A Appendix for Neural Regression, Representational Similarity, Model
Zoology & Neural Taskonomy at Scale in Rodent Visual Cortex

A.1 Does our neural regression method work?

To ensure our neural regression method works, we verify its efficacy on a known benchmark: the
activity of 256 cells in the V4 and IT regions of two Rhesus macaque monkeys, a core component
of BrainScore [4]. BrainScore’s in-house method involves a combination of principal components
analysis (for dimensionality reduction) and k-fold cross-validated partial least squares regression (for
the linear mapping of model to brain activity). Here, we exchange principal components analysis for
sparse random projection and partial least squares regression for ridge regression with generalized
cross-validation. We compute the scores for each benchmark in the same fashion as BrainScore: as
the Pearson correlation coefficient between the actual and predicted (cross-validated) activity of the
biological neurons in the V4 and IT samples.

Taking for example a standard AlexNet architecture, our neural regression method yields gains of
16.5% (from 0.550 to 0.641) & 16.9% (from 0.508 to 0.593) on reported scores for V4 and IT,
respectively. Across 6 other Torchvision architectures we tested with scores posted on the BrainScore
leaderboard, our method yields gains on average of 13% for V4 and 23% for IT, and at its best
yields a gain of 34% for SqueezeNet1-0 predicting IT. Though these scores are provisional (since
official BrainScore results involve an additional step of validation — ‘commitments’ — on data not
publicly available), we consider this a strong validation of our neural regression method, which is
both less computationally expensive, far faster and (to the extent that the generalized cross validation
represents an optimal approximation of how well the mappings fit to our models might generalize to
novel biological samples) more accurate than the combination of PCA and PLS. (Speed tests may be
found in Section A.3 of this Appendix.) Figure 5 shows the scores for the full subset of models we
tested on primate BrainScore.

Model Weights V4 IT
alexnet ImageNet 0.6413 0.5939
densenet121 ImageNet 0.6555 0.6298
googlenet ImageNet 0.6551 0.6278
mnasnet0_5 ImageNet 0.6554 0.6228
mnasnetl_0 ImageNet 0.6632 0.6398
mobilenet_v2 ImageNet 0.6592 0.6295
resnet101 ImageNet 0.6690 0.6193
resnetl8 ImageNet 0.6492 0.6233
resnet34 ImageNet 0.6560 0.6282
resnet50 ImageNet 0.6649 0.6216

resnext50_32x4d ImageNet 0.6474 0.6285
shufflenet_v2_x0_5 ImageNet 0.6530 0.6087
shufflenet_v2_x1_.0 ImageNet 0.6538 0.6296

squeezenet] 0 ImageNet 0.6652 0.6157
squeezenetl_1 ImageNet 0.6602 0.6061
vggll ImageNet 0.6735 0.6202
vggl3 ImageNet 0.6748 0.6201
vgglé ImageNet 0.6750 0.6260
vggl9 ImageNet 0.6733 0.6250

wide_resnet50_2 ImageNet 0.6606 0.6355

Figure 5: Scores for a subset of models tested on the macaque V4 & IT benchmarks of BrainScore.
Corresponding scores for models in our set that overlap with models tested by the BrainScore team
may be found at: https://www.brain-score.org/

A.2 Deeper Dive: How do our neural benchmarking methods compare to others?

In the main analysis, we roughly group existing methods for comparing the responses of deep neural
networks to neural responses recorded from brain tissue into two categories: neural regression and
representational similarity analysis. In reality, this division is often not so neatly dichotomous. Some
of the first brain-to-network comparisons availed themselves of both these methods simultaneously;

19

https://www.brain-score.org/

Yamins et al. [1] citing Carandini et al. [68] and Kriegeskorte et al. [66] used linear regression for
mapping responses in individual neural sites and representational similarity analysis for populations.
Other seminal work comparing deep nets to primate visual cortex pioneered distinctive variants of
each. Giiclii and van Gerven [67] employed regression in the form of encoding models to assess
the hierarchical correspondence between earlier and later layers of processing in vivo and silico.
Khaligh-Razavi and Kriegeskorte [98] built representational dissimilarity matrices by “remixing” and
“reweighting” model features according to their performance in a support vector machine classifier
trained on major categorical divisions in the stimulus set. Zhuang et al. [58] citing Klindt et al. [99]
uses a form of masked regression to better account for spatial information (e.g. properties of the
receptive field) in the target feature spaces. In the context specifically of comparisons to rodent neuro-
physiology, Cadena et al. [9]’s neural encoding method predicts spike rate with a core feature model
(VGG16) in tandem with a “shifter” network and “modular” network that correct for extraneous influ-
ences on recorded brain activity (including eye movements and running speed). A possible third strain
of methods that doesn’t fit so neatly into the binary of regression versus representational similarity are
canonical correlation and alignment methods. These techniques leverage what is often assumed to be
an underlying latent space of similarity shared across divergent high-dimensional datasets to assess
(via projection) the shared variance between them. Canonical correlation and alignment methods are
popular in both the machine learning [100, 101] and neuroimaging communities [102], but have so
far been applied mostly to comparison within, rather than across, domains and neural substrates. The
relative advantages of these various approaches as they pertain to characterizing the representational
structure of biological brains is largely uncertain, with a comprehensive comparison of techniques on
the same dataset seemingly absent from the literature.

The current standard for high-throughput benchmarking of neural data on neural models is perhaps
that of Schrimpf et al. [4] in BrainScore, a method that consists of a partial least squares (PLS)
regression fit individually to each neural site (in their case, a cluster of neurons around a given
electrode in a microarray), wherein the regressand is the responses from that site and the regressors
are the principal components of a target model’s feature space. The end product of this process is
a Pearson correlation coefficient (unadjusted or reliability-corrected) quantifying the relationship
between actual neural activity and the neural activity predicted by the linear mapping. While effective,
this combination of principal components analysis and partial least squares regression tends to be
a computationally expensive process — often prohibitively so in the absence of cloud or cluster
computing. The final approach we use in the primary manuscript is a more computationally efficient
version of this process. The reasoning behind the particular neural regression we use (assessing the
tradeoff between accuracy and computational traction) may be found in the section below.

A.3 How do different neural regression methods trade off in terms of speed & accuracy?

Given the many variants of neural regression used in the analysis of the human and nonhuman primate
brain (and to a lesser extent the rodent brain), we experimented with a number of possible approaches
before settling on the one detailed in the primary manuscript. Attempting to directly mirror the
approach described in Schrimpf et al. [4], we began with a method combining principal components
analysis for dimensionality reduction with partial least squares regression for neural prediction. So
as to capture more dimensions of variance in a given model’s feature spaces, and not ‘double dip’
meaningful dimensions of variance with the regression to follow, Brain-Score computes a set of
principal components on the features from an auxiliary set of held-out ImageNet images, then extracts
the loadings of the features from the target stimulus set on these same components. These loadings are
subsequently made the regressors in a partial least squares regression of 25 components, with a given
neural site (the activity from a microelectrode array) as the regressand. The most computationally
intensive step of this process is the calculation of the PCA on the features from the auxiliary Imagenet
images — requiring in larger models like VGG16 upwards of 450GB of RAM for a single layer. The
prohibitively large expense of this PCA prompted us to search both for alternative dimensionality
reduction techniques, as well as for the possibility of extracting fewer total dimensions with whatever
technique we chose. A summary of the outputs of this search (using only a small subset of models
and a fraction of our total neural data) may be found in Figure 6.

What this search made clear (at least in the context of our specific neural data and stimulus set)
is that approaches involving PCA were doubly suboptimal, taking orders of magnitude longer to
compute, and actually costing a nontrivial portion of score. In the PLS regressions as well, it quickly
became clear that 10 components yielded scores comparable (if not equivalent) with those of twice
or thrice as many components, suggesting nothing was to be gained from more components apart

20

0.09

0.08

0.07

Variance Explained (Rz)

0.06

]

|

(4.3
5)-
*[6

87

o)
1]

.[15]

13

Reference

10000 15000

Compute Time (in Seconds)

5000

20000

PLS Regression with 25 Components and Different Dimensionality-Reduced Regressors

Figure 6: Variance explained versus compute time for a PLS Regression with 25 components and
different types of dimensionality reduction techniques applied to the regressors. Descriptions of the
dimensionality reduction steps associated with each data point are provided in the table above. The
vertical and horizontal ablines triangulate a reference point for all methods: that is, a regression in
which all features from a given model layer are used simultaneously without dimensionality reduction.
Notice, that at least one PCA-based method (18) takes longer than this full regression.

ID/Rank Dimensionality Reduction Technique Applied to the Regressors

Reference

No Dimensionality Reduction; All Features Included

1:8192 SRPs calculated directly on the Stimulus Set

1:8192 Feature SRPs calculated with 9216 ImageNet Images
1:4096 Feature SRPs calculated with 9216 ImageNet Images
1:4096 SRPs calculated directly on the Stimulus Set

SRPs corresponding to Embedding Quality of 0.1

2048 Randomly Selected Features

1:2048 Feature SRPs calculated with 9216 ImageNet Images
4096 Randomly Selected Features

1:1024 Feature PCs calculated with 1024 ImageNet Images
1:2048 SRPs calculated directly on the Stimulus Set

2048 Randomly Selected Features

1:1024 Feature SRPs calculated with 9216 ImageNet Images
1:1024 Feature PCs calculated with 9216 ImageNet Images
1:2048 Feature PCs calculated with 9216 ImageNet Images
1:1024 Feature SRPs calculated with 1024 ImageNet Images
1:1024 SRPs calculated directly on the Stimulus Set

1:4096 Feature PCs calculated with 9216 ImageNet Images
1:8192 Feature PCs calculated with 9216 ImageNet Images
SRPs corresponding to Embedding Quality of 0.25

SRPs corresponding to Embedding Quality of 0.5

SRPs corresponding to Embedding Quality of 0.75

All PCs calculated directly on the Stimulus Set

SRPs corresponding to Embedding Quality of 0.99

21

from longer compute times. Finally, while somewhat less definitive than the 2 previous points, our
tests did suggest that using 4096 sparse random projections was roughly comparable to using 8192
sparse random projections — and translated to about 0.75 of the compute time per projection. When
in an additional test a ridge regression performed in roughly 0.29 seconds what a PLS regression
with 10 components performed in roughly 1.31 seconds (representing an over 200% percent gain in
speed, and consistent across 10 iterations), while producing only a 0.004 difference in average R?,
we abandoned PLS regression entirely in favor of ridge regression. Switching to ridge regression
meant we could also make use of generalized cross-validation [70, 103], cutting the time required for
k-fold cross-validation from roughly 1.05 seconds to 0.25 seconds. While it is most certainly the case
that these tests were not comprehensive enough in terms of models or neural data to cover the full
range of contingencies and idiosyncrasies of analysis, we felt the empirical justification for the use of
a sparse random projection and ridge regression approach was sufficient. In future work, we intend to
expand our testing regimen to see if the empirical advantage holds in a wider range of cases.

A.4 How does reliability thresholding impact our benchmark scores?

In the main analysis, we subselected from the greater pool of available neurons only those neurons
with split-half reliabilities of 0.8 and above. In Figure 7, we show the impact of different degrees of
thresholding on the scores for a majority of our models.

A.5 How do we control for the influence of receptive field and visual acuity (resolution)?

The answer, in brief, is that we don’t — at least not explicitly. We rely instead on the reweighting
procedure inherent to the neural regression method or on averaging across population responses in
the representational similarity analysis to account for these properties implicitly. This may or may not
be to our detriment. Recent work in both primates and rodents [9, 105-107] suggests that controlling
for these factors explicitly (for example, by reshaping, translating or downsampling the resolution
of the input) can in certain cases augment the strength and interpretability of the correspondence
between the biological and artificial neural substrate. When designing the pipeline for the current
study, however, we found that reducing the resolution of the input image by a factor of 2 and a factor
of 4 (downsampling from [224,224] to [112,112] and [64,64]) in a representative sample of 12 trained
and randomly-initialized models tended only to slightly shift the absolute depth of the features that
best predict the neural activity, but changed neither the relative scores across models, nor the relative
depths of the layers corresponding to different cortical areas. In future work, we hope to revisit this
manipulation with a more representative sample of architectures and more vigilant consideration of
how these manipulations interface with the input transforms required when extracting the features
of pretrained models. Best practice for this interfacing remains unclear in the absence of more
comprehensive empirical controls. The use of custom models (as in Nayebi et al. [88] and Shi et al.
[97]), on the other hand, does not carry with it the same concerns as the use of pretrained models,
and seems a promising path forward for probing the effects of input manipulations directly.

A.6 Does training or architecture matter more for better prediction?

The range in scores between the best and worst performing model architecture trained on ImageNet is
0.209 to 0.121 (0.088) for the SRP-Ridge Max and 0.458 to -0.117 (0.575) for the RSA Max metric
(excluding the two normalization-free architectures that produced negative scores and are otherwise
significant outliers, the range is more like 0.458 to 0.347 (0.111)); the range between the best and
worst performing model in Taskonomy is 0.190 to 0.126 (0.064) for the SRP-Ridge Max and 0.440 to
0.331 (0.109) for RSA Max. These results suggest that neither architecture nor task has a statically
meaningful edge in augmenting neural predictivity. Moreover, it’s worth noting that the rankings in
terms of both task and architecture show only minor differences between the best-performing and
the next-best-performing models — with no major increases in performance evident across different
design design and training choices, only marginal relative gains.

A.7 Addendum: What Kkinds of architectures best predict rodent visual cortex?

Figure 8 provides the rankings for all 'model zoology’ architectures in our survey.

A.8 Addendum: What Kinds of architectures best predict rodent visual cortex?

Figure 9 provides the rankings for all taskonomy encoders, clustered by task transfer affinity.

22

A.9 Addendum: How do self-supervised models compare to category-supervised models?

Figure 10 provides the rankings for all the self-supervised models in our survey, along with reference
points for architecture-matched category-supervised models.

A.10 Addendum: How well do non-neural network baselines predict rodent visual cortex?

The averages we report in the main analysis with respect to two of our non-neural network baselines
(gabors and GISTPCs) do obscure differences across cortical area (and cortical layer). One of the
most conspicuous examples is in the case of the scores for our bank of gabors in layer 6 of primary
visual cortex (VISp). Atr = 0.165, (according to the SRP-Ridge) metric, the predictions produced
by these features are competitive with the those of both trained and random deep net models.

In future work, we intend to expand our set of non-neural network baselines, incorporating perhaps
the larger, more robust set of handcrafted Gabors used in custom CNN models like VOneNet [108].

A.11 Can we visualize functional specialization even if we can’t characterize it?

In the main analysis, we show that (in general) taskonomy models fail to differentiate one cortical
area from another in terms of predictivity. Here, we demonstrate this is not necessarily because
these areas aren’t functionally specialized. Comparing neurons within a cortical site to neurons
between using both a pure correlation-based measure, and the same style of neural regression we
use in the main analysis, we show that neurons from the same site are categorically better predictors
than neurons from other sites, connoting a stronger representational correspondence to neurons in
anatomical proximity. Results from this analysis are available in Figure 11.

A.12 Are there differences in model predictions across genetic cre line?

In the main analysis, we aggregate neurons by anatomical region (cortical area); another method of
aggregating neurons is by genetic cre line. Aggregating in this way changes the overall focus of the
benchmarking, from asking ‘where’ certain models fare best in predicting visual cortical activity to
‘with what cell types’. The kinds of representational idiosyncrasies that characterize different cell
types are beyond the scope of this paper. Nevertheless, as a sampler for those interested, aggregate
Taskonomy scores across cre line are provided in Figure 12.

A.13 Glossary of Visual Cortical Areas in Mouse Brain

Reproduced in Figure 13 is a glossary of visual cortical areas in the mouse brain. More infor-
mation about the Allen Brain Observatory visual coding dataset may be found at their website:
http://observatory.brain-map.org/visualcoding

A.14 Taskonomy Task Definitions

Reproduced in Figure 14 are Taskonomy’s official definitions of its constituent tasks. Further
information is available at their website: http://taskonomy.stanford.edu

23

http://observatory.brain-map.org/visualcoding
http://taskonomy.stanford.edu/

RSA Max SRP-Ridge Max

°
=

°
©

Score (Pearson R)

o
v

025 050 075 025 050 0.75
Splithalf Reliability Threshold

Weights ~— ImageNet — Random — Taskonomy

Figure 7: Scores for a variety of models with both the RSA Max (left) and SRP-Ridge Max (right)
metrics at different levels of reliability thresholding. The jagged, semitransparent lines are the scores
for individual models. The smooth, opaque line is the output of a generalized additive smoother fit
across all models. (Error bars are bootstrapped 95% confidence interval across models). The dotted
vertical line is the threshold we use in the main analysis. Based on these results, one might argue a
more performative threshold would have been closer to 0.7 or 0.75. In the future, we plan to more
closely emulate methods designed to derive the optimal threshold empirically (e.g. reliability-based
voxel selection in human fMRI [104]).

24

'SRP-Ridge Max RSA Max
Inception-Resnet-v21 [N Inception-Resnet-v21 [———— (0255 (0458
PNASNet-5-Large| [N ShuffleNet-v2x0.51 I
VIT-DeiTB-P16-2241 [SemNASNet100{ [
Levitess [NASNet-A-Large [
MLP-Mixer-L161 E———— EfficientNet-B51 IR
ViT-DeiT-s-P16-2241 [MixNetL S (0154) (0433
CaT-s24 S Wide-ResNet1011 [
Inception-v4+ MNASNet1.01 ===
Wide-ResNet1011 N PNASNet-5-Large| [N
ResNet1011 [N——— EfficientNet-831 I
NASNet-A-Large | [N — MobileNet-v21 [N (0155) (0428
LeviTizs [Inception-v4{
Convit-s1 I ShuffieNet-v2-x1.01 I
VITDeiTTi-P16-2241 S ResNet1521 I ——
ResNetts2{ [N MNASNeto.51
XCeptionss{ [SqueezeNett.11 [N
ViTLPi6-2241 [—— MixNet-S1 [
ShuffleNet-v2-x1.01 I Regetv-641 =
GoogleNet{ NS — FeNetctoo;
Convit) [EficientNet871 I
GhostNet1007 N — CaT-s241 S
DLA169| I Inception-v3{
ResNets0| [DenseNet161| N
ShuffleNet-v2x0.51 I MNASNetto01 R
GerNet-s{ [RexNet100| [—
Visformer{ | Res2Nets0-26W-451 [——
MNASNett.01 [ResNet1011{ I
EfficientNetv2-s1 I—— DLAt6o;
MLP-Mixer-B161 ——— GhostNettoo{ I
DenseNet16o| N — ResNets0| I
AlexNet| I — ResNexts0-32x4D1 [
SqueezeNett.11 == Regetx-641 [—
EfficientNet-B31 [I—— ResNext50-32xeD1 [
ViTB-Pi6-224([SqueezeNet1.0| [
DenseNet161| I — EficientNet-v2-S |
MNASNet1001 I — EfficientNet-B11 I
SemNASNet1001 [N ViT-DeT-B-P16-2241 [
MobileNet-v2+ [GerNet-s1 [
FBNetC1001 DenseNet2011 [
Wide-ResNets0| [— SEResNetts2D1 [
ResNexts0-32x6D| N — XCeptionss 1 [N
RegNetx-641 [SKResNext50-32x4D1 [
T vit-s-Pi6-2247 [convira1 =
B XCeption{ [N veaie) [
= swinB-Pawr2241 NS ViT-DeiT-s-P16-2241 [—
MobileNet-v31{ [—— (0473) Wide-ResNetso|
Res2Nets0-26W-45 | S — HardCoreNAS-F1{ [N —
EfficientNet-B11 I Convits1
RexNet100{ IS — HardCoreNAS-A{ === —
MixNet-Ly [[0471) vagio: S
RegNetv-64/ (0183 [017) XCeption{ [
HardCoreNAS-F1 [GoogleNet| N ——
SPNasNet1001 = — DenseNett69; [N
Swin-S-Pa-w7-2241 [(o115 ViT-DeiT-Ti-P16-2241 [
EfficientNet-B51 [(0:168) Levitese [
MixNet-S1 I (0166 AlexNet! [IN—
SKResNetta] IS — (0163) viT-s-Pi62241 [N
GerNet-L1 [ViTLPi62241
ResNexts0-32¢4D 1 I — MLP-Mixer-L 161 == —
EfficientNet-871 I——— [0123) (0164 vaeis:
HardCoreNAS-A1 = — (0147 (062) ECA-NFNeT-LO7 [
CSP-ResNetso| IS — LeviTi2s! [—
DenseNet201{ . — ResNet34| NN
SqueezeNet1.01 IS — LA (= —
DenseNeti21| [(0175] (061 CsP-ResNets0{
SEResNet152D{ I (o161 [o16) GerNetL{ ==
inception-v3| [— vite-Pie-224; [
SKResNext50-32x4D| [N — CSP-DarkNets3|
ResNeta| NS — veart|
CoaT-Lite-Mini{ [(0113) [0.159) Vistormer | —
ResNetta{ [N — [0142) (0157 ResNet18{ [N
DLA34 1 [NF-NetLo{ [
ECA-Resnet101-D1 NS — DenseNett21{ [————
RepvGG-B31 [[0121] MLP-Mixer-B161 I
CSP-DarkNets3| [N — 038 [0153) NF-ResNets0: [
RepVGG-B3G4] [N — [072) (o1sg) RepVGG-83| IS
ECA-Resnets0-D1 | ECA-NFNeT-L17 [—
ResNetRss01 NS — (015 ECA-Resnet101-D1 [———
ResNestsoD{ [N — RepvGG-B3c4 | [N
veart{ (04139) SKResNet181 [
veaie (0378 [0139) Swin-B-Pa-w7-2241 == —
vGG13) I CoaT-Lite-Mini1 ==
vearof [0:134] ECA-Resnetso-D| = —
ECA-NFNeT-L1{ [— Swin-S-Pa-W7-2241 [—
NF-Net-Lo| — [0.13) MobileNet-v3+1 [—
NF-ResNetso| [(0183 [0 ResNetRss0| = —
ECA-NFNeT-LO{ I — (0428) (o127 ResNestsoD{ |
0.0 0.2 0.4 0.6 0.0 0.2 0.4

Score (Pearson R)
Weights [ImageNet [l Random

Figure 8: Rankings across model architectures, sorted by the scores of the ImageNet-trained variants
(red) of each. Instances in which the randomly initialized variants (blue) outperform their ImageNet-
trained counterparts are visible in those rows where the blue entirely overlaps the red. Error bars are
95% bootstrapped confidence intervals across the 6 cortical areas.

25

RSA Max

SRP-Ridge Max
2D Keypoints 2D Segmentation
2D Segmentation{ Object Classification {
Denoising Semantic Segmentation { (0415)
Autoencoder Euclidean Depth
Inpainting Surface Normals
Camera Pose (Nonfixated) { Reshading{
Camera Pose (Nonfixated) {

Scene Classification |
Object Classification-{
Point Matching
Camera Pose (Fixated)
3D Keypoints

Texture Edges:

o
B Reshading{ Occlusion Edges
= 2.5D Segmentation { Texture Edges
Curvatures Room Layout
Random Weights: Z-Butfer Depth
Egomotion{ Scene Classification
Jigsaw Curvatures
Euclidean Depth Jigsaw
Occlusion Edges 2D Keypoints
Z-Buffer Depth Vanishing Point
Surface Normals Inpainting
Autoencoder |

Semantic Segmentation {

Room Layout
Vanishing Point

0.0 0.2

0.4

Point Matching
Egomotion{

3D Keypoints

Camera Pose (Fixated)
2.5 Segmentation-

Denolsing
Random Weights

06
Score (Pearson R)

I —
I —
I —
"
I —
I ——
I
I
I
I
I
I
I
I
I
I
I
I —
I
I —
I
I
I
I
I
00 . -

°
S

0.2

Task Cluster | 20 [30 Ml Geometric Jll Random [l Semantic

Figure 9: Rankings across Taskonomy encoders, color coded by the Taskonomic cluster to which
each belongs. Notice the contrast between the SRP-Ridge Max (which favors 2D tasks) and RSA
Max metric (which favors Semantic tasks), but also the relative rank of 2D Segmentation in both.

SRP-Ridge Max RSA Max
ResNetso| == — ResNet50-MoCov2-BS2561 [=
Dino-XCIT-M24-P161 [=— ResNets0{ ——
ResNet50-MoCoV2-BS2561 [—— (0:182) ResNet50-ClusterFit-16K-RotNet{ [———
Dino-VIT-s87 i ie=— [018) ResNet50-JigSaw-P1001 [——
VIT-B-P16-2241 [=—— ResNet50-BarlowTwins-BS2048{ [—————
Dino-XCIT-S12-P161 IEI=— ResNet50-RotNet{ [=
ResNet50-JigSaw-P1007 [= (0176 ResNet50-SimCLR7 [————
ViT-s-P16-2241 NS — ResNet50-JigSaw-Goyal191 - [=——r
ResNet50-BarlowTwins-BS20481 [=—=— ResNets0-PIRL{ [—
ResNet50-ClusterFit-16K-RotNet{ [i—— (0473) ViT-s-P16-2241 I ———
Dino-VIT-881 IE=—A (0173 ResNet50-DeepClusterv21 I =——
ResNets0-PIRLY - [=— ViT-B-Pi6-2241 [——
Dino-XCIT-M24-P8{ [—— Dino-XCIT-M24-P161 [———
Dino-VIT-B16 [i—— ResNet50-SwAV-BS40961 [———
Dino-VIT-8161 = Dino-VIT-16¢ [——
ResNet50-RotNet{ [==— Dino-VIT-B8¢ I ——
ResNet50-JigSaw-Goyal191 [—— Dino-VIT-B161 [———
Dino-ResNets01 IEII=— Dino-XCIT-M24-P81 I =——
Dino-XCIT-812-P81 [=— Dino-ResNets01 I
ResNet50-SimCLR7 [i—— Dino-XCIT-S12-P161 I ———
ResNet50-DeepClusterv2{ [= Dino-XCIT-812-P81 I ———
ResNet50-SwAV-BS4096{ [—— DinovIT-88{ [—
0.0 0.2 0.4 0.0 0.2 0.4

Figure 10: Rankings across self-supervised models. Where available, the category-supervised version

Score (Pearson R)

Weights || Category-Supervised | Self-Supervised

of a given model architecture is shown in violet.

26

Correlation Ridge
0.25
0.05
T 0.20
2 0.04
o
2
®©
o)
a
20.03 0.15
o)
[$]
N
0.02
0.10
0.01
| | 0.05 . I
Within Between Within Between

Site Comparison

Figure 11: Differences in the predictive power of neurons predicting other neurons within site versus
neurons predicting other neurons between site. Each paired set of points in this plot is a distinct
cortical site (cortical area + cortical layer — 21 in total). The Correlation metric is the average of up
to 1000 pairwise comparisons between cells from within the same cite and cells from other sites.
The Ridge metric is the iterative prediction of individual neurons using up to 1000 neurons from
within the site versus 1000 neurons from other sites. (The number of predictors was subsampled to
ensure an equal number of neurons contributed to the within versus between samples). What this plot
demonstrates is that neuroanatomical regions do in this case meaningfully correspond to regions with
distinct representational profiles, a fundamental component of functional specialization.)

27

Vip-IRES-Cre/wt Nisri-Cre_GN220/wt Emx1-IRES-Crewt Slci7a7-IRES2-Crelwt
20| [20| - Geometric{ NN | Semantic|
Semantic| = Random | Semantic| 3D [
Geometric | I — Semantic I 30| - | Geometric| I
Random | Geometric| N 20| [20|
3D { | I Random {_| I Random ||
Sst-IRES-Cre/wt Nr5ai-Cre/wt Cux2-CreERT2/Cux2-CreERT2 Rorb-IRES2-Cre/wt
20| 20| I Semantic| [Semantic|
Random | [N Random | I 3D+ —— 2D ——
Geometric I — Semantic{ IS — 20| Geometric| - I
Semantic| Geometric{ IS Geometric{ N 30| [
30{ - 30 { I Random {_| I Random {_| N
Rbp4-Cre_KL100/wt Cux2-CreERT2/Cux2-CreERT2 Cux2-CreERT2/wt Fezf2-CreER/wt
201 - 201 - Semantic{ I Semantic{ I———
Semantic I Random | 30| 30| I —
Geometric | IS Semantic IE=— Geometric{ I Geometric| - I —
30| I Geometric | NS 20| = Random |
Random { 30 { I Random {_| I 20 { |
_ Rorb-IRES2-Cre/wt Cux2-CreERT2/wt Tix3-Cre_PL56/wt Ntsr1-Cre_GN220/wt
2 201 - 2D - { Semantic{ I— Geometric{ |
2 Rancom | N Semantic IEES— i = Semantic I —
O Semantic{ IE=— Random | NN i Geometric| N 30| -
<% Geometric| IR 3D1{ I H 201 I 20|
g & Geometric{ - Random { | Random {_ |
Fezf2-CreER/wt Emx1-IRES-Crewt i Nr5ai-Cre/wt SenntaTg3-Crewt
2D I 20| I 20| |- Semantic|
Semantic| [NE=— Semantic| [INE=— Geometric| | 301
301 Random | NN Random | I Geometric{ I
Geometric{ IR 30| I Semantic INE - 20|
Random | I Geometric| IR 301 - Random{ [
Slci7a7-IRES2-Crelwt SenntaTg3-Crewt Sst-IRES-Cre/wt Rbpd-Cre_KL100At
20 - 20| I 201 I Semantic| IE———
Semantic| [INE=— Geometric{ IR Random | 3D+
30| I 3D Geometric{ IS 201 I—
Random{ [Semantic IS Semantic| [Geometric{ IS —
Geometric{ [N Random{ I 30{ I Random { I
Tix3-Cre_PL56/Wt 0.0 0.1 0.2 0.3 0.4 0.5 Vip-IRES-Creiwt 0.0 0.1 0.2 0.3 0.4 0.5
201 I Random | I
Semantic| [INE=— 20| ——
Random{ I Geometric| IS
Geometric{ - Semantic{ INE—
3D{ 30{ |
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4

05
Score (Pearson R)

Figure 12: Taskonomy scores across genetic cre line. On the left is SRP-Ridge Max metric; on the
right is the RSA Max metric. The facets are shown in descending order by the overall magnitude of
their mean scores. Of note: Large-scale motifs present when aggregating across cortical area (such as
the dominance of 2D models in SRP-Ridge; the dominance of semantic models in the RSA Max;
and the lack of clear Taskonomic dissociations) are recapitulated across cre line. Nevertheless, some
differences are salient. For example, the aggregate scores for certain cre lines using the SRP-Ridge
Max metric are much higher on average than the scores obtained in any cortical area.

Area Structure Abbreivation Neuron Count Proportion
Vi Primary Visual Area VISp 3150 0.473

LM Lateral Visual Area VISI 2051 0.304

RL Rostrolateral Visual Area VISrl 64 0.01

AL Anterolateral Visual Area VISal 780 0.115

AM Anteromedial Visual Area VISam 189 0.026

PM Posteromedial Visual Area VISpm 493 0.073

Figure 13: A glossary of areas in the mouse visual cortex.

28

Task Cluster

Autoencoder 2D

Object Classification Semantic
Scene Classification Semantic
Curvatures 3D
Denoising Other
Euclidean Depth 3D
Z-Buffer Depth 3D
Occlusion Edges 3D
Texture Edges 2D
Egomotion Geometric
Camera Pose (Fixated) Geometric
Inpainting 2D

Jigsaw Geometric
2D Keypoints 2D

3D Keypoints 3D
Camera Pose (Nonfixated) Geometric
Surface Normals Other
Point Matching Geometric
Reshading 3D

Room Layout Geometric
Semantic Segmentation Semantic

Unsupervised 2.5D Segmentation 3D
Unsupervised 2D Segmentation 2D
Vanishing Point Geometric

Definition
Image compression and decompression
1000-way object classification (knowledge distillation from ImageNet).
Scene Classification (knowledge distillation from MIT Places).
Magnitude of 3D principal curvatures
Uncorrupted version of corrupted image.
Depth estimation
Depth estimation.
Edges which include parts of the scene.
Edges computed from RGB only (texture edges).
Odometry (camera poses) given three input images.
Relative camera pose with matching optical centers.
Filling in masked center of image.
Putting scrambled image pieces back together.
Keypoint estimation from RGB-only (texture features).
3D Keypoint estimation from underlying scene 3D.
Relative camera pose with distinct optical centers.
Pixel-wise surface normals.
Classifying if centers of two images match or not.
Reshading with new lighting placed at camera location.
Orientation and aspect ratio of cubic room layout.
Pixel-wise semantic labeling (via knowledge distillation from MS COCO).
Segmentation (graph cut) on RGB-D-Normals-Curvature image.
Segmentation (graph cut) on RGB.
Three Manhattan-world vanishing points.

Figure 14: Task definitions and affinity clusters provided by Taskonomy [53].

29

	Introduction
	Methods
	Results
	Discussion
	Appendix for Neural Regression, Representational Similarity, Model Zoology & Neural Taskonomy at Scale in Rodent Visual Cortex

