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Abstract

In this paper, we evaluate the quality of knowledge representations encoded in deep
neural networks (DNNs) for 3D point cloud processing. We propose a method to
disentangle the overall model vulnerability into the sensitivity to the rotation, the
translation, the scale, and local 3D structures. Besides, we also propose metrics to
evaluate the spatial smoothness of encoding 3D structures, and the representation
complexity of the DNN. Based on such analysis, experiments expose representation
problems with classic DNNs, and explain the utility of the adversarial training. The
code will be released when this paper is accepted.

1 Introduction

Deep neural networks (DNNs) have exhibited superior performance in various tasks, but the black-
box nature of DNNs hampers the analysis of knowledge representations. Previous studies on
explainable AI mainly focused on the following two directions. The first is to explain the knowledge
encoded in a DNN, e.g. visualizing patterns encoded by a DNN [24, 36, 50] and estimating the
saliency/importance/attribution of input variables w.r.t. the network output [20, 30, 57]. The second
is to evaluate the representation power of a DNN, e.g. the generalization and robustness of feature
representations.

This paper focuses on the intersection of the above two directions, i.e. analyzing the quality of
knowledge representations of DNNs for 3D point cloud processing. Specifically, we aim to design
metrics to illustrate properties of feature representations for different point cloud regions, including
various types of regional sensitivities, the spatial smoothness of encoding 3D structures, and the
representation complexity of a DNN. These metrics provide new perspectives to diagnose DNNs
for 3D point clouds. For example, unlike the image processing relying on color information, the
processing of 3D point clouds usually exclusively uses 3D structural information for classification.
Therefore, a well-trained DNN for 3D point cloud processing is supposed to just use scale information
and 3D structures for inference, and be robust to the rotation and translation.

Regional sensitivities. We first propose six metrics to disentangle the overall model vulnerability
into the regional rotation sensitivity, the regional translation sensitivity, the regional scale sensitivity,
and three types of regional structure sensitivity (sensitivity to edges, surfaces, and masses), so that
we can use such sensitivity metrics to evaluate the representation quality of a DNN (as Fig. 1 (a-b)
shows). Each sensitivity metric (let us take the rotation sensitivity for example) is defined as the
vulnerability of the regional attribution when we rotate the 3D point cloud with different angles. The
regional attribution is computed as the Shapley value, which is widely used as a unique unbiased
estimation of an input variable’s attribution [11, 20, 31, 37] from the perspective of game theory.
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Figure 1: (a) Comparison of regional sensitivities of PointNet++ [28]. (b) Visualization of regional
sensitivities of PointNet++ [28], where the heatmap is normalized in each sample. These colorbars are
shown in log-scale. (c) Illustration of the regional smoothness. (d) Illustration of the representation
complexity.

Based on the sensitivity metrics, we have discovered the following new insights, which have exposed
problems with classic DNNs.

• Insight 1. Rotation robustness is the Achilles’ heel of most DNNs for point cloud processing. The
rotation sensitivities of PointNet [26], PointNet++ [28], DGCNN [43], the non-dynamic version of
DGCNN (referred to as GCNN in this paper) [43], and PointConv [45] are much higher than other
sensitivities (see Fig. 1 (a)).

• Insight 2. It is usually difficult for DNNs to extract rotation-robust features from 3D points at edges
and corners. These points are usually vulnerable to rotation-based attacks.

• Insight 3. What’s worse, DNNs usually cannot ignore features of such points at edges and corners.
Instead, such rotation-sensitive points usually have large regional attributions.

• Insight 4. PointNet fails to model local 3D structures, because convolutional operations in PointNet
encode each point independently. Thus, PointNet has low sensitivity to local 3D structures.

Spatial smoothness. Beyond the sensitivity metrics, we also evaluate the spatial smoothness of
knowledge representations of DNNs. We define the spatial smoothness of knowledge representations
as the similarity among the neighboring regions’ attributions to network output. Most widely-used
benchmark datasets for point cloud classification [46, 49] only contain objects with simple 3D
structures (e.g. a bed mainly composed of a few surfaces in Fig. 1 (c)), in which adjacent regions
usually have similar 3D structures. Therefore, most adjacent regions are supposed to have similar
attributions to the network output. We also find that the adversarial training increases the spatial
smoothness of knowledge representations.

Representation complexity. Besides regional sensitivities, we further extend the metric of multi-
order interaction [53] to evaluate the representation complexity of a DNN, i.e. the maximum
complexity of 3D structures that can be encoded in a DNN. The interaction of the m-th order
measures the additional benefits brought by collaboration between two point cloud regions i, j under
the contexts of other m regions, where m reflects the contextual complexity of the collaboration
between regions i and j. High-order interactions usually represent global and complex 3D structures,
corresponding to the collaboration between point cloud regions i, j and massive other regions. Low-
order interactions usually describe local and simple 3D structures, without being influenced by many
contextual regions (see Fig. 1 (d)). Based on such interactions, we have discovered the following new
insights.

• Insight 5. Most DNNs fail to encode high-order interactions. I.e. most DNNs mainly focus on local
structures and do not extract many global and complex structures from normal samples.

• Insight 6. Rotation-sensitive regions usually activate abnormal high-order interactions (global and
complex structures). The very limited global structures modeled by the DNN are usually over-fitted
to training samples. Thus, when the sample is rotated, the activated global and complex structures
usually appear as abnormal patterns.
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• Insight 7. Besides, in terms of model robustness, adversarial training based on adversarial samples
w.r.t. using rotations/translations for attack is a typical way to improve the robustness to rotation
and translation. Thus, we use the proposed sensitivity metrics to explain the inner mechanism of
how and why the adversarially trained DNN is robust to rotation and translation. We find that (1) the
adversarial training shifts the attention from the global orientations and positions to the structural
information, thereby boosting the sensitivity to local 3D structures. (2) The adversarial training
usually increases both the quantity and the complexity of 3D structures (high-order interactions from
normal samples) modeled in a DNN, which boosts the robustness to the rotation and translation.

2 Related work

Deep learning on 3D point clouds: Recently, a series of studies directly used DNNs to process
3D point clouds and have achieved promising performance in various 3D tasks [26, 51, 42, 13, 27,
47, 41, 18, 10, 32, 33]. PointNet [26] was the pioneer to use point-wise multi-layer perceptron to
process point clouds and aggregate all individual point features into a global feature. To further
extract information from local 3D structures, PointNet++ [28] recursively applied PointNet to capture
hierarchical 3D structures. Likewise, Relation-Shape CNN [19] and PointCNN [18] also focused
on hierarchical structures and improved the ability to extract contextual information. Due to the
irregularity of 3D point clouds, some approaches considered the point set as a graph and further
defined graph convolutions. DGCNN [43] dynamically constructed local graphs and conducted
feature extraction via the EdgeConv operation. SPG [17] built a superpoint graph to process large-
scale point clouds. GACNet [40] introduced an attention mechanism in graph convolutional networks.
KCNet [34] proposed kernel correlation and graph pooling to aggregate contextual information. In
addition, many approaches have been proposed to apply convolution operators to the point clouds.
PointConv [45] and KPConv [39] utilized nonlinear functions to construct convolution weights from
the input 3D coordinates. InterpCNN [23] interpolated features of 3D points to the discrete kernel
weights coordinates, so as to implement the discrete convolution operator to point clouds. Instead of
designing new architectures, our study focuses on the analysis of representation quality of existing
classic DNNs for point cloud processing.

Visualization or diagnosis of representations: It is intuitive to interpret DNNs by visualizing the
feature representations encoded in intermediate layers of DNNs [52, 35, 50, 22, 7], and estimating
the pixel-wise saliency/importance/attribution of input variables w.r.t the network output [29, 15, 8,
57, 30, 5, 56]. Similarly, in the 3D domain, PointNet [26] visualized the subset of 3D points (namely
the critical subset) that directly affected the network output. Additionally, Zheng et al. [55] specified
the critical subset via building a gradient-based saliency map. In comparison, our study proposes to
evaluate the representation quality of different point cloud regions.

Quantitative evaluation of representations: The quantitative evaluation of the representations of
DNNs provides a new perspective for explanations. The Shapley value [31] estimates the attribu-
tion distribution over all players in a game and has been applied to quantitative evaluation of the
representations of DNNs [1, 9, 20]. Based on Shapley values, some studies have investigated the
interaction between input variables of a DNN [11, 21, 38, 53]. In comparison, our study aims to
illustrate distinctive properties of 3D point cloud processing.

3 Analyzing feature representations of DNNs for 3D point cloud processing

We propose six metrics to measure regional sensitivities to rotation, translation, scale, and three
types of local 3D structures, respectively, so as to exhibit the representation property of each specific
point cloud region. Beyond these metrics, we can further analyze the representation quality from
the following two perspectives, i.e. the spatial smoothness of knowledge representations, and the
contextual complexity of 3D structures encoded by a DNN.

Preliminaries: quantifying the regional attribution using Shapley values. The Shapley value
was originally introduced in game theory [31]. Considering a game with multiple players, each player
aims to pursue a high award for victory. The Shapley value is widely considered as a unique unbiased
approach that allocates the total reward to each player fairly, which satisfies axioms of linearity,
nullity, symmetry, and efficiency [44] as the theoretical foundation. Please see our supplementary
materials for details.
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Given a point cloud with n regions1, N = {1, 2, · · · , n}, the Shapley value can be used to measure
the attribution of each input region. We can consider the prediction process of a DNN as a game
v, and each region in a point cloud as a player i. Let 2N

def
= {S | S ⊆ N} denote all the possible

subsets of N . Let xS denote the point cloud only containing regions in S, in which regions in N\S
are removed. For a DNN learned for multi-category classification, we use v(S) to denote the network
output given the input xS . v(S) is calculated as log p

1−p , where p = p(y = ytruth | xS) denotes the
probability of the ground-truth category given xS . Note that the number of input points for each
DNN is a fixed value. Therefore, in order to make the DNN successfully handle the point cloud xS
without regions in N\S, we reset coordinates of points in regions of N\S to the center of the entire
point cloud to remove the information of these points, instead of simply deleting these points [55].
Note that the reason for not simply deleting these points is that the number of input points must be
greater than the number of points required for specific layerwise operations of DNNs used in this
paper. Specifically, the sampling operation at the first layer of PointNet++ and PointConv requires
the minimum number of input points to be greater than 512 points. The k-NN-based grouping [43]
operation of DGCNN and GCNN requires the number of input points to be greater than 20 points.
However, the computation of Shapley values requires to make inference on a point cloud fragment
with a single region i (i.e., x{i}), which may have less than 20 points. Therefore, for such DNNs,
we can not simply delete 3D points from the point cloud, in order to allow DNNs to work normally.
To this end, for a fair comparison, we choose the alternative way, i.e., placing all points, which are
supposed to be masked, to the center of the point cloud. In this way, the numerical attribution of the
i-th region to the overall prediction score is estimated by the Shapley value φ(i), as follows.

φ(i) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)), (1)

The computation of Equation (1) is NP-hard. Therefore, we use the sampling-based method in [4] to
approximate φ(i).

3.1 Quantifying the representation sensitivity of a DNN

To analyze the quality of knowledge representations of a DNN, we define different types of sensi-
tivities using the above regional attribution φ(i). Specifically, we measure six types of sensitivities,
including the rotation sensitivity, translation sensitivity, scale sensitivity, and three types of sensitivity
to local 3D structures (edge-like structures, surface-like structures, and mass-like structures). Given
an input point cloud x, the Shapley value φ(i) measures the attribution of region i to the network
output. The rotation/translation/scale/local-structure sensitivity of this region is quantified as the
range of changes of this region’s attribution φ(i) among all potential transformations {T} of the
rotation/translation/scale/local 3D structure, as follows.

∀ i ∈ N = {1, 2, · · · , n}, ai(x) =
1

Z
(max
T

φx′=T (x)(i)−min
T
φx′=T (x)(i)), (2)

where Z = ET [
∑
i∈N |φx′=T (x)(i)|] is computed for normalization. Thus, the average sensitivity to

all potential transformations {T} among all input point clouds x ∈ X is formulated as follows.

sensitivity = Ex∈X
[
Ei∈N [ai(x)]

]
(3)

In implementation, six types of sensitivities are computed as follows.

Rotation sensitivity quantifies the vulnerability of the inference caused by the rotation of 3D point
clouds. Given an input point cloud x, we enumerate all rotations θ = [θ1, θ2, θ3]> from the range
of [−π4 ,

π
4 ], i.e. given θ, we sequentially rotate the point cloud around the three axes of the 3D

coordinates system, thereby obtaining a set of new point clouds {x′ = Trotation(x|θ)}.
Translation sensitivity quantifies the vulnerability of the inference caused by the translation of 3D
point clouds. Given an input point cloud x, we enumerate all translations ∆x = [∆x1,∆x2,∆x3]>

from the range of [−0.5, 0.5] along the three axes of the 3D coordinates system, thereby obtaining a
set of new point clouds {x′ = Ttranslation(x) = x+ ∆x}.

1There are many ways to segment a 3D point cloud to regions. In our experiments, we first used the farthest
point sampling [26] to select n points from each point cloud as centers of n regions. Then, we partitioned the
point cloud to n regions by assigning each remaining point to the nearest center point among the selected n
center points.
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Figure 2: (a) Visualization of increasing the linearity/planarity/scattering of all regions. (b) Visualiza-
tion of multi-order interactions.

Scale sensitivity quantifies the vulnerability of the inference caused by the scale of 3D point clouds.
Given an input point cloud x, we enumerate all scales α from the range of [0.5, 2], thereby obtaining
a set of new point clouds {x′ = Tscale(x) = αx}.
Then, we focus on other three sensitivity metrics for three types of local 3D structures, i.e. sen-
sitivity to linearity (edge-like structures), sensitivity to planarity (surface-like structures), and
sensitivity to scattering (mass-like structures). According to [12, 6], the significance of a point
cloud to be edge-like structures/surface-like structures/mass-like structures is defined as follows.

linearity =
λ1 − λ2

λ1
; planarity =

λ2 − λ3

λ1
; scattering =

λ3

λ1
; (4)

where λ1 ≥ λ2 ≥ λ3 denote three eigenvalues of the covariance matrix of a region’s points.

Without loss of generality, we take the linearity for example to introduce the way to enumerate a
region’s all values of linearity. Given a region, we use the gradient ascent/descent method to modify
the 3D coordinates p ∈ R3 of each point in this region, so as to increase/decrease the linearity, i.e.
pnew = p + η ∂linearity

∂p . As Fig. 2 (a) shows, we enumerate all regions’ linearity at the same time.
The enumeration is implemented under the following two constraints. (1) Each value of λ1 needs
to be within the range of λ1 ± γ, so as the λ2 and λ3. (2) ‖pfinal − pori‖ ≤ d, where ‖·‖ denotes
the L2-norm. In this way, we obtain a set of point clouds with different degrees of local edge-like
structures. In real implementation, we set η = 0.001, γ = 0.003, and d = 0.03.

3.2 Quantifying the spatial smoothness of knowledge representations

Besides the analysis of representation sensitivity, we also evaluate the spatial smoothness of feature
representations encoded by a DNN. Because most benchmark 3D datasets [46, 49] only contain
objects with simple 3D structures (see Fig. 1 (c)), except for special regions (e.g. edges), most adjacent
regions of such simple objects usually have similar local 3D structures (e.g. surfaces). Therefore,
most adjacent regions are supposed to have similar regional attributions, i.e. high smoothness. In this
way, high spatial smoothness indicates reliable feature representations. We quantify the smoothness
of the regional attribution between neighboring regions, as follows.

non-smoothness = Ex∈XETEiEj∈N (i)

[ |φx′(i)− φx′(j)|
Zsmooth

∣∣∣
x′=T (x)

]
(5)

whereN (i) denotes a set of nearest point cloud regions (determined by the ball-query search [28]) of
region i; Zsmooth = ET [|vx′(N)− vx′(∅)|x′=T (x)] is computed for normalization; vx′(N) denotes
the network output given the entire point cloud x′, and vx′(∅) denotes the network output when we
mask all regions in x′ by setting all points to the center coordinates of the point cloud.

3.3 Quantifying the interaction complexity of a DNN

In addition, we also quantify the representation complexity of a DNN, i.e. the complexity of 3D
structures encoded by a DNN. To this end, the 3D structures encoded by a DNN is represented using
the interaction between different 3D point cloud regions. Here, input regions of a DNN do not work
individually, but collaborate with each other to construct a specific 3D structure for inference. Zhang
et al. [53] defined the multi-order interactions between two input variables. Given two input regions i
and j, the interaction of the m-th order measures the additional attribution brought by collaborations
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Table 1: Classification accuracy of different DNNs.
Model PointNet PointNet++ PointConv DGCNN GCNN adv-GCNN4 RotationNet [14] 3DmFV-Net [3] KCNet [34] GIFT [2]

ModelNet10 93.5 94.7 94.6 94.4 95.1 91.0 98.46 95.2 94.4 92.35
ShapeNet part 99.2 99.7 99.5 100.0 100.0 97.9 – – – –

between i and j under the context of m regions.

I(m)(i, j) = ES⊆N\{i,j},|S|=m
[
v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S)

]
, (6)

I(m)(i, j) > 0 indicates that the presence of region j increases the attribution of region i, φ(i).
I(m)(i, j) < 0 indicates that the presence of region j decreases the value of φ(i). I(m)(i, j) ≈ 0
indicates that region j and region i are almost independent of each other. Please see our supple-
mental materials for details about the meaning of multi-order interaction and the linearity, nullity,
commutativity, symmetry, and efficiency axioms of the multi-order interaction.

Here, we could consider the order m as the number of contextual regions involved in the computation
of interactions between region i and region j. For example, as Fig. 2 (b) shows, regions i and j (in
red), and other m regions (in blue) work together to construct a 3D structure to classify the earphone.

High-order interactions measure the effects of global collaborations among massive regions, i.e.
representing complex and large-scale 3D structures. Low-order interactions measure the effects of
collaborations between a few regions, i.e. usually representing simple and small-scale 3D structures.
Then, we use the following metric to quantify the average strength of the m-th order interactions as
the significance of the m-order complex 3D structures.

I(m) = Ex∈X
[∣∣Ei,j [I(m)

x (i, j)]
∣∣]. (7)

If the I(m) of a low order is significantly larger than that of a high order, then the representation
complexity of the DNN is limited to representing simple and local 3D structures.

4 Comparative studies

In this section, we conducted comparative studies to analyze properties of different point cloud
regions of different DNNs. Ideally, a well-trained DNN for 3D point cloud processing was supposed
to be robust to the rotation and translation, and the DNN was supposed to mainly use the scale and
local 3D structures for inference. Besides, considering the 3D structures of objects in benchmark 3D
datasets [46, 49] were usually simple, most adjacent regions in an object had continuous and similar
3D structures. Therefore, a well-trained DNN was supposed to have similar regional attributions
among these neighboring regions. We also analyzed how complex is the 3D structure that can be
encoded by a classic DNN.

We used our method to analyze five classic DNNs for 3D point cloud processing, including the
PointNet [26], the PointNet++ [28], the DGCNN [43], the non-dynamic version of DGCNN (i.e.
GCNN), and the PointConv [45]. All DNNs were learned based on the ModelNet10 dataset [46] and
the ShapeNet part2 dataset [49]. We followed [26] to only use 1024 points of each point cloud to train
all DNNs. Each point cloud was partitioned to n = 32 regions1 for the computation of all metrics.

Note that all DNNs used in our paper were well-trained. The testing accuracy was shown in
Table 1.We also reported the testing accuracy of other DNNs trained on the ModelNet10 dataset,
including RotationNet [14], 3DmFV-Net [3], KCNet [34], and GIFT [2]. These four DNNs obtained
the 1st, 4th, 7th, and 10th testing accuracy according the ModelNet10 Benchmark Leaderboard3.

In particular, the previous study [54] has discovered that people could use rotations to attack DNNs
for 3D point cloud processing. Therefore, we used the adversarial training to learn a GCNN4 w.r.t. the
attacks based on rotations and translations of point clouds, so as to improve the GCNN’s robustness
to the rotation and translation. We extended the method in [16] to generate such adversarial examples
to attack the GCNN. Please see our supplemental materials for details. The objective function

2We only used part of the ShapeNet part dataset due to the time limitation. Please see our supplemental
materials for details.

3Data from https://modelnet.cs.princeton.edu/.
4In tables, adv-GCNN denoted the adversarially trained GCNN.
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Table 2: Average sensitivities over all regions among all samples.

Dataset Model rotation translation scale sensitivity sensitivity sensitivity
sensitivity sensitivity sensitivity to edges to surfaces to masses

ModelNet10

PointNet 0.159±0.070 0.110±0.053 0.024±0.017 0.007±0.007 0.010±0.009 0.009±0.009
PointNet++ 0.171±0.064 0.004±0.004 0.054±0.027 0.018±0.011 0.026±0.016 0.029±0.019
PointConv 0.145±0.060 2.3e-4±1.9e-4 0.027±0.019 0.010±0.007 0.015±0.011 0.017±0.013
DGCNN 0.174±0.075 0.048±0.024 0.020±0.014 0.016±0.009 0.022±0.014 0.023±0.015
GCNN 0.174±0.067 0.050±0.026 0.020±0.014 0.017±0.010 0.022±0.014 0.023±0.015
adv-GCNN4 0.034±0.012 0.007±0.004 0.020±0.014 0.022±0.014 0.027±0.014 0.029±0.018

ShapeNet part

PointNet 0.107±0.065 0.071±0.032 0.023±0.020 0.005±0.005 0.004±0.004 0.005±0.005
PointNet++ 0.142±0.057 0.001±0.000 0.044±0.025 0.014±0.009 0.014±0.009 0.016±0.011
PointConv 0.168±0.073 1.4e-5±2.5e-5 0.053±0.042 0.017±0.013 0.016±0.011 0.019±0.015
DGCNN 0.141±0.069 0.067±0.033 0.020±0.015 0.014±0.011 0.013±0.011 0.016±0.013
GCNN 0.141±0.065 0.072±0.038 0.021±0.015 0.014±0.011 0.013±0.010 0.016±0.015
adv-GCNN4 0.028±0.012 0.009±0.008 0.025±0.020 0.028±0.022 0.024±0.015 0.028±0.019

Table 3: Pearson correlation coefficients between regional attributions and sensitivities.

Models ModelNet10 dataset ShapeNet part dataset

rotation translation scale rotation translation scale
sensitivity sensitivity sensitivity sensitivity sensitivity sensitivity

PointNet 0.648±0.266 0.637±0.165 0.473±0.194 0.528±0.278 0.549±0.204 0.538±0.275
PointNet++ 0.811±0.123 0.415±0.189 0.592±0.142 0.629±0.154 0.266±0.269 0.543±0.171
PointConv 0.601±0.234 0.009±0.179 0.473±0.174 0.739±0.166 -0.006±0.170 0.617±0.168
DGCNN 0.788±0.111 0.622±0.164 0.494±0.224 0.725±0.176 0.649±0.174 0.458±0.201
GCNN 0.832±0.082 0.610±0.131 0.464±0.231 0.696±0.158 0.682±0.198 0.431±0.199
adv-GCNN4 0.488±0.167 0.298±0.234 0.414±0.256 0.343±0.234 0.255±0.223 0.476±0.304

was minw Ex
[
maxT Loss(x′ = T (x), ytruth;w)

]
, where w denoted the parameter of the GCNN.

Comparative studies have revealed the following effects of the adversarial training (using rotations and
translations for attack, instead of using perturbations) on knowledge representations. The adversarial
training shifted the attention of DNN from orientations and positions to structural information
(including global structures in normal samples, see Fig. 5), thereby increasing the sensitivity to 3D
structures (see Table 2 and Fig. 3 (a)). The adversarial training also decreased the correlation between
the regional sensitivity and the regional attribution (see Table 3), and increased the spatial smoothness
of knowledge representations (see Table 4).

Comparative study 1, explaining the regional sensitivity of DNNs. Table 2 shows six types of
regional sensitivities of six DNNs learned on the ModelNet10 dataset and the ShapeNet part dataset.
In terms of translation sensitivity, PointNet was relatively sensitive to the translation, because PointNet
extracted features from global coordinates of points, thereby being sensitive to the translation. In
contrast, PointNet++ and PointConv were robust to translation, because these two DNNs encoded
relative coordinates. Particularly, PointConv did not use global coordinates during the inference
process, thereby yielding the lowest translation sensitivity (see the point cloud with the darkest blue
in the second row of Fig. 3 (a)). In terms of scale sensitivity, PointNet++ was relatively sensitive
to the scale, because PointNet++ encoded features of neighborhood with fixed scales. Besides,
because adversarial training forced the GCNN to remove attention from rotation-sensitive features
and translation-sensitive features, the adversarially trained GCNN paid more attention to structural
information. Therefore, compared with the original GCNN, the adversarially trained GCNN had
higher sensitivity to local 3D structures. Furthermore, we also obtained the following conclusions.

• Rotation robustness was the Achilles’ heel of classic DNNs for 3D point cloud processing. As
Table 2 and Fig. 3 (a) show, all DNNs were sensitive to rotations except for the adversarially trained
GCNN.

• PointNet failed to encode local 3D structures. In terms of sensitivity to local 3D structures, PointNet
was the least sensitive DNN (see Table 2). It was because convolution operations of the PointNet
encoded the information of each point independently, i.e. the PointNet did not encode the information
of neighboring points/regions. This conclusion is also verified by the phenomenon that PointNet had
darker blue point clouds than other DNNs (see the last three rows of Fig. 3 (a)).

• Most DNNs usually failed to extract rotation-robust features from 3D points at edges and corners.
Given a point cloud x, we selected the most rotation-sensitive region i∗ (shown as black boxes in
Fig. 3 (b)). We rotated the point cloud x to the orientations that maximized and minimized the
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Figure 3: Visualization of regional sensitivities and regional attributions. (a) Visualization of regional
sensitivities. The regional sensitivities of all point clouds are normalized to the same colorbar, which
is shown in a log-scale. (b) Visualization of regional attributions. For each point cloud, we selected
the most rotation-sensitive region i∗ (shown as black boxes) and visualized the pair of point clouds
with specific orientations corresponding to the maximum and the minimum regional attributions of
the region i∗. More visualization results are shown in our supplemental materials.
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(a) Positive correlation between the regional attribution
and the regional rotation sensitivity. (b) Visualization of spatial smoothness of regional attributions.
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Figure 4: (a) Positive correlation between the regional rotation sensitivity and the regional attribution
of the PointNet. (b) Visualization of spatial smoothness of regional attributions. Experimental results
show that the adversarial training increased the smoothness of neighboring regions’ attributions.

attribution of region i∗, i.e. θ1 = arg maxθ φx′(i
∗) and θ2 = arg minθ φx′(i

∗). Fig. 3 (b) visualizes
regional attributions of point clouds rotated by θ1 and θ2. We found that rotation-sensitive regions
were usually distributed on the edges and corners, which verified our conclusion.

• Most DNNs usually could not ignore features of rotation-sensitive points at edges and corners.
Table 3 shows that the Pearson correlation coefficient [25] between each region’s average strength
of attribution over different rotations (i.e. Eθ[|φx′(i)|], s.t. x′ = Trotation(x|θ)) and this region’s
rotation sensitivity ai(x) is much larger than Pearson correlation coefficients between the attribution
and other sensitivities. This means that rotation-sensitive regions (which were usually distributed
on the edges and corners) usually had large regional attributions, which verified our conclusion.
Besides, Table 3 also shows that the adversarial training reduced the correlation between the regional
sensitivity and the regional attribution. Fig. 4 (a) visualizes the positive correlation between the
regional rotation sensitivity and the regional attribution of the PointNet.

Comparative study 2, explaining the spatial smoothness of knowledge representations. Table 4
shows the non-smoothness of knowledge representations encoded by different DNNs. Note that
the adversarially trained GCNN was significantly biased to the knife category. In other words, the
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Table 4: The non-smoothness of attributions between adjacent regions.

Models
ModelNet10 dataset ShapeNet part dataset ShapeNet part dataset

(removing the biased category)

rotation translation rotation translation rotation translation

PointNet 0.071±0.039 0.029±0.017 0.025±0.009 0.016±0.005 0.025±0.010 0.015±0.003
PointNet++ 0.091±0.041 0.041±0.022 0.036±0.011 0.022±0.016 0.034±0.010 0.017±0.003
PointConv 0.047±0.014 0.056±0.108 0.080±0.019 0.040±0.017 0.081±0.020 0.039±0.018
DGCNN 0.071±0.024 0.031±0.010 0.047±0.019 0.026±0.017 0.044±0.017 0.021±0.005
GCNN 0.083±0.026 0.034±0.012 0.050±0.019 0.027±0.010 0.049±0.020 0.025±0.008
adv-GCNN4 0.029±0.012 0.030±0.013 0.054±0.110 0.056±0.114 0.022±0.008 0.023±0.008

adversarially trained GCNN classified the empty input as the knife category with a high confidence
(please see our supplementary materials for details). Therefore, to enable fair comparisons, we also
reported the spatial non-smoothness of the adversarially trained GCNN on all other categories except
the knife. We discovered that without considering the biased knife category, adversarial training
increased the spatial smoothness of knowledge representations. Fig 4 (b) also verified this conclusion.

Comparative study 3, explaining the interaction complexity of DNNs. Fig. 5 shows multi-order
interactions of different DNNs. From this figure, we discovered the following new insights.

• Most DNNs failed to encode high-order interactions (i.e. global and large-scale 3D structures). As
Fig. 5 (a) shows, no matter given normal samples or adversarial samples5, classic DNNs encoded
extremely low-order interactions. This indicated that most DNNs did not extract complex and
large-scale 3D structures from normal samples.

• The adversarial training (using rotations and translations for attack, instead of using perturbations)
increased the effects of extremely high-order interactions. As Fig. 5 (a) shows, the adversarially
trained GCNN encoded extremely low-order interactions and extremely high-order interactions
(i.e. the global structures of objects) from normal samples. Because the GCNN was forced to
sophisticatedly select relatively complex rotation-robust features among all potential features.

• Rotation sensitivity of regions with out-of-distribution high-order interactions (i.e. abnormal
complex and large-scale 3D structures) were larger than the average sensitivity over all regions. In
fact, there are two types of high-order interactions. Unlike the above two insights describing whether
or not a DNN encoded high-order interactions on normal samples, this insight mainly focused on
abnormal out-of-distribution high-order interactions in a DNN. When a point cloud was attacked
by adversarial rotations5, the adversarial rotation5 would generate out-of-distribution high-order
interactions (i.e. abnormal complex and large-scale 3D structures) to attack the DNN. We measured
interactions between the most rotation-sensitive region i∗ and its neighbors j ∈ N (i∗) among all
input point clouds, i.e. Ex∈X

[
|Ej∈N (i∗)[I

(m)
x (i∗, j)]|

]
. As Fig. 5 (b) shows, rotation-sensitive regions

usually encoded relatively more high-order interactions than the overall interaction distribtuion over
all regions. This indicates that compared to most other regions, rotation-sensitive regions paid more
attention to high-order interactions, although low-order interactions of rotation-sensitive regions
increased too.

Broad applicability of the proposed metrics. We also conducted experiments on an AutoEncoder
for 3D point cloud reconstruction task and rotation-invariant DNNs for 3D point cloud classification,
in order to further demonstrate the broad applicability of the proposed metrics.

For the AutoEncoder for 3D point cloud reconstruction task, we used all layers before the fully-
connected layers in PointNet [26] as the encoder and used the decoder in the FoldingNet [48] as
the decoder. We took v(S) = (z(N)−z(∅))>(z(S)−z(∅))

||z(N)−z(∅)||2 as the reward score in Equation (1), where
z(S) denotes the output vector of the encoder given the input point cloud consisting of regions in
S. This reward score measures the utility of the encoder output z(S) given regions in S along the
direction of z(N) − z(∅). The AutoEncoder was learned based on the ModelNet10 dataset. We
measured the rotation sensitivity (0.099±0.043), the translation sensitivity (0.152±0.086), and the
scale sensitivity (0.045±0.042) of the AutoEncoder. Compared with results in Table 2, we found that
(1) the AutoEncoder for reconstruction was also sensitive to rotation; (2) the AutoEncoder for 3D

5Here, we used rotations for attack, instead of using perturbations.
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Figure 5: Multi-order interactions of different DNNs. (a) Comparison of multi-order interactions
between normal samples and adversarial samples5. (b) Comparison of multi-order interactions
between all regions and rotation-sensitive regions.

Table 5: Sensitivities of DNNs with or without different types of augmentation. For DNNs with or
without translation/scale/rotation augmentation, we reported the translation/scale/rotation sensitivity.

Network
architecture

translation aug scale aug rotation aug rotation aug
around the y-axis around a random axis

w/ w/o w/ w/o w/ w/o w/ w/o

PointNet 0.111±0.053 0.160±0.067 0.025±0.017 0.063±0.047 0.108±0.047 0.155±0.068 0.057±0.030 0.155±0.068
DGCNN 0.048±0.024 0.098±0.054 0.020±0.015 0.028±0.020 0.158±0.063 0.173±0.072 0.052±0.021 0.173±0.072

point cloud reconstruction was more sensitive to translation than the DNN for classification; (3) the
AutoEncoder for reconstruction was sensitive to the scale change.

Besides, we followed [32] to revise PointNet++ and DGCNN to be rotation-invariant DNNs. We
measured the rotation sensitivity of the rotation-invariant PointNet++ (0.002±0.001) and DGCNN
(0.010±0.004). Compared with results in Table 2, we found that rotation-invariant DNNs were much
more robust to rotations than traditional DNNs (even the adversarially-trained DNN).

Effects of data augmentation on sensitivities. We conducted comparative studies to explore the
effects of data augmentation on sensitivities, including translation augmentation, scale augmentation,
rotation augmentation around the y-axis, and rotation augmentation around a random axis. We
conducted experiments on PointNet and DGCNN. To explore the effects of each of the above
augmentation on sensitivities, we learned two versions of each network architecture, i.e. one network
with the specific augmentation and the other network without the specific augmentation. Please see
our supplementary materials for more details about different versions of each network architecture.
All DNNs were learned based on the ModelNet10 dataset. Table 5 shows that rotation/translation/scale
augmentation decreased the rotation/translation/scale sensitivity of a DNN.

Besides, we compared the effects of rotation augmentation around a random axis and the effects of
adversarial training on the rotation sensitivity. We conducted experiments on DGCNN and GCNN.
We trained two versions of DGCNN and GCNN, one with rotation augmentation around a random
axis (DGCNN, 0.052 ±0.021; GCNN, 0.048±0.024) and one with the adversarial training using
rotations for attack (DGCNN, 0.036±0.015; GCNN, 0.028±0.016). We found that compared with the
rotation augmentation, the adversarial training w.r.t. rotation-based attacks had a greater impact on
the rotation sensitivity.

5 Conclusion

In this paper, we have measured six types of regional sensitivities, the spatial smoothness, and
the contextual complexity of feature representations encoded by DNNs. Comparative studies have
discovered several new insights into classic DNNs for 3D point cloud processing. We have found
that most DNNs were extremely sensitive to the rotation. Rotation-sensitive regions were usually
distributed on the edges and corners of objects, had large attributions to network output, and usually
paid more attention to abnormal large-scale structures. In addition, most DNNs failed to extract
complex and large-scale 3D structures from normal samples, while the adversarial training could
encourage the DNN to extract global structures from normal samples.

10



Acknowledgments and Disclosure of Funding

This work is partially supported by the National Nature Science Foundation of China (No. 61906120,
U19B2043), Shanghai Natural Science Fundation (21JC1403800,21ZR1434600), Shanghai Mu-
nicipal Science and Technology Major Project (2021SHZDZX0102). This work is also partially
supported by Huawei Technologies Inc.

References
[1] Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural networks with a polynomial

time algorithm for shapley value approximation. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 272–281, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[2] Song Bai, Xiang Bai, Zhichao Zhou, Zhaoxiang Zhang, and Longin Jan Latecki. Gift: A real-time and
scalable 3d shape search engine. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5023–5032, 2016.

[3] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. 3d point cloud classification and segmen-
tation using 3d modified fisher vector representation for convolutional neural networks. arXiv preprint
arXiv:1711.08241, 2017.

[4] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the shapley value based on
sampling. Computers & Operations Research, 36(5):1726–1730, 2009.

[5] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-cam++:
Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 839–847. IEEE, 2018.

[6] J. Demantké, C. Mallet, N. David, and B. Vallet. Dimensionality Based Scale Selection in 3d LIDAR Point
Clouds. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 3812:97–102, 2011.

[7] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4829–4837,
2016.

[8] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful perturbation.
In Proceedings of the IEEE International Conference on Computer Vision, pages 3429–3437, 2017.

[9] C. Frye, Damien de Mijolla, T. Begley, Laurence Cowton, Megan Stanley, and Ilya Feige. Shapley
explainability on the data manifold. In ICLR, 2021.

[10] Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia Deng. Revisiting point cloud shape
classification with a simple and effective baseline. arXiv preprint arXiv:2106.05304, 2021.

[11] Michel Grabisch and Marc Roubens. An axiomatic approach to the concept of interaction among players
in cooperative games. International Journal of game theory, 28(4):547–565, 1999.

[12] S. Guinard and L. Landrieu. Weakly supervised segmentation-aided classification of urban scenes from
3d lidar point clouds. The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-1/W1:151–157, 2017.

[13] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and Andrew
Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11108–11117, 2020.

[14] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi Nishida. Rotationnet: Joint object categorization and
pose estimation using multiviews from unsupervised viewpoints. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5010–5019, 2018.

[15] Pieter-Jan Kindermans, Kristof T Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan, Been
Kim, and Sven Dähne. Learning how to explain neural networks: Patternnet and patternattribution. arXiv
preprint arXiv:1705.05598, 2017.

[16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world, 2017.

11



[17] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation with superpoint
graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4558–4567, 2018.

[18] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on
x-transformed points. In Advances in Neural Information Processing Systems, pages 820–830, 2018.

[19] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural network
for point cloud analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8895–8904, 2019.

[20] Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

[21] Scott M Lundberg, Gabriel G Erion, and Su-In Lee. Consistent individualized feature attribution for tree
ensembles. arXiv preprint arXiv:1802.03888, 2018.

[22] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting them.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 5188–5196,
2015.

[23] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpolated convolutional networks for 3d point cloud
understanding. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
1578–1587, 2019.

[24] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper into neural
networks. 2015.

[25] K Pearson. Notes on regression and inheritance in the case of two parents proceedings of the royal society
of london, 58, 240-242, 1895.

[26] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 652–660, 2017.

[27] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas. Deep hough voting for 3d object detection
in point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9277–9286, 2019.

[28] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in Neural Information Processing Systems, pages
5099–5108, 2017.

[29] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–1144. ACM, 2016.

[30] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, pages 618–626, 2017.

[31] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):307–317,
1953.

[32] Wen Shen, Binbin Zhang, Shikun Huang, Zhihua Wei, and Quanshi Zhang. 3d-rotation-equivariant
quaternion neural networks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XX 16, pages 531–547. Springer, 2020.

[33] Wen Shen, Zhihua Wei, Shikun Huang, Binbin Zhang, Panyue Chen, Ping Zhao, and Quanshi Zhang.
Verifiability and predictability: Interpreting utilities of network architectures for point cloud processing.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10703–
10712, 2021.

[34] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Mining point cloud local structures by kernel
correlation and graph pooling. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4548–4557, 2018.

[35] K Simonyan, A Vedaldi, and A Zisserman. Deep inside convolutional networks: visualising image
classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2017.

12



[36] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[37] Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In International
Conference on Machine Learning, pages 9269–9278. PMLR, 2020.

[38] Mukund Sundararajan, Kedar Dhamdhere, and Ashish Agarwal. The shapley taylor interaction index. In
International Conference on Machine Learning, pages 9259–9268. PMLR, 2020.

[39] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and
Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the
IEEE International Conference on Computer Vision, pages 6411–6420, 2019.

[40] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and Jie Shan. Graph attention convolution for
point cloud semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10296–10305, 2019.

[41] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. Sgpn: Similarity group proposal network
for 3d point cloud instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2569–2578, 2018.

[42] Yue Wang and Justin M Solomon. Deep closest point: Learning representations for point cloud registration.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3523–3532, 2019.

[43] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 38(5):146, 2019.

[44] Robert J Weber. Probabilistic values for games. The Shapley Value. Essays in Honor of Lloyd S. Shapley,
pages 101–119, 1988.

[45] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point clouds.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9621–9630,
2019.

[46] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1912–1920, 2015.

[47] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan. Point-
flow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4541–4550, 2019.

[48] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via deep grid
deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
206–215, 2018.

[49] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla
Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in 3d shape collections.
SIGGRAPH Asia, 2016.

[50] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding neural networks
through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

[51] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point cloud
upsampling network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2790–2799, 2018.

[52] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In European
Conference on Computer Vision, pages 818–833. Springer, 2014.

[53] Hao Zhang, Xu Cheng, Yiting Chen, and Quanshi Zhang. Game-theoretic interactions of different orders.
arXiv preprint arXiv:2010.14978, 2020.

[54] Yue Zhao, Yuwei Wu, Caihua Chen, and Andrew Lim. On isometry robustness of deep 3d point cloud
models under adversarial attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1201–1210, 2020.

[55] Tianhang Zheng, Changyou Chen, Junsong Yuan, Bo Li, and Kui Ren. Pointcloud saliency maps. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1598–1606, 2019.

13



[56] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors emerge
in deep scene cnns. In ICLR, 2015.

[57] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features
for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2921–2929, 2016.

14


	Introduction
	Related work
	Analyzing feature representations of DNNs for 3D point cloud processing
	Quantifying the representation sensitivity of a DNN
	Quantifying the spatial smoothness of knowledge representations
	Quantifying the interaction complexity of a DNN

	Comparative studies
	Conclusion

