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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We discuss the limitations of
our work in the Introduction, §2, and in the Conclusion. As discussed therein, the
primary limitations of our theoretical results are that they apply only to the prior over

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



the outputs for a single training input, and are restricted to fully-connected feedforward
networks without bias terms.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work
is purely theoretical, and we do not anticipate that it will have negative societal impacts
as outlined in the ethics guidelines.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See §2.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendices A-D.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The MATLAB
code used to produce Figures 1-4 is publicly available at https://github.com/
Pehlevan-Group/ExactBayesianNetworkPriors.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] None of our experiments involved training.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] As our only experiments involved the construction of
estimates of densities via sampling, we do not report error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E for details. We
note that the computational cost of our work is dominated by numerical evaluation of
the theoretical prior for ReLU networks, which accounted for over 95% of the total
compute time. This in turn depends on the efficiency of the MATLAB Symbolic Math
Toolbox. Given a more efficient numerical method to accurately evaluate the Meijer
G-function, the amount of compute required could likely be greatly reduced.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Derivation of the prior of a deep linear network

In this appendix, we prove the formula for the prior of a deep linear network given in §3 of the main
text. In §A.1, we prove that the claimed density and characteristic function are indeed a Fourier
transform pair using identities for the Hankel transform, and then prove by induction that these results
describe the prior of a deep linear network in §A.2. Finally, we provide a lengthier, albeit possibly
more transparent, proof of these results by direct integration in §A.3.

A.1 Fourier transforms of radial functions and the Hankel transform

We begin by reviewing the relationship between the Fourier transform of a radial function and the
Hankel transform, and then use this relationship to prove that the claimed characteristic function and
density are a Fourier transform pair. Let p, ϕ : Rn → R be a Fourier transform pair, with

ϕ(q) =

∫
dh exp(−ih · q)p(h) and p(h) =

∫
dq

(2π)n
exp(ih · q)ϕ(q). (A.1)

Assume that p and ϕ are radial functions, i.e., that p(h) = p(‖h‖) and ϕ(q) = ϕ(‖q‖). We note
that if one of p or ϕ is radial, it follows that both are radial [1]. Then, we have the Hankel transform
relations

ϕ(q) = (2π)+n/2‖q‖(2−n)/2
∫ ∞
0

r dr J(n−2)/2(‖q‖r)r(n−2)/2p(r) (A.2)

p(h) = (2π)−n/2‖h‖(2−n)/2
∫ ∞
0

r dr J(n−2)/2(‖h‖r)r(n−2)/2ϕ(r), (A.3)

where Jν(z) is the Bessel function of the first kind of order ν [2, 1, 3–5]. We note that inversion of
the Hankel transform formally follows from the distributional identity∫ ∞

0

r dr Jν(kr)Jν(k′r) =
δ(k − k′)

k
(A.4)

for k, k′ > 0 [2, 1, 3–5].

We now use this relationship to show that

plin
d (hd |x) =

γd
(2dπκ2d)

nd/2
Gd,00,d

(
‖hd‖2

2dκ2d

∣∣∣∣ −
0, (n1 − nd)/2, . . . , (nd−1 − nd)/2

)
(A.5)

and

ϕlin
d (qd |x) = γdG

1,d−1
d−1,1

(
2d−2κ2d‖qd‖2

∣∣∣∣ 1− n1/2, . . . , 1− nd−1/20

)
(A.6)

are a Fourier transform pair, where κd, γd > 0 and n1, . . . , nd ∈ N>0. As both of these G-functions
are well-behaved, it suffices to show one direction of this relationship; we will show that pd is the
inverse Fourier transform of ϕd. Our starting point is the formula for the Hankel transform of a
G-function multiplied by a power:∫ ∞

0

dx Jν(xy)x2ρGm,np,q

(
λx2;

a1, . . . , ap
b1, · · · , bq

)
=

22ρ

y2ρ+1
Gm,n+1
p+2,q

(
4λ

y2
;
h, a1, . . . , ap, k
b1, . . . , bq

)
(A.7)

where h = 1/2 − ρ − ν/2 and k = 1/2 − ρ + ν/2, valid for p + q < 2(m + n), all real λ,
<(bj + ρ+ ν/2) > −1/2, and <(aj + ρ) < 3/4 [5]. Using this identity and simplifying the result
using the G-function identities [2, 3]

Gm,np,q

(
1

z

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
= Gn,mq,p

(
z

∣∣∣∣ 1− b1, . . . , 1− bq
1− a1, . . . , 1− ap

)
(A.8)

and

zµGm,np,q

(
z

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
= Gm,np,q

(
z

∣∣∣∣ a1 + µ, . . . , ap + µ
b1 + µ, . . . , bq + µ

)
, (A.9)
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we obtain

plin
d (hd |x) =

γd
(2dκ2d)

nd/2
Gd,11,d+1

(
‖hd‖2

2dκ2d

∣∣∣∣ 1− nd/2
0, (n1 − nd)/2, . . . , (nd−1 − nd)/2, 1− nd/2

)
.

(A.10)
Then, further simplifying using the identity [2, 3]

Gm,n+1
p+1,q+1

(
z

∣∣∣∣α, a1, . . . , apb1, . . . , bq, α

)
= Gm,np,q

(
z

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
, (A.11)

we conclude the desired result. The proof that ϕd is the Fourier transform of pd can be derived by an
analogous procedure.

A.2 Inductive proof of the G-function formula

We now prove the claimed formula for the prior by induction on the depth d. Using the identities [3]

G2,0
0,2

(
z

∣∣∣∣ −
0, (n1 − n2)/2

)
= 2z(n1−n2)/4K(n1−n2)/2(2

√
z) (A.12)

and

G1,1
1,1

(
z

∣∣∣∣ 1− n1/20

)
= Γ

(n1
2

)
(1 + z)−n1/2, (A.13)

the claim for the density and characteristic function for the base case d = 2 follow from the direct
calculation in §3 of the main text, specifically equations (10) and (11).

For d > 2, we observe that the general formula for the characteristic function (9) implies the recursive
integral relation

ϕlin
d+1(qd+1 |x) =

∫
dhd exp

(
−1

2
σ2
d+1‖hd‖2‖qd+1‖2

)
pd(hd |x). (A.14)

On the induction hypothesis, this yields

ϕlin
d+1(qd+1 |x) =

γd
(2dπκ2d)

nd/2

∫
dhd exp

(
−1

2
σ2
d+1‖hd‖2‖qd+1‖2

)
×Gd,00,d

(
‖hd‖2

2dκ2d

∣∣∣∣ −
0, ν1, . . . , νd−1

)
, (A.15)

where we define ν` ≡ (n` − nd)/2 for ` = 1, . . . , d − 1 for brevity. Converting to spherical
coordinates and evaluating the trivial angular integral, we have

ϕlin
d+1(qd+1 |x) = γd+1

∫ ∞
0

dt tnd/2−1 exp
(
−2d−1κ2d+1‖qd+1‖2t

)
Gd,00,d

(
t

∣∣∣∣ −
0, ν1, . . . , νd−1

)
,

(A.16)

where we have made the change of variables t ≡ h2d/2
dκ2d and recognized κd+1 = σd+1κd and

γd+1 = γd/Γ(nd/2). We now recall the formula for the Laplace transform of aG-function multiplied
by a power:∫ ∞

0

dt exp(−zt)t−αGm,np,q

(
t

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
= zα−1Gm,n+1

p+1,q

(
1

z

∣∣∣∣α, a1, . . . , apb1, . . . , bq

)
, (A.17)

valid either if p + q < 2(m + n) and <(α) > <(bj + 1) for all j = 1, . . . ,m or if p < q and
<(α) < <(bj + 1) for all j = 1, . . . ,m, and for | arg z| < (m + n − p/2 − q/2)π [4]. The latter
condition applies, hence, using the identity (A.8), we find that

ϕlin
d+1(qd+1 |x) = γd+1(2d−1κ2d+1‖qd+1‖2)−nd/2

×G1,d
d,1

(
2d−1κ2d+1‖qd+1‖2

∣∣∣∣ 1, 1− ν1, . . . , 1− νd−1nd/2

)
. (A.18)

Then, applying the identity (A.9), we obtain

ϕlin
d+1(qd+1 |x) = γd+1G

1,d
d,1

(
2d−1κ2d+1‖qd+1‖2

∣∣∣∣ 1− n1/2, . . . , 1− nd/20

)
, (A.19)

where we have used the fact that the G-function is invariant under permutation of its upper arguments.
Therefore, using the results of §A.1, we conclude the claimed result.
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A.3 Derivation of the prior by direct integration

Here, we directly derive a formula for the prior as a (d − 1)-dimensional integral, and then show
that this is equivalent to the expression in terms of the Meijer G-function. Separating out the terms
that correspond to the first and last layers, the general expression for the characteristic function (9)
becomes

ϕlin
d (qd) =

∫ d−1∏
`=1

dq` dh`
(2π)n`

exp

(
d−1∑
`=1

iq` · h` −
1

2
σ2
1‖x‖2‖q1‖2

− 1

2

d−1∑
`=2

σ2
`‖q`‖2‖h`−1‖2 −

1

2
σ2
d‖qd‖2‖hd−1‖2

)
, (A.20)

where we suppress the fact that ϕd is implicitly conditioned on x. Transforming into spherical
coordinates and evaluating the angular integrals as described in Appendix A.1, we obtain

ϕlin
d (qd) =

[
d−1∏
`=1

21−n`/2

Γ(n`/2)

][
d−1∏
`=1

∫ ∞
0

dh`

∫ ∞
0

dq` (h`q`)
n`/2J(n`−2)/2(h`q`)

]

× exp

(
−1

2
σ2
1‖x‖2q21 −

1

2

d−1∑
`=2

σ2
` q

2
`h

2
`−1 −

1

2
σ2
d‖qd‖2h2d−1

)
.

(A.21)

Assuming that σ` > 0 and x 6= 0, we make the change of variables

u` ≡ σ`σ`−1 · · ·σ1‖x‖q` (A.22)

v` ≡
1

σ`σ`−1 · · ·σ1
1

‖x‖
h` (A.23)

such that

σ2
` = u2`v

2
`−1 (A.24)

and

q`h` = u`v`. (A.25)

This yields

ϕlin
d (qd) =

[
d−1∏
`=1

21−n`/2

Γ(n`/2)

][
d−1∏
`=1

∫ ∞
0

dv`

∫ ∞
0

du` (v`u`)
n`/2J(n`−2)/2(v`u`)

]

× exp

(
−1

2
u21 −

1

2

d−1∑
`=2

u2`v
2
`−1 −

1

2
κ2dv

2
d−1‖qd‖2

)
, (A.26)

where we write

κd ≡ σdσd−1 · · ·σ1‖x‖ (A.27)

for brevity.

At this stage, we shift to considering the prior density, following the results of §A.1. Using the
identity [2, 6]∫ ∞

0

du` u
n`/2
` J(n`−2)/2(v`u`) exp

(
−1

2
v2`−1u

2
`

)
= v

n`/2−1
` v−n`

`−1 exp

(
−1

2

v2`
v2`−1

)
(A.28)

to integrate out the variables u` and qd, we obtain

plin
d (hd) =

κ−nd

d

(2π)nd/2

[
d−1∏
`=1

21−n`/2

Γ(n`/2)

][
d−1∏
`=1

∫ ∞
0

dv` v
n`−n`+1−1
`

]

× exp

(
−1

2
v21 −

1

2

d−1∑
`=2

v2`
v2`−1

− 1

2

‖hd‖2

κ2dv
2
d−1

)
. (A.29)
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We now make a change of variables to decouple all but one of the terms in the exponential. In
particular, we let

s` ≡
{
v1 ` = 1

v`/v`−1 1 < ` ≤ d− 1,
(A.30)

such that
v` = s`s`−1 · · · s1. (A.31)

The Jacobian of this transformation is lower triangular, and can be seen to have determinant∣∣∣∣det
∂(v1, . . . , vd−1)

∂(s1, . . . , sd−1)

∣∣∣∣ =
1

s1s2 · · · sd−1

d−1∏
`=1

v`, (A.32)

which is non-singular on all but a measure-zero subset of the integration domain. This yields∣∣∣∣det
∂(v1, . . . , vd−1)

∂(s1, . . . , sd−1)

∣∣∣∣ d−1∏
`=1

v
n`−n`+1−1
` =

1

s1s2 · · · sd−1

d−1∏
`=1

v
n`−n`+1

` =

d−1∏
`=1

sn`−nd−1
` , (A.33)

hence the prior density becomes

plin
d (hd) =

κ−nd

d

(2π)nd/2

[
d−1∏
`=1

21−n`/2

Γ(n`/2)

][
d−1∏
`=1

∫ ∞
0

ds` s
n`−nd−1
` exp(−s2`/2)

]

× exp

(
−1

2

‖hd‖2

κ2d

1

s21s
2
2 · · · s2d−1

)
. (A.34)

For convenience, we make a final change of variables

t` ≡
1

2
s2` , (A.35)

which yields the formula

plin
d (hd |x) =

γd
(2dπκ2d)

nd/2
fd−1

(
‖hd‖2

2dκ2d
;
n1 − nd

2
, . . . ,

nd−1 − nd
2

)
, (A.36)

where we define

γd ≡
d−1∏
`=1

1

Γ(n`/2)
(A.37)

as in the main text, as well as the integral function

fq(z; ν1, . . . , νq) ≡

 q∏
j=1

∫ ∞
0

dtj t
νj−1
j exp(−tj)

 exp

(
−z 1

t1 · · · tq

)
(A.38)

for parameters νj ∈ R and z ≥ 0. The claim is that

fq(z; ν1, . . . , νq) = Gq+1,0
0,q+1

(
z

∣∣∣∣ −
0, ν1, . . . , νq

)
, (A.39)

which follows directly from the Mellin transformMfq of fq and the definition of the Meijer G-
function as the Mellin-Barnes integral (12). For s ∈ C such that <(s) > 0 and <(νj + s) > 0 for all
j, we can easily compute [4]

{Mfq}(s; ν1, . . . , νq) =

∫ ∞
0

dz zs−1fq(s; ν1, . . . , νq) = Γ(s)

q∏
j=1

Γ(νj + s). (A.40)

For s satisfying the above properties, the properties of the Γ function imply thatMfq is a function
that tends to zero uniformly as =(s)→ ±∞. Then, by the Mellin inversion theorem [2, 4], we have

fq(z; ν1, . . . , νq) =
1

2πi

∫ c+i∞

c−i∞
ds z−sΓ(s)

q∏
j=1

Γ(νj + s) (A.41)

where the contour is chosen such that <(s) = c satisfies the above conditions. This is the definition
of the desired Meijer G-function [2, 3], hence we conclude the claimed result.

S6



B Derivation of the prior of a deep ReLU network

In this appendix, we derive the expansion given in §3.3 for the prior of a ReLU network as a mixture
of the priors of linear networks of varying widths. Using the linearity of the Fourier transform, the
desired result can be stated in terms of characteristic functions as

ϕReLU
d (qd;κd;n1, . . . , nd−1)

= 1− (2n1 − 1)(2n2 − 1) · · · (2nd−1 − 1)

2n1+···+nd−1

+
1

2n1+···+nd−1

n1∑
k1=1

· · ·
nd−1∑
kd−1=1

(
n1
k1

)
· · ·
(
nd−1
kd−1

)
ϕlin
d (qd;κd; k1, . . . , kd−1). (B.1)

We prove this proposition by induction on the depth d.

For a network with a single hidden layer, we can easily evaluate the characteristic function ϕ2 for
φ1(x) = max{0, x} as the integrals factor over the hidden layer dimensions, yielding

ϕReLU
2 (q2) =

[
1

2
+

1

2

(
1 + κ22‖q2‖2

)−1/2]n1

, (B.2)

where, as before, κ2 ≡ σ1σ2‖x‖. Expanding this result using the binomial theorem, we find that

ϕReLU
2 (q2;κ2;n1) =

1

2n1

n1∑
k=0

(
n1
k

)(
1 + κ22‖q2‖2

)−k/2
=

1

2n1
+

1

2n1

n1∑
k=1

(
n1
k

)
ϕlin
2 (q2;κ2; k), (B.3)

which proves the base case of the desired result.

We now consider a depth d network. From the definition of the characteristic functions, we have the
recursive identity

ϕReLU
d (qd;κd;n1, . . . , nd−1) =

∫
dqd−1 dhd−1

(2π)nd−1
exp

(
iqd−1 · hd−1 −

1

2
σ2
d‖qd‖2‖φ(hd−1)‖2

)
× ϕReLU

d−1 (qd−1;κd−1;n1, . . . , nd−2). (B.4)

By the induction hypothesis, we have

ϕReLU
d−1 (qd−1;κd−1;n1, . . . , nd−2)

=
2n1+···+nd−2 − (2n1 − 1)(2n2 − 1) · · · (2nd−2 − 1)

2n1+···+nd−2

+
1

2n1+···+nd−2

n1∑
k1=1

· · ·
nd−2∑
kd−2=1

(
n1
k1

)
· · ·
(
nd−2
kd−2

)
ϕlin
d−1(qd−1;κd−1; k1, . . . , kd−2). (B.5)

Noting that ∫
dqd−1 dhd−1

(2π)nd−1
exp

(
iqd−1 · hd−1 −

1

2
σ2
d‖qd‖2‖φ(hd−1)‖2

)
= 1, (B.6)

our task is to evaluate the integral∫
dqd−1 dhd−1

(2π)nd−1
exp

(
iqd−1 · hd−1 −

1

2
σ2
d‖qd‖2‖φ(hd−1)‖2

)
ϕlin
d−1(qd−1;κd−1; k1, . . . , kd−2).

(B.7)

By definition, ∫
dqd−1

(2π)nd−1
exp(iqd−1 · hd−1)ϕlin

d−1(qd−1;κd−1; k1, . . . , kd−2)

= plin
d−1(hd−1;κd−1; k1, . . . , kd−2, nd−1), (B.8)
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hence the required integral is∫
dhd−1 exp

(
−1

2
σ2
d‖qd‖2‖φ(hd−1)‖2

)
plin
d−1(hd−1;κd−1; k1, . . . , kd−2, nd−1). (B.9)

As plind−1 is radial, the integral is invariant under permutation of the dimensions of hd−1. Then,
partitioning the domain of integration over h2 into regions in which different numbers of ReLUs are
active, we have

nd−1∑
kd−1=0

(
nd−1
kd−1

)∫ ∞
0

dhd−1,1 · · ·
∫ ∞
0

dhd−1,kd−1
exp

−1

2
σ2
d‖qd‖2

kd−1∑
j=1

h2d−1,j


×
∫ 0

−∞
dhd−1,kd−1+1 · · ·

∫ 0

−∞
dhd−1,nd−1

plin
d−1(hd−1;κd−1; k1, . . . , kd−2, nd−1).

(B.10)

As the integrand is even in each dimension of hd−1, we can extend the domain of integration to all of
Rnd−1 at the expense of a factor of 2−nd−1 :

1

2nd−1

nd−1∑
kd−1=0

(
nd−1
kd−1

)∫ ∞
−∞

dhd−1,1 · · ·
∫ ∞
−∞

dhd−1,kd−1
exp

−1

2
σ2
d‖qd‖2

kd−1∑
j=1

h2d−1,j


×
∫ ∞
−∞

dhd−1,kd−1+1 · · ·
∫ ∞
−∞

dhd−1,nd−1
plin
d−1(hd−1;κd−1; k1, . . . , kd−2, nd−1).

(B.11)

We now use the fact that∫ ∞
−∞

dhd−1,kd−1+1 · · ·
∫ ∞
−∞

dhd−1,nd−1
plin
d−1(hd−1;κd−1; k1, . . . , kd−2, nd−1)

= plin
d−1(hd−1;κd−1; k1, . . . , kd−2, kd−1), (B.12)

which, as noted in the main text, follows from its definition. Next, we note that

∫ ∞
−∞

dhd−1,1 · · ·
∫ ∞
−∞

dhd−1,kd−1
exp

−1

2
σ2
d‖qd‖2

kd−1∑
j=1

h2d−1,j


× plin

d−1(hd−1;κd−1; k1, . . . , kd−2, kd−1)

= ϕlin
d (qd;κd−1; k1, . . . , kd−1) (B.13)

by the recursive relationship between the characteristic functions. If kd−1 = 0, this quantity is
replaced by unity. Thus, the integral of interest evaluates to

1

2nd−1
+

1

2nd−1

nd−1∑
kd−1=0

(
nd−1
kd−1

)
ϕlin
d (qd;κd−1; k1, . . . , kd−1). (B.14)

Therefore, after some algebraic simplification of the constant term, we find that

ϕd(qd;κd;n1, . . . , nd−1)

= 1− (2n1 − 1)(2n2 − 1) · · · (2nd−1 − 1)

2n1+···+nd−1

+
1

2n1+···+nd−1

n1∑
k1=1

· · ·
nd−1∑
kd−1=1

(
n1
k1

)
· · ·
(
nd−1
kd−1

)
ϕlin
d (qd;κd−1; k1, . . . , kd−1) (B.15)

under the induction hypothesis, hence we conclude the claimed result.
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C Derivation of tail bounds

In this appendix, we use our results for the moments of the preactivation norms to derive the variation
of the tail bounds of [7, 8] reported in §4.2. Following the results of Vladimirova et al. [7, 8], it
suffices to show that there exist positive constants C1 and C2 such that

C1m
d/2 ≤ (E‖hd‖m)1/m ≤ C2m

d/2 (C.1)

for all m ∈ N>0, holding the widths n1, . . . , nd and the depth d fixed. It is of course sufficient
to show that (E‖hd‖m)1/m behaves asymptotically like md/2, as the constants C1 and C2 may be
chosen small and large enough, respectively, such that this inequality holds for smaller, finite m.

For a linear network, we have (17)

(Elin‖hd‖m)1/m = 2d/2κd

d∏
`=1

(
Γ[(n` +m)/2]

Γ(n`/2)

)1/m

. (C.2)

By a simple application of Stirling’s formula [2], we find that(
Γ[(n+m)/2]

Γ(n/2)

)1/m

=

√
m

2e
[1 +O(m−1)] (C.3)

as m→∞ for any fixed n ∈ N>0. Therefore, for any finite depth, we conclude the desired result.

For a ReLU network, we have (18)

(EReLU‖hd‖m)1/m = 2d/2κd

(
Γ[(nd +m)/2]

Γ(nd/2)

)1/m d−1∏
`=1

[
1

2n`

n∑̀
k`=1

(
n`
k`

)
Γ[(k` +m)/2]

Γ(k`/2)

]1/m
.

(C.4)

Trivially,

1

2n

n∑
k=1

(
n

k

)
Γ[(k +m)/2]

Γ(k/2)
≤ (1− 2n)

Γ[(n+m)/2]

Γ(n/2)
≤ Γ[(n+m)/2]

Γ(n/2)
. (C.5)

Similarly, we have the trivial lower bound

1

2n

n∑
k=1

(
n

k

)
Γ[(k +m)/2]

Γ(k/2)
≥ (1− 2n)

Γ[(1 +m)/2]

Γ(1/2)
, (C.6)

hence, as (1− 2n)1/m ≥ 1/2 for all m,n ∈ N>0, we have

1

2

(
Γ[(1 +m)/2]

Γ(1/2)

)1/m

≤

(
1

2n

n∑
k=1

(
n

k

)
Γ[(k +m)/2]

Γ(k/2)

)1/m

≤
(

Γ[(n+m)/2]

Γ(n/2)

)1/m

. (C.7)

Thus, by virtue of the above result for linear networks, we obtain the desired result.

D Derivation of the asymptotic prior distribution at large widths

In this appendix, we derive the asymptotic behavior of the prior distribution for large hidden layer
widths reported in §4.3. We first consider linear networks. We assume the parameterization described
in the main text, which yields

Ehihj = κ2
dδij (D.1)

for κd independent of width. Then, using the fact that all odd-ordered cumulants of the zero-mean
random vector hd vanish, the third-order Edgeworth approximation to the prior is

pd(hd |x) ≈ 1

(2πκ2
d)nd/2

exp

(
−‖hd‖

2

2κ2
d

)
×
[
1 +

1

24
χijkl

(
1

κ8
d

hihjhkhl −
6

κ6
d

δklhihj +
3

κ2
d

δijδkl

)]
, (D.2)
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where

χijkl = Ehihjhkhl − E(hihj)E(hkhl)− E(hihk)E(hjhl)− E(hihl)E(hjhk) (D.3)

is the fourth joint cumulant and summation over repeated indices is implied [9]. For this Edgeworth
approximation to yield an asymptotic approximation to the prior (i.e., for higher terms to be suppressed
in the limit of large widths), the sixth and higher cumulants of hd must be suppressed relative to the
fourth cumulant. However, using the radial symmetry of the distribution and the moments (17), we
can see that these cumulants will be of O(n−2).

We now note that the only non-vanishing terms will be those of the form χiiii, χiijj , χijij , or χiijj ,
and that

χiiii = Eh4i − 3(Eh2i )2, (D.4)

while

χiijj = χijij = χiijj = Eh2ih2j − E(h2i )E(h2j ). (D.5)

By symmetry or by direct calculation in spherical coordinates, we have

Eh41 = 3Eh21h22 = 3κ4d

d−1∏
`=1

[n`(n` + 2)] = 3κ4
d

d−1∏
`=1

n` + 2

n`
, (D.6)

hence

χiiii = 3χiijj = 3κ4
d

[
d−1∏
`=1

n` + 2

n`
− 1

]
. (D.7)

Therefore, approximating χiiii to O(n−1), we obtain the following third-order Edgeworth approxi-
mation for the prior density:

pd(hd |x) ≈ 1

(2πκ2
d)nd/2

exp

(
−‖hd‖

2

2κ2
d

)
×

[
1 +

1

4

(
d−1∑
`=1

1

n`

)(
‖hd‖4

κ4
d

− 2(nd + 2)
‖hd‖2

κ2
d

+ nd(nd + 2)

)
+O

(
1

n2

)]
.

(D.8)

Upon integration, the second term inside the square brackets vanishes, hence this approximate density
is properly normalized.

For ReLU networks, the story is much the same, except we now have Ehihj = 21−dκ2
dδij and

Eh41 = 3Eh21h22 = 3× 41−dκ4d

d−1∏
`=1

[n`(n` + 5)] = 3× 41−dκ4
d

d−1∏
`=1

n` + 5

n`
, (D.9)

hence we conclude that

pReLU
d (hd |x) ≈ 1

(22−dπκ2
d)nd/2

exp

(
− ‖hd‖

2

22−dκ2
d

)
×

[
1 +

5

4

(
d−1∑
`=1

1

n`

)(
‖hd‖4

41−dκ4
d

− 2(nd + 2)
‖hd‖2

21−dκ2
d

+ nd(nd + 2)

)

+O
(

1

n2

)]
. (D.10)

One can immediately see that these approximate distributions are sub-Gaussian. To show this more
formally, we note that the moments of the approximate distribution for a linear network are

(EEW‖hd‖m)1/m =
√

2κd
(

Γ[(nd +m)/2]

Γ(nd/2)

)1/m
[

1 +
1

4

(
d−1∏
`=1

1

n`

)
m(m− 2)

]1/m
. (D.11)
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For all m ≥ 2 and 0 ≤ t ≤ 1, we have

1 ≤ [1 +m(m− 2)t]
1/m ≤ (m− 1)2/m ≤ 2, (D.12)

where the upper bound is sub-optimal but sufficient for our purposes. Then, we conclude that

√
2κd

(
Γ[(nd +m)/2]

Γ(nd/2)

)1/m

≤ (EEW‖hd‖m)1/m ≤ 2
√

2κd
(

Γ[(nd +m)/2]

Γ(nd/2)

)1/m

(D.13)

for all m ≥ 2. Moreover, we can easily see that similar bounds will hold for the approximation to the
prior of a ReLU network, up to overal factors scaling κd. Therefore, applying the results of Appendix
C, we conclude that these approximations are sub-Weibull with optimal tail exponent 1/2, implying
that they are sub-Gaussian.

E Numerical methods

Here, we summarize the numerical methods used to generate Figures 1-4. All computations were
performed using MATLAB versions 9.5 (R2018b) and 9.8 (R2020a).1 The theoretical prior densities
were computed using the meijerG function, and evaluated with variable-precision arithmetic. Empir-
ical distributions were estimated with simple Monte Carlo sampling: for each sample, the weight
matrices were drawn from isotropic Gaussian distributions, and then the output preactivation was
computed. In these simulations, the input was taken to be one-dimensional and to have a value of unity.
Furthermore, we fixed κ2d = (n1 · · ·nd−1)−1 for linear networks and κ2d = 2d−1(n1 · · ·nd−1)−1 for
ReLU networks, such that the output preactivations had identical variances.

The computations required to evaluate the theoretical priors and sampling-based estimates in Figures
1 and 3 were performed across 32 CPU cores of one node of Harvard University’s Cannon HPC
cluster.2 The computational cost of our work was entirely dominated by evaluation of the theoretical
ReLU network prior. To reduce the amount of computation required to evaluate the ReLU network
prior at large widths, we approximated the full mixture (16) by neglecting terms with weighting
coefficients 2−n`

(
n`

k`

)
less than the floating-point relative accuracy eps = 2−52. More precisely,

our code evaluates the logarithm of the weighting coefficient using the log Γ function (gammaln
in MATLAB) for numerical stability, and then compares the logarithms of these two non-negative
floating point values. This cutoff only truncates the sum for networks of width n = 100 at depths
d = 2, 3, and 4; the full mixture is evaluated for narrower networks. For n = 100, it reduces the
number of summands from 102, 104, and 106 to 77, 4,537, and 208,243, respectively. We have
confirmed that the resulting approximation to the exact prior behaves monotonically with respect
to the cutoff for values larger than eps. With this cutoff, 24 seconds, 3.5 hours, and 153 hours of
compute time were required to compute the theoretical prior for these depths, respectively. In all, we
required just under 160 hours of compute time to produce the figures shown here.
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