theorem 2 of the main text

In the following theorem, we show how an upper bound on the separation rank is implied
by the polynomial degree of yi,L,dx,H,Θp in eq. (5). We will use the notation of

((
n
k

))
–

the multiset coefficient, given in the binomial form by
(
n+k−1

k

)
. We will use the identity

|{a1 . . . an ∈ Z ≥ 0 :
∑n
r=1 ar = k}| =

((
n
k

))
.

Theorem 2. Defining C (L) := 3L−1
2 , for any depth L ≥ 1 input size N > 1 partition P ·∪Q = [N ]

and output locations i ∈ [N ] , p ∈ [dx], the following holds:

sep
(
yi,L,dx,H,Θp , P,Q

)
≤ dx (C (L) + 1)

((
dx

2C (L)

))(
2C (L)

dx
+ 1

)dx
(8)

Proof. We begin by opening the inner products in eq. (5), explicitly writing the indices:

yi,L,dx,H,Θp =

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

B(0,h)
r1,p

C(L)∏
c=1

〈
A(c,h)
rc ,x(jc)

〉〈
B(c,h)
rc+1

,x(jc)
〉〈A(0,h)

rC(L)+1
,x(i)

〉

=

dx∑
α1,...,αC(L)+1,β1,...,βC(L)=1

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1B(0,h)

r1,p A
(0,h)
rC(L)+1,αC(L)+1x

(i)
αC(L)+1

C(L)∏
c=1

A(c,h)
rc,αcx

(jc)
αc B

(c,h)
rc,βc

x
(jc)
βc


And separating between coefficients and x’s:

=

dx∑
α1,...,αC(L)+1,β1,...,βC(L)=1

 ∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

B(0,h)
r1,p A

(0,h)
rC(L)+1,αC(L)+1

C(L)∏
c=1

A(c,h)
rc,αcB

(c,h)
rc,βc


︸ ︷︷ ︸

:=Tα1,...,αC(L)+1,β1,...,βC(L) N∑
j1,...,jC(L)=1

x(i)
αC(L)+1

C(L)∏
c=1

x(jc)
αc x

(jc)
βc


Now we can group monomials by the powers n1, . . . , ndx of each coordinate
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=

dx∑
αC(L)+1

∑
n1+...ndx=2C(L)︸ ︷︷ ︸

The powers


How to distributethe powers between the c’s︷ ︸︸ ︷∑

α!,...,αC(L),β1,...,βC(L)∈[dx]

∀m∈[dx] |{c∈[C(L) :αc=m]}|+|{c∈[C(L) :βc=m]}|=nm

Tα1,...,αC(L)+1,β1,...,βC(L)


χn1....,ndx ,αC(L)+1

(
x(1), . . . ,x(N)

)
Where:

χn1....,ndx ,αC(L)+1

(
x(1), . . . ,x(N)

)
:=

∑
o1+···+oN=C(L)︸ ︷︷ ︸
How many j indices

equal to each [N ]

∑
0≤n1,1,...,ndx,N≤2C(L)

∀m∈[dx]
∑N
j=1 nm,j=nm

∀j∈[N ]
∑dx
m=1 nm,j=2oj︸ ︷︷ ︸

How to distribute the powers between [N ]

x(i)
αC(L)+1

N∏
j=1

dx∏
m=1

(
x(j)
m

)nm,j

Finally, we need to bound the separation rank of χn1....,ndx ,αC(L)+1
. W.l.o.g we choose the partition

P =
{

1, . . . , N2
}
, Q =

{
N
2 + 1, . . . , N

}
and i ∈ P then we can divide the powers between P,Q in

the following way:

χn1....,ndx ,αC(L)+1

(
x(1), . . . ,x(N)

)
=

∑
0≤r1,P ,...,rdx,P≤2C(L)
0≤r1,Q,...,rdx,Q≤2C(L)
∀m∈[dx] rm,P+rm,Q=nm

C(L)∑
E=0


∑

o1+···+oN
2

=E

∑
0≤n1,1,...,ndx,N2

≤2C(L)

∀m∈[dx]
∑N
j∈P nm,j=rm,P

∀j∈[N ]
∑dx
m=1 nm,j=2oj

x(i)
αC(L)+1

∏
j∈P

dx∏
m=1

(
x(j)
m

)nm,j


︸ ︷︷ ︸
function of P

∑
oN

2
+1

+···+oN=C(L)−E

∑
0≤n1,1,...,ndx,N2

≤2C(L)

∀m∈[dx]
∑N
j∈Q nm,j=rm,Q

∀j∈[N ]
∑dx
m=1 nm,j=2oj

∏
j∈Q

dx∏
m=1

(
x(j)
m

)nm,j


︸ ︷︷ ︸
function ofQ

Thus, since each summand is of separation rank 1, the separation rank of χn1....,ndx ,αC(L)+1
is

bounded by the number of summands:

(C (L) + 1)

dx∏
β=1

((
2

rβ

)) lemma 3︷︸︸︷
≤ (C (L) + 1)

(
2C (L)

dx
+ 1

)dx

where the inequality followed from lemma 3. Since we have at most dx
((

dx
2C(L)

))
different χ we

conclude that:

sep
(
yi,L,dx,H,Θp , P,Q

)
≤ dx

((
dx

2C (L)

))
︸ ︷︷ ︸

number of χ

(C (L) + 1)

(
2C (L)

dx
+ 1

)dx

6



From here, the theorem follows by the multiset identity in lemma 4:

log3

[
sep

(
yi,L,dx,H,Θp , P,Q

)]
≤ log3

[
dx (C (L) + 1)

((
dx

2C (L)

))(
2C (L)

dx
+ 1

)dx]
(9)

≤ log3

[
dx (C (L) + 1)

(
2e (dx + 2C (L))

dx

)dx (2C (L)

dx
+ 1

)dx]

≤ log3

[
3Ldx (2e)

dx

(
3L − 1

dx
+ 1

)2dx
]

only for 3L > dx︷︸︸︷
≤ log3[3Ldx (2e)

dx (2 · 3L − 1

dx
)2dx ]

≤ L+ log3 dx + dx log3 2e+ 2dx log3

{(
2 · 3L

dx

)}
≤ (2dx + 1)L+ log3 dx + 2dx

(
log3 2

√
2e− log3 dx

)
A.4 The effect of residual connections

Figure 1: A residual network in its compressed and unraveled form, taken from Veit et al. [2016].

Having upper-bounded the separation rank of the deep self-attention network defined in section 2.2
of the main text, we comment on the effect of adding residual connections over each layer, as is done
in the regular network (described in section 2.1 of the main text). Consider a network composed of a
concatenation of the building blocks shown in figure 1(a), taken from Veit et al. [2016]. A building
block in layer l includes a module fl, which in our case is the self-attention layer given in eq. (3) of
the main text,1 and a skip connection which adds fl’s input to its output (circles denote addition).
Veit et al. [2016] propose an unraveled view of such a network, shown in figure 1(b), which we will
employ in the proof of theorem 3 for clarity of presentation.

We begin by proving a lemma that quantifies how the separation rank of the composition of a
self-attention layer over a function is related to the function’s separation rank:
Lemma 2. Let gj ∈ Rdx be an input vector at position j to a self-attention layer defined by eq. (3) of
the main text, and let K be an upper bound to the separation rank of any of the entries p ∈ [dx] of any
input gj ∈ Rdx , i.e., ∀p ∈ [dx], j ∈ [N ] : Sep

(
gjp
)
≤ K. Let yip be the pth entry of the self-attention

layer output at position i. Then, an upper bound to the separation rank of yip ∈ R is given by:

Sep
(
yip
)
≤ Nd4

x

H
K3

1We have embedded the Feed-Forward layer within WO due to the linearity of the analyzed model.
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Proof. Denote by G ∈ Rdx×N the matrix holding gj ∈ Rdx in its jth column. Note that by the
conditions of the lemma any entry of G upholds Sep(Gαβ) ≤ K. Writing eq. (3) of the main text as
a summation over matrix indices:

yip =

H∑
h=1

dx/H∑
α1=1

dx∑
α2=1

N∑
j=1

dx∑
α4=1

dx/H∑
α5=1

dx∑
α6=1

WO,h
pα1

WV,h
α1α2

Gα2j(G
>)jα4

(WK,h)>α4α5
WQ,h
α5α6

Gα6i (10)

The lemma follows by multiplying the number of summed terms by an upper bound on the separation
rank of each summed term, K3.

We now prove a theorem which establishes that the integration of skip connections modifies the upper
bound in theorem 1 of the main text by a small factor.
Theorem 3. For p ∈ [dx], let yi,Lp be the scalar function computing the pth entry of an output vector
at position i ∈ [N ] of the depth-L residual network depicted in figure 1, where fl is the self-attention
layer in eq. (3) of the main text. Then:

log3 Sep(y
L,i
p ) ≤ L log3 L+ (4 log3 dx + log3N − log3H) · 3L − 1

2

Comparing this dependence to the upper bound in the theorem 1 of the main text, given in eq. (7),
this theorem implies that the effect of residual connections is insignificant to our analysis.

Proof. Observing figure 1(b) which gives the L = 3 example, we upper bound the separation rank of
the entire unraveled network by noting that its output is composed from L+ 1 additions of outputs
from branches of depth l = 0, ...., L (0 being the direct link of the input to the output), such that
schematically the separation rank at the output of the entire network can be upper bounded by:

Sep(yL,ip ) ≤ (L+ 1)Sep(longest branch(L))

where we denoted longest branch(L) as the function at the output of fL, before the addition with
the other branches. Noting that the input to fL can be recursively viewed as an output of an
unraveled network of depth L − 1, we bound the separation rank of the function at the input to
fL by L · Sep(longest branch(L − 1)). Since fL is a self-attention layer, Lemma 2 implies that
Sep(longest branch(L)) ≤ Nd4x

H (L · Sep(longest branch(L− 1)))
3. Continuing recursively, and

inserting the stopping condition Sep(longest branch(L = 1)) =
Nd4x
H (since the input to f1 is a

specific entry of the input to the entire network, of separation rank 1), we attain:

Sep(yL,ip ) ≤
L∏
l=1

(l + 1)

(
Nd4

x

H

)3l−1

,

satisfying the theorem.

We now prove a theorem which establishes that the integration of skip connections modifies the upper
bound in theorem 2 of the main text by a small factor.

Theorem 4. Defining C (L) := 3L−1
2 , for p ∈ [dx], let yi,L,dx,H,Θp,residual be the scalar function computing

the pth entry of an output vector at position i ∈ [N ] of the depth-L residual network depicted
in figure 1, where fl is the self-attention layer in eq. (3) of the main text. Then for any partition
P ·∪Q = [N ], the following holds:

sep
(
yi,L,dx,H,Θp,residual , P,Q

)
≤ dx (C (L) + 1)

2

((
dx

2C (L)

))(
2C (L)

dx
+ 1

)dx
Comparing this dependence to the upper bound in the theorem 2 of the main text, given in eq. (8), the
above theorem implies that the effect of residual connections is insignificant to our analysis.

Proof. We will adapt the proof of theorem 2. All of the arguments remain unchanged, except that we
obtain the network structure via lemma 5 instead of lemma 1. Following the new structure we will
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have two additional summations, one over j and one over α (see lemma 5), as well as an additional
input X factor. We will leave the summation over j during the whole proof, thus multiplying the
separation rank by at most C (L). Note that similarity to the h summation, the summation over α has
no influence on the separation rank, since it collapses into a single coefficient T . Finally the unput
X factor contribute at most 1 to the separation rank, therefore we can bound the separation rank by
C (L) + 1 times the bound in eq. (8).

Finally, since the upper bounds undergo such minor increases in the presence of skip connections, the
lower bounds can be left with no further tightening, without affecting the analysis and its conclusions.

A.5 Technical lemmas

Lemma 3. (inequality of arithmetic and geometric multiset coefficient means)

Let n, k ∈ N and φ : Nk → N := r1, . . . rk `
∏k
j=1

((
n
rj

))
then:

∀rz, . . . rk ∈ N φ (r1, . . . rk) ≤

(∏n−1
t=1

(
M
k + t

))k
((n− 1)!)

k

where M :=
∑k
j=1 rj

Proof. Define ft :=
∏k
j=1 (rj + t) and ψ :=

∏n−1
t=1 ft than by the inequality of arithmetic and

geometric means

∀t ∈ [k] ft ≤

1

k

k∑
j=1

(rj + t)

k

=

(
M

k
+ t

)k
Therefore

φ (r1, . . . , rk) =

k∏
j=1

((
n

rj

))
=

k∏
j=1

(
n+ rj − 1

rj

)
=

k∏
j=1

(n+ rj − 1)!

rj ! (n− 1)!

=
1

((n− 1)!)
k

k∏
j=1

n−1∏
t=1

(rj + t) =
1

((n− 1)!)
k

n−1∏
t=1

ft ≤
∏n−1
t=1

(
M
k + t

)k
((n− 1)!)

k

One can see that when M divided by k it hold that

φ


k times︷ ︸︸ ︷

M

k
, . . . ,

M

k

 =
1

((n− 1)!)
k

n−1∏
t=1

ft =
1

((n− 1)!)
k

n−1∏
t=1

(
M

k
+ t

)k
=

(
n−1∏
t=1

(
M

k
+ t

))k

hence the name of this lemma.

Lemma 4.
((
n
k

))
≤
(

2e(n+k)
n

)n
Proof. : by using the inequality

(
n
k

)
≤
(
en
k

)k
we have((

n

k

))
=

(
n+ k − 1

n− 1

)
≤
(

2e (n+ k)

n

)n

We now prove a lemma which reveals the alternation to the network structure as expressed in eq. (2)
when taking skip connections into account.
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Lemma 5. Defining C (L) := 3L−1
2 , any depth L skip connection composition of the self-attention

layers defined in eq. 3 of the main text can be written as:

Y L,dx,H,Θ = X +

C(L)∑
j=1

nj∑
α=1

∑
h∈[H][j]

B(0,h,j,α)TM (1,h,j,α) · · ·M (j,h,j,α)A(0,h,j,α)X (11)

where ∀j ∈ [C (L)] nj ≥ 0 and ∀α ∈ [nj ] h ∈ [H]
[j]

0 ≤ c ≤ j : M (c,h) = A(c,h)XXTB(c,h)T

and A(c,h), B(c,h) ∈ Rda×dx .

Proof. By Induction on L. Base case:

Y (1) (X) = X +

H∑
h=1

WO,h︸ ︷︷ ︸
BT

WV,hXXT
(
WK,h)T︸ ︷︷ ︸

M

WQ,h︸ ︷︷ ︸
A

X

Y (L+1) (X) =

H∑
h=1

WO,hWV,hY (L) (X)Y (L) (X)
T (
WK,h)T WQ,hY (L) (X)

Now, rewriting Y (L) as X +
(
Y (L) −X

)
yields:

Y (L+1) (X) =
∑

E,F,G∈{X,Y (L)−X}

H∑
h=1

WO,hWV,hEFT
(
WK,h)T WQ,hG

Now, substituting in the induction hypothesis on the structure of Y (L) (X) yields:

Y (L+1) (X) =
∑

E,F,G∈
{
X,
∑C(L)
j=1

∑nj
α=1

∑
h∈[H][j]

B(0,h,j,α)TM(1,h,j,α)···M(j,h,j,α)A(0,h,j,α)X
}

H∑
h=1

WO,hWV,hEFT
(
WK,h)T WQ,hG

Similarly to eq. (3) each of the 8 terms in the outer summation is of the required form, thus we
complete the proof.

B Lower bounds on the separation rank

B.1 preliminaries

B.1.1 Tensors and their matricization

We begin by laying out basic concepts in tensor theory required for the upcoming analysis. The core
concept of a tensor may be thought of as a multi-dimensional array. The order of a tensor is defined
to be the number of indexing entries in the array, referred to as modes. The dimension of a tensor in a
particular mode is defined as the number of values taken by the index in that mode. If A is a tensor of
order N and dimension Mi in each mode i ∈ [N ], its entries are denoted Ad1...dN , where the index
in each mode takes values di ∈ [Mi].

We will make use of the concept of the matricization ofA w.r.t. the balanced partition (I, J), denoted
JAKI,J ∈ RM

N/2×MN/2

, which is essentially the arrangement of the tensor elements as a matrix
whose rows correspond to I and columns to J . Suppose A ∈ RM×···×M is a tensor of order N , and
let (I, J) be a balanced partition of [N ], i.e. I and J are disjoint size N/2 subsets of [N ] whose union
gives [N ]. The matricization of A w.r.t. the partition (I, J), denoted JAKI,J , is the MN/2-by-MN/2

matrix holding the entries of A such that Ad1...dN is placed in row index 1 +
∑N/2
t=1(dit − 1)MN/2−t

and column index 1 +
∑N/2
t=1(djt − 1)MN/2−t.
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B.1.2 Grid tensors provide lower bounds for the separation rank

We now present the concept of grid tensors, which are a form of function discretization [Hackbusch,
2012]. Essentially, the function is evaluated for a set of points on an exponentially large grid in
the input space and the outcomes are stored in a tensor. Formally, fixing a set of template vectors
x(1), . . . ,x(M) ∈ Rdx , the points on the grid are the set {(x(d1), . . . ,x(dN ))}Md1,...,dN=1. Given a
function y(x1, . . . ,xN ), the set of its values on the grid arranged in the form of a tensor are called
the grid tensor induced by y, denoted A(y)d1,...,dN ≡ y(x1 = x(d1), . . . ,xN = x(dN )).

The following claim establishes a fundamental relation between a function’s separation rank (see
section 3 of the main text) and the rank of the matrix obtained by the corresponding grid tensor
matricization. This relation, which holds for all functions, is formulated below for functions realized
by self-attention networks:
Claim 1. For p ∈ [dx], let yi,L,dx,H,Θp be the scalar function computing the pth entry of an output
vector at position i ∈ [N ] of the depth-L self-attention network with hidden dimension dx and H
attention heads per layer, defined in eqs. 3 and 4 of the main text. Then, for any integer M and any
set of template vectors x(1), . . . ,x(M) ∈ Rdx it holds that:

sep(I,J)

(
yi,L,dx,H,Θp

)
≥ rank

(
JA(yi,L,dx,H,Θp )KI,J

)
, (12)

where A(yi,L,dx,H,Θp ) is the grid tensor of yi,L,dx,H,Θp with respect to the above template vectors.

Proof. If sep(I,J)

(
yi,L,dx,H,Θp

)
= ∞ then the inequality is trivially satisfied. Otherwise, assume

that sep(I,J)

(
yi,L,dx,H,Θp

)
= K ∈ N, and let {gIν , gJν }Kν=1 be the functions of the respective decom-

position to a sum of separable functions, i.e. that the following holds:

yi,L,dx,H,Θp (x1, . . . ,xN ) =

K∑
ν=1

gIν(xj : j ∈ I) · gJν (xj : j ∈ J).

Then, by definition of the grid tensor, for any template vectors x(1), . . . ,x(M) ∈ Rdx the following
equality holds:

A(yi,L,dx,H,Θp )d1,...,dN =

K∑
ν=1

gIν(x(dj) : j ∈ I) · gJν (x(dj) : j ∈ J)

≡
K∑
ν=1

V νdj :j∈[I]U
ν
dj :j∈[J],

where V ν and Uν are the tensors holding the values of gIν and gJν , respectively, at the points defined
by the template vectors. Under the matricization according to the (I, J) partition, it holds that
JV νKI,J and JUνKI,J are column and row vectors, respectively, which we denote by vν and uTν . It
follows that the matricization of the grid tensor is given by:

JA(yi,L,dx,H,Θp )KI,J =

K∑
ν=1

vνu
T
ν ,

which means that rank
(
JA(yi,L,dx,H,Θp )KI,J

)
≤ K = sep(I,J)

(
yi,L,dx,H,Θp

)
.

B.1.3 Method for bounding the grid tensor’s rank

Claim 1 assures us that the separation rank of the function realized by a self-attention network is
lower bounded by the rank of the matrix obtained by the corresponding grid tensor matricization, for
any choice of template vectors. Specifically:

sep(I,J)

(
yi,L,dx,H,Θp

)
≥ rank

(
JA(yi,L,dx,H,Θp )KI,J

)
.

Thus, proving that rank
(
JA(yi,L,dx,H,Θp )KI,J

)
is higher than the lower bounds stated in theorems 1

and 2 of the main text for all of the values of the parameters Θ but a set of Lebesgue measure zero,
would satisfy the theorems.
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We note that since the network’s operation is polynomial in Θ, then the entries of the grid tensor are
also polynomial. Sharir et al. [2016] prove a claim regarding the prevalence of the maximal matrix
rank for matrices whose entries are polynomial functions. Essentially, they show that it suffices to
find a single configuration of the parameters, denoted θ ∈ RK (where K is the number of scalar
parameters), for which the resultant matrix is of rank r, in order to show the rank is at least r for all
configurations in RK but a set of measure zero in RK . For simplicity of the proof we will find a single
configuration θ ∈ CK for which the resultant matrix is of the required rank. We therefore modify the
original claim to fit this setting, still proving the rank is lower bounded for all configurations in RK
but a set of measure zero in RK :

Claim 2. Let M,N,K ∈ N, 1 ≤ r ≤ min{M,N} and an M ×N matrix A where each entry is a
polynomial mapping Aij over K variables for every i ∈ [M ] and j ∈ [N ]. If there exists a point
θ ∈ FK , where F is either R or C, s.t. rank(A(θ)) ≥ r, then the set {θ ∈ RK : rank(A(θ)) < r}
has zero measure (w.r.t. the Lebesgue measure over RK).

Proof. (based on a proof in Sharir et al. [2016]) Recall that rank (A(θ)) ≥ r iff there exits a non-zero
r × r minor of A(θ). Note that a minor of A(θ) is polynomial in the entries of A(θ), and so it is
polynomial in θ as well. Let c =

(
M
r

)
·
(
N
r

)
be the number of minors in A, denote the minors by

{fi(θ)}ci=1, and define a new polynomial function f(θ) =
∑c
i=1 fi(θ)

2. It thus holds that f(θ) = 0
iff for all i ∈ [c] it holds that fi(θ) = 0, i.e. f(θ) = 0 iff rank (A(θ)) < r.

Now, f(θ) is a polynomial in the entries of θ, and so it either vanishes on a set of zero measure in
RK , or it is the zero polynomial (see Caron and Traynor [2005] for proof). Since we assumed that
there exists θ ∈ FK s.t. rank(A(θ)) ≥ r, the latter option is not possible.

B.2 Proof of the lower bounds in theorems 1 and 2 of the main text

In this section, we show there exists an assignment for the weight matrices of a self-attention network,
along with a specific choice of template vectors, for which rank

(
JA(yi,L,dx,H,Θp )KI,J

)
surpasses the

lower bounds stated in theorems 1 and 2 of the main text in the appropriate depth to width ratios. In
accordance with Claim 2, the lower bounds in the theorems will follow since such an assignment
implies this rank is achieved for all configurations of the self-attention network weights but a set of
Lebesgue measure zero.

Proof. (of lower bounds in theorems 1 and 2 of the main text).

Relying on claim 1 we will bound the separation rank from below via the rank of the matricization
w.r.t. a partition (I, J) of a grid tensor induced by yi,L,dx,H,Θp , computed by any set of template
vectors: sep(I,J)

(
yi,L,dx,H,Θp

)
≥ rank

(
JA(yi,L,dx,H,Θp )KI,J

)
. Relying on claim 2, we ensure that

the rank of JA(yi,L,dx,H,Θp )KI,J is above a certain value almost everywhere by finding an assignment
of the network parameters for which it achieves this value.

Lemma 6 assures us that for any matrix V ∈ RM/2×(dx−H)/2 with l2 normalized rows, there exists
a choice of M + 1 template vectors x(1), . . . ,x(M+1) ∈ Rdx , as well as an assignment to the
self-attention network weights for which:

JA(yi,L,dx,H,Θp )KĨ,J̃ = Const. ·
(
V V T

)�(3L−2)
, (13)

where JA(yi,L,dx,H,Θp )KĨ,J̃ is a sub-matrix of the grid tensor matricization JA(yi,L,dx,H,Θp )KI,J of
size M/2×M/2 and � represents the Hadamard power operation, i.e.,

(
A�k

)
ij

= Akij . Since proving
the existence of a sub-matrix of a certain rank lower-bounds the rank of the full matrix by this rank, it

suffices to find a matrix V such that rank
((
V V T

)�(3L−2)
)

upholds the stated dependence.

Noting that the operation of raising a rank r matrix to the Hadamard power of p results in a matrix
upper bounded by

((
r
p

))
(see proof in Amini et al. [2012] for example) with the notation of the

multiset coefficient
((
n
k

))
:=
(
n+k−1

k

)
, and that the rank of V V T is upper bounded by (dx−H)/2, we

choose the dimension M/2 =
((

(dx−H)/2
3L−2

))
to facilitate the rank increase.
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For this choice, observe that it suffices to prove that the sub-matrix JA(yi,L,dx,H,Θp )KĨ,J̃ ∈ R
M/2×M/2

is fully ranked in order to satisfy the theorems. This follows by using the identity
(
n
k

)
≥
(
n
k

)k
we

have:
((
n
k

))
=
(
n+k−1

k

)
=
(
n+k−1
n−1

)
≥ max

{(
n−1
k + 1

)k
,
(

k
n−1 + 1

)n−1
}

And accordingly:((
(dx−H)/2

3L−2

))
≥ max

{(
(dx−H)/2− 1

3L−2
+ 1

)3L−2

,

(
3L−2

(dx−H)/2− 1
+ 1

)(dx−H)/2−1
}

and the log of this bounds the expressions in the theorems’ lower bounds, where for each regime the
tighter lower bound is used.

Defining for brevity d := (dx−H)/2 and λ := 3L−2, it remains only to find a specific matrix
V ∈ R(( dλ ))×d with l2 normalized rows such that the operation of taking the rank d matrix V V > to
the Hadamard power of λ would result in a fully ranked matrix. We will provide such a matrix, and
prove for it that: (

V V >
)�λ

=

(( dλ ))∑
k=1

a(k) ⊗ b(k) (14)

for {a(k)}((
d
λ ))

k=1 and {b(k)}((
d
λ ))

k=1 which are two sets of linearly independent vectors.

For α, β ∈ [
((
d
λ

))
], observing an entry of

(
V V >

)�λ
:

((
V V >

)�λ)
αβ

=
(
V V >

)λ
αβ

=

(
d∑
r=1

v(α)
r v(β)

r

)λ
= (15)

∑
k1+···+kd=λ

(
λ

k1, . . . , kd

)[ d∏
r=1

(
v(α)
r

)kr][[ d∏
r=1

(
v(β)
r

)kr]]
(16)

where the first equality follows from the definition of the Hadamard power, in the section we denoted
v

(α)
r , v

(β)
r as the rth entries in rows α and β of V , and in the second line we expanded the power

with the multinomial identity. Identifying the form of eq. (16) with the schematic form of eq. (14), it
remains to find a specific matrix V ∈ R(( dλ ))×d with l2 normalized rows for which the size

((
d
λ

))
set{

a(k1,...,kd)
}
k1+···+kd=λ

is linearly independent, where a(k1,...,kd)
α =

∏d
r=1

(
v

(α)
r

)kr
.

We show this is the case for V in which the rows are each associated with one of
((
d
λ

))
configurations

of distributing d integer numbers that sum up to λ, i.e., in which each row is associated with specific{
qα1 , . . . , q

α
d ≥ 0,

∑d
r=1 q

α
r = λ

}
. Explicitly, we take the rows v(α)

r to be:

∀r ∈ [d] : v(α)
r = Ωq

α
r/
√∑d

r′=1
Ω

2qα
r′

Given this V , each vector in the above defined set
{
a(k1,...,kd)

}
k1+···+kd=λ

is equal to:

a(k1,...,kd)
α =

d∏
r=1

(
v(α)
r

)kr
=

d∏
r=1

 Ωq
α
r√∑d

r′=1 Ω2qα
r′

kr

=

∏d
r=1 Ωq

α
r kr∏d

r=1

(∑d
r′=1 Ω2qα

r′

) kr
2

=

(
d∑

r′=1

Ω2qα
r′

)−λ2
·
[
Ω
∑d
r=1 q

α
r kr
]

Observing that the factor attained from the normalization depends only on the rows and doesn’t vary
with the different vectors labeled by (k1, . . . , kd), we note it does not affect their linear dependence
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(amounts to a multiplication by a diagonal matrix with non-zero entries on the diagonal - does not
affect the rank).

We prove that the set
{
â(k1,...,kd)

}
k1+···+kd=λ

for â(k1,...,kd)
α = Ω

∑d
r=1 q

α
r kr is linearly independent

by arranging it as the columns of the matrix A ∈ R(( dλ ))×(( dλ )), and showing that A is fully ranked.

Since the elements of A are polynomial in Ω, then as lemma 7 shows, it is sufficient to show that
there exists a single contributor to the determinant of A that has the highest degree of Ω in order
to ensure that the matrix is fully ranked for all values of Ω but a finite set, so Ω should simply be
chosen to be any number that is outside of this set. Observing the summands of the determinant,
i.e. Ω

∑
q1+···+qd=λ

〈q,σ(q)〉, where σ is a permutation on the columns of A, lemma 8 assures us
the existence of a strictly maximal contributor, satisfying the conditions of lemma 7, thus the set{
â(k1,...,kd)

}
k1+···+kd=λ

is linearly independent, and the lower bounds in the theorems follow.

B.3 Technical lemmas

The following lemma details the assignment of the self-attention network weights and the choice of
template vectors which help us establish the theorems.

Lemma 6. For any balanced partition of [N ], denoted (I, J), for any even M , and for any matrix
V ∈ RM/2×(dx−H)/2 with rows that are l2 normalized, there exists a choice of M + 1 template vectors
x(1), . . . ,x(M+1) ∈ Rdx , as well as an assignment to the self-attention network weights, for which:

JA(yi,L,dx,H,Θp )KĨ,J̃ = Const. ·
(
V V T

)�3L−2

, (17)

where JA(yi,L,dx,H,Θp )KĨ,J̃ is a sub-matrix of the grid tensor matricization JA(yi,L,dx,H,Θp )KI,J of
size M/2×M/2 and � represents the Hadamard power operation, i.e.,

(
A�k

)
ij

= Akij .

Proof. We present below a choice of weights and template vectors that yields the stated form for a
sub-matrix of JA(yi,L,dx,H,Θp )KI,J . Subsequently we will plug these values into the self-attention
operation stated in eq. 3 of the main text, and prove that this form follows.

Though the proof has many technical details, it has 3 essential parts. We first choose the weights
of the first layer so that the outputs in all locations are the same and equal to a summation of the
input vectors. Because the weight matrices are not dx × dx but are decomposed through the attention
dimension da × dx or dx × da, then we divide the coordinates of the dx-dimensional vectors into
contiguous segments of length da, and set the weights to either project these segments to the da-
dimensional space or invert this mapping with added zero-padding. For the second part, we set the key
and query matrices to use the same “projections” we used in the first layer to compute inner-products
between each segment, while setting the value and output matrices to preserve each head’s segment
(with zero-padded coordinates). For the remainder of the network’s layers, we use the previous
step to compute increasingly larger powers of the norm of the vector computed in the first layer, by
reconstructing the squared-norm from the inner products of each segment. The template vectors (and
parameters) are chosen such that the square of this norm will be equal to V V T .
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The assignment to the network weights:

WV,1,h
i,j =

1

N
·



1i=j−da·(h−1)
da(h−1) < j ≤ da(h−1) + da−1

2

0 < i ≤ da−1
2

i · 1i=j−da·(h−1)− da−1
2

da(h−1) + da−1
2 < j ≤ dah− 1

0 < i ≤ da−1
2

−1i=j−da·(h−1)
da(h−1) < j ≤ da(h−1) + da−1

2
da−1

2 < i ≤ da − 1

−i · 1i=j−da·(h−1)− da−1
2

da(h−1) + da−1
2 < j ≤ dah− 1

da−1
2 < i ≤ da − 1

1 j = dah,
da−1

2 < i ≤ da
0 Otherwise

WO,l,h
i,j =

{
1j=i−da(h−1) da(h−1) < i ≤ dah
0 Otherwise

∀1<l<L,WV,l,h
i,j =

{
1i=j−da·(h−1) da(h−1) < j ≤ dah
0 Otherwise

WV,L,h
i,j = i · 1j=da

WK,1,h
i,j = WQ,1,h

i,j = 1i=1∧j=da

WK,2,h
i,j = WQ,2,h

i,j =

1i=j−da·(h−1)
da(h−1) < j ≤ da(h−1) + da−1

2

0 < i ≤ da−1
2

0 Otherwise

∀l>2,WK,l,h
i,j = WQ,l,h

i,j =

{
1 i = 1 ∧ j mod da 6= 0

0 Otherwise

In the above, we denoted the complex root of −1 as i, to differentiate it from the index i. The choice
of template vectors:

x
(i)
j =


Vi,φ(j) i ≤ M/2 ∧ (j − 1) mod da <

da−1
2

Vi−M/2+1,φ(j− da−1
2 )

M
2 < i ≤M ∧ da−1

2 ≤ (j − 1) mod da < da − 1

1 (j − 1) mod da = da − 1

0 Otherwise

where φ(j) ≡ bj−1/dac · (da − 1) + (j − 1 mod da) + 1.

W.l.o.g. we can assume that I = {1, . . . ,N/2}, J = {N/2 + 1, . . . , N}. We examine the sub-matrix
defined by the following indices:

Ĩ = {(i1, . . . , iN/2) : 1 ≤ i1 ≤ M/2 ∧ ∀k > 1, ik = M + 1} (18)

J̃ = {(j1, . . . , jN/2) : M/2 < j1 ≤M ∧ ∀k > 1, jk = M + 1} (19)
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With all of the above in place, we are ready to prove that the resulting sub-matrix has the form of
eq. (17). We begin with the output of the first self-attention layer:

y(1,i)(x(d1), . . . ,x(dN ))k =

N∑
j=1

H∑
h=1

〈
WQ,1,hx(di),WK,1,hx(dj)

〉
(WO,1,hWV,1,hx(dj))k (20)

1
=

N∑
j=1

H∑
h=1

=1︷︸︸︷
x

(di)
da
·

=1︷︸︸︷
x

(dj)
da

(WO,1,hWV,1,hx(dj))k (21)

2
=

((
H∑
h=1

WO,1,hWV,1,h

)(
x(i1) + x(j1) + (N − 2)x(M+1)

))
k

(22)

3
=


1 (k−1) mod da = da−1

Vi1,φ(k) + iVj1,φ(k) (k−1) mod da <
da−1

2

1−Vi1,φ(k− da−1
2 )−iVj1,φ(k− da−1

2 ) Otherwise
(23)

where (1) is because WQ,1,h = WK,1,h are matrices that are zero everywhere except for entry
(1, da), (2) because when summing over the locations, only i1 and j1 are different from M + 1, and
(3) because applying the value and output matrices on any template vector u results in:

(
WO,1,hWV,1,hu

)
k

=

da∑
α=1

WO,1,h
k,α

dx∑
β=1

WV,1,h
α,β uβ (24)

=

da∑
α=1

WO,1,h
k,α

≡ûα︷ ︸︸ ︷
udah+α−1+i · udah+α−1+ da−1

2
α≤da−1

2
1
N−udah+α−1−i · udah+α−1+ da−1

2

da−1
2 <α≤da−1

1
N Otherwise

(25)

=

{
û((k−1) mod da)+1 da(h−1) ≤ k < dah

0
(26)

At this point, notice that for any i ∈ [N ], y(1,i) is the same, and we denote it with v. Note that
it is a vector composed of H da-dimensional sub-vectors, each composed of a da−1

2 -dimensional
sub-vector and its complement in the next da−1

2 indices, followed by a fixed value of 1.

Next, we will compute the result of the second layer, where we use the fact that every position is
equal to v to drop the reference to a specific location i, i.e., y(l,i) = y(l):

y
(2)
k = N

H∑
h=1

〈
WQ,2,hv,WK,2,hv

〉
(WO,2,hWV,2,hv)k (27)

= N

H∑
h=1

〈
ṽ(h), ṽ(h)

〉
v(h), (28)

where we used the notation v
(h)
k = vk · 1da(h−1)≤k<dah, i.e., a vector that is equal to vk on

the h’th da-dimensional segment and otherwise filled with zeros, as well as the notation ṽ(h)
k =

vk · 1da(h−1)≤k≤da(h−1)+ da−1
2

. The last equality is because all matrices in this layer essentially just
project the da-dimensional sub-vector of v for its respective head h.
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For the third layer we get:

y(3) = N

H∑
h=1

〈
WQ,2,hy(2),WK,2,hy(2)

〉
(WO,2,hWV,2,hy(2)) (29)

1
= N

H∑
h=1

 ∑
r mod da 6=0

y(2)
r

2

y(2),h (30)

2
= N

H∑
h=1

(
N

H∑
h′=1

〈
ṽ(h′), ṽ(h′)

〉)2

N
〈
ṽ(h), ṽ(h)

〉
v(h) (31)

3
= N4 ‖ṽ‖4

H∑
h=1

〈
ṽ(h), ṽ(h)

〉
v(h), (32)

where we define ṽ =
∑H
h=1 ṽ

(h). Equality (1) is because in both WK,3,h and WQ,3,h on the first
row is nonzero, and it has ones everywhere except in coordinates that are multiples of da, resulting in
summing over all of these non-zero elements of the vector y(2). Equality (2) is because in the vector
v(h) every entry has a corresponding entry equal to its complement, which upon summation is equal
to one, leaving only the

〈
ṽ(h′), ṽ(h′)

〉
coefficients of the vector y(2). Equality (3) is because

‖ṽ‖2 = 〈ṽ, ṽ〉 =
∑
h1,h2

〈
ṽ(h1), ṽ(h2)

〉
=

H∑
h=1

〈
ṽ(h), ṽ(h)

〉
, (33)

where the last equality stems from the fact that every ṽ(h) is non-zero on a different segment of its dx
coordinates.

For any subsequent layer l < L we use the same set of parameters, and since the input of each
preceding layer has the same form of y(l) = Nαl · ‖ṽ‖2βl

∑H
h=1

〈
ṽ(h), ṽ(h)

〉
v(h), then we can just

compute its recurrence relation:

y(l+1) = N

H∑
h=1

(
Nαl ‖ṽ‖2βl

H∑
h′=1

〈
ṽ(h′), ṽ(h′)

〉)2

Nαl ‖ṽ‖2βl
〈
ṽ(h), ṽ(h)

〉
v(h) (34)

= N1+3αl ‖ṽ‖6βl
H∑
h=1

(
H∑
h′=1

〈
ṽ(h′), ṽ(h′)

〉)2 〈
ṽ(h), ṽ(h)

〉
v(h) (35)

= N3αl+1 ‖ṽ‖2·(3βl+2)
H∑
h=1

〈
ṽ(h), ṽ(h)

〉
v(h) (36)

⇒ αl+1 = 3αl + 1, βl+1 = 3βl + 2 (37)

Using the initial conditions of α3 = 4 and β3 = 2, we get that αl = 3l−1−1
2 , βl = 3l−2 − 1. For the

L’th layer, the only difference is that WV,L,h is defined such that it returns a 1-hot vector that picks
the da’th element of the previous step. Putting it all together we get:

y
(L)
k = N

3L−1−1
2 · ‖ṽ‖2·(3

l−2−1)
H∑
h=1

〈
ṽ(h), ṽ(h)

〉
i · v(h)

da
(38)

y
(L)
k = N

3L−1−1
2 · i · ‖ṽ‖2·3

l−2

(39)
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Finally, we can evaluate ‖ṽ‖2:

‖ṽ‖2 =

dx∑
k=1

ṽ2
k =

H∑
h=1

da−1/2∑
k=1

(Vi1,(da−1)·(h−1)+k + i · Vj1,(da−1)·(h−1)+k)2 (40)

=

normalized⇒=1︷ ︸︸ ︷
H∑
h=1

da−1/2∑
k=1

V 2
i1,(da−1)·(h−1)+k −

normalized⇒=1︷ ︸︸ ︷
H∑
h=1

da−1/2∑
k=1

V 2
j1,(da−1)·(h−1)+k (41)

2i ·
H∑
h=1

da−1/2∑
k=1

Vi1,(da−1)·(h−1)+kVj1,(da−1)·(h−1)+k (42)

= 2i(V V T )i1,j1 , (43)

which concludes the proof.

Next, we show two lemmas that aid in the proof of the lower bound. We first quote an identity by
which for a matrix with entries that are polynomials in x, if a single contributor to the determinant
has the highest degree of x, then the matrix is fully ranked for all values of x but a finite set.

Lemma 7. (from Levine et al. [2018]). Let A ∈ RN×N be a matrix whose entries are polyno-
mials in x ∈ R. In this case, its determinant may be written as det(A) =

∑
σ∈SN sgn(σ)pσ(x),

where SN is the symmetric group on N elements and pσ(x) are polynomials defined by pσ(x) ≡∏N
i=1Aiσ(i)(x), ∀σ ∈ Sn. Additionally, let there exist σ̄ such that deg(pσ̄(x)) > deg(pσ(x)) ∀σ 6=

σ̄. Then, for all values of x but a finite set, A is fully ranked.

Proof. We show that in this case det(A), which is a polynomial in x by its definition, is not the zero
polynomial. Accordingly, det(A) 6= 0 for all values of x but a finite set. Denoting t ≡ deg(pσ̄(x)),
since t > deg(pσ(x)) ∀σ 6= σ̄, a monomial of the form c ·xt, c ∈ R\{0} exists in pσ̄(x) and doesn’t
exist in any pσ(x), σ 6= σ̄. This implies that det(A) is not the zero polynomial, since its leading
term has a non-vanishing coefficient sgn(σ̄) · c 6= 0, and the lemma follows from the basic identity:
det(A) 6= 0 ⇐⇒ A is fully ranked.

The following quoted lemma, establishes a relation referred to as the vector rearrangement inequality,
which helped us ensure that our matrix of interest upholds the conditions of lemma 7 and is thus fully
ranked.

Lemma 8. (from Levine et al. [2018]). Let {v(i)}Ni=1 be a set of N different vectors in RR̄ such that
∀i ∈ [N ], j ∈ [R̄] : v

(i)
j ≥ 0. Then, for all σ ∈ SN such that σ 6= IN , where SN is the symmetric

group on N , it holds that:
N∑
i=1

〈
v(i),v(σ(i))

〉
<

N∑
i=1

∥∥∥v(i)
∥∥∥2

.

Proof. We rely on theorem 368 in [Hardy et al., 1952], which implies that for a set of non-negative
numbers {a(1), . . . , a(N)} the following holds for all σ ∈ SN :

N∑
i=1

a(i)a(σ(i)) ≤
N∑
i=1

(a(i))2, (44)

with equality obtained only for σ which upholds σ(i) = j ⇐⇒ a(i) = a(j). The above relation,
referred to as the rearrangement inequality, holds separately for each component j ∈ [R̄] of the given
vectors:

N∑
i=1

v
(i)
j v

(σ(i))
j ≤

N∑
i=1

(v
(i)
j )2.
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We now prove that for all σ ∈ SN such that σ 6= IN , ∃ĵ ∈ [R̄] for which the above inequality is hard,
i.e.:

N∑
i=1

v
(i)

ĵ
v

(σ(i))

ĵ
<

N∑
i=1

(v
(i)

ĵ
)2. (45)

By contradiction, assume that ∃σ̂ 6= IN for which ∀j ∈ [R̄]:
N∑
i=1

v
(i)
j v

(σ̂(i))
j =

N∑
i=1

(v
(i)
j )2.

From the conditions of achieving equality in the rearrangement inequality defined in Equation (44), it
holds that ∀j ∈ [R̄] : v

(σ̂(i))
j = v

(i)
j , trivially entailing: v(σ̂(i)) = v(i). Thus, σ̂ 6= IN would yield a

contradiction to {v(i)}Ni=1 being a set of N different vectors in RR̄. Finally, the hard inequality of
the lemma for σ 6= IN is implied from Equation (45):
N∑
i=1

〈
v(i),v(σ(i))

〉
≡

N∑
i=1

 R̄∑
j=1

v
(i)
j v

(σ(i))
j

 =

R̄∑
j=1

(
N∑
i=1

v
(i)
j v

(σ(i))
j

)
<

R̄∑
j=1

(
N∑
i=1

(v
(i)
j )2

)
=

N∑
i=1

∥∥∥v(i)
∥∥∥2

.

C Proof of Proposition 1 on the separation rank symmetry

Claim 3. For any depth L ≥ 1 input size N > 1 and output locations i ∈ [N ] , p ∈ [dx] The
separation rank w.r.t. balanced partitions, which obey A ·∪B = [N ], |A| , |B| = N/2, is invariant to
the identity of the partition, i.e., ∀A ·∪B = [N ], Ã ·∪ B̃ = [N ], s.t. |A| , |B| , |Ã|, |B̃| = N/2:

sep(yi,L,dx,H,Θp ;A,B) = sep(yi,L,dx,H,Θp ; Ã, B̃) (46)

Proof. We will denote A =
(
a1, . . . , aN

2

)
,B =

(
b1, . . . , bN

2

)
,Ã =

(
ã1, . . . , ãN

2

)
,B̃ =(

b̃1, . . . , b̃N
2

)
and by π ∈ SN the unique permutation that satisfy

∀m ∈
[
N

2

]
π (am) = ãm ∧ π (bm) = b̃m

w.l.o.g we will assume that a1 = ã1 = i.

Assuming that sep(y;A,B) = R, then there exist g1, . . . , gR, g
′
1, . . . , g

′
R s.t.

∀x(1), . . . ,x(N) ∈ Rdx yi,L,dx,H,Θp

(
x(1), . . . ,x(N)

)
=

R∑
v=1

gv

(
x(a1), . . . ,x

(
aN

2

))
g′v

(
x(b1), . . . ,x

(
bN

2

))
i = π (a1) = a1 therefore the summations over j1, . . . , jN in eq. (5) implies that for any
x(1), . . . , x(N) ∈ Rdx we have

yi,L,dx,H,Θp

(
x(1), . . . ,x(N)

)
= yi,L,dx,H,Θp

(
x(π(1)), . . . ,x(π(N))

)
And therefore

=

R∑
v=1

gv

(
x(π(a1)), . . . ,x

(
π

(
aN

2

)))
g′v

(
x(π(b1)), . . . ,x

(
π

(
bN

2

)))

=

R∑
v=1

gv

(
x(ã1), . . . ,x

(
ãN

2

))
g′v

(
x(b̃1), . . . ,x

(
b̃N

2

))
So we proved that

sep(yi,L,dx,H,Θp ; Ã, B̃) ≤ sep(yi,L,dx,H,Θp ;A,B)

Finally by switching the roles of Ã, B̃ and A,B we can get the inverse inequality so we conclude that

sep(yi,L,dx,H,Θp ; Ã, B̃) = sep(yi,L,dx,H,Θp ;A,B)
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D Experimental details

We trained common self-attention architectures of depths L = 6, 12, 18, 24, 30, 36, 48 and varying
widths, such that the network sizes range between 1.1 · 106 and 5.8 · 108 (full details on the widths of
the trained architectures are given in the appendix). We trained decoder-only (unidirectional) models,
by optimizing the autoregressive log-likelihood of the training examples. We used a smaller than
usual vocabulary size of 2000 so that the vocabulary embedding parameters, given by dx · V for a
vocabulary of size V , would constitute a small fraction of the learned parameters for all data points.
Autoregressive models were shown to work well even on character level vocabularies (e.g., [Peters
et al., 2018]); due to modeling a joint distribution over the text, they are less sensitive to vocabulary
size than bidirectional models [Levine et al., 2020].

Our training set was English Wikipedia, BookCorpus and OpenWebText. We report the loss on a
held out test set of size 170K sequences. Notably, we estimated the variance of the pretraining and
evaluation procedure by rerunning 11 of the trained architectures three times each, and found it to be
very low – the reported test loss is stable up to its third digit. The remainder of the training details are
given in the appendix.

We conducted the training with Adam optimizer for 1M steps and a batch size of 512 sequences of
128 tokens. All experiments used a learning rate schedule with a 12000 step linear warm-up followed
by a cosine decay to zero. In order to increase width without changing other architectural parameters,
we kept the number of heads per layer constant at 2 (experimental evidence indicates that many heads
per layer are not crucial [Michel et al., 2019, Kaplan et al., 2020], as does our theoretical analysis
which shows that the number of heads per layer affects the separation rank logarithmically).

Table 1 shows the per-depth widths of the trained architecture. More experiments were conducted per
adjacent depth pairs in order to identify the transition point accurately, and reduce the error bars in
figure 3a of the main text. Table 2 details the different standard deviation of repeating the training
and evaluation experiment 3 times per the given architectures.
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L=6 L=12 L=18 L=24 L=30 L=36 L=48

128 88 - 64 - - 44
168 120 - 88 - - 60
216 152 - 104 - - 72
220 156 - - - - -
224 160 - 112 - - 80
248 176 - 128 - - 88
272 192 - 136 - - 96
296 208 - 144 - - 104
320 224 184 160 144 128 112
376 264 216 184 168 152 128

- 272 244 - - - -
408 288 232 200 176 160 144

- 296 240 - - - -
- 304 248 - - - -
- 314 256 - - - -

456 320 264 224 200 184 160
496 352 288 248 224 200 176
568 400 320 280 248 232 200
680 480 384 336 304 272 240

- - 398 344 - - -
- - 406 352 - - -
- - 416 360 - - -
- - 424 368 - - -
- - 440 376 - - -

816 576 472 408 368 336 288
960 680 560 480 432 392 336

1088 768 624 544 484 440 384
- - - 584 520 - -

1416 1000 - 704 632 576 496
- - - - 808 736 -

2128 1504 - 1064 952 872 752
2832 2000 - 1416 - 1160 1000

Table 1: The widths dx of the different trained networks.

dx = 320 dx = 680 dx = 800

1.92E-03 2.06E-03 6.51E-04

(a) L = 6

dx = 224 dx = 400 dx = 680 dx = 1000

2.08E-03 1.65E-03 1.33E-03 1.20E-03

(b) L = 12

dx = 160 dx = 280 dx = 480 dx = 704

7.36E-04 1.02E-03 1.48E-03 7.76E-04

(c) L = 24

Table 2: The standard deviation of the test loss for networks of varying widths and depths, when
repeating the training and evaluation experiment 3 times per point.
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