
Supplementary material for ‘Locality defeats the
curse of dimensionality in convolutional

teacher-student scenarios’

Alessandro Favero ‡
Institute of Physics

École Polytechnique Fédérale de Lausanne
alessandro.favero@epfl.ch

Francesco Cagnetta ‡
Institute of Physics

École Polytechnique Fédérale de Lausanne
francesco.cagnetta@epfl.ch

Matthieu Wyart
Institute of Physics

École Polytechnique Fédérale de Lausanne
matthieu.wyart@epfl.ch

Contents

A Spectral bias in kernel regression 1

B NTKs of convolutional and locally-connected networks 3

C Mercer’s decomposition of convolutional and local kernels 5

D Proof of Theorem 4.1 11

E Asymptotic learning curves with a local teacher 13

F Proof of Theorem 6.1 14

G Numerical experiments 16

A Spectral bias in kernel regression

In this appendix we provide additional details about the derivation of Eq. (8) within the framework
of [17, 18]. Let us begin by recalling the definition of the kernel ridge regression estimator f of a
target function f∗,

f = argmin
f∈H

{
1

P

P∑
µ=1

(f(xµ)− f∗(xµ))
2

+ λ ‖f‖2H

}
, (S1)

‡Equal contribution.
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where H denotes the Reproducing Kernel Hilbert Space (RKHS) of the kernel K(x,y). After
introducing the Mercer’s decomposition of the kernel,

K(x,y) =

∞∑
ρ=1

λρφρ(x)φρ(y),

∫
p
(
ddy
)
K(x,y)φρ(y) = λρφρ(x). (S2)

the RKHS can be characterised as a subset of the space of functions lying in the span of the kernel
eigenbasis,

H =

{
f =

∞∑
ρ=1

aρφρ(x)

∣∣∣∣∣
∞∑
ρ=1

|aρ|2

λρ
<∞

}
. (S3)

In other words, the RKHS contains functions having a finite norm ||f ||H =
√
〈f, f〉H with respect

to the following inner product,

f(x) =
∑
ρ

aρφρ(x), f ′(x) =
∑
ρ

a′ρφρ(x), 〈f, f ′〉H =
∑
ρ

aρa
′
ρ

λρ
. (S4)

Given any target function f∗ lying in the span of the kernel eigenbasis, the mean squared generalisa-
tion error of the kernel ridge regression estimator reads

ε(λ, {xµ}) =

∫
p(ddx) (f(x)− f∗(x))

2
=

∞∑
ρ=1

|aρ(λ, {xµ})− cρ|2 , (S5)

with cρ denoting the ρ-th coefficient of the target f∗ and aρ that of the estimator f , which depends
on the ridge λ and on the training set {xµ}µ=1,...,P . Notice that, as f belongs to H by definition,∑
ρ |aρ|2/λρ< +∞, whereas the cρ’s are free to take any value.

The authors of [17, 18] found a heuristic expression for the average of the mean squared error over
realisations of the training set {xµ}. Such expression, based on the replica method of statistical
physics, reads1

ε(λ, P ) = ∂λ

(
κλ(P )

P

)∑
ρ

κλ(P )2

(Pλρ + κλ(P ))
2 |cρ|

2, (S6)

where κ(P ) satisfies
κλ(P )

P
= λ+

1

P

∑
ρ

λρκλ(P )/P

λρ + κλ(P )/P
. (S7)

In short, the replica method works as follows [39]: first one defines an energy function E(f)
as the argument of the minimum in Eq. (S1), then attribute to the predictor f a Boltzmann-like
probability distribution P (f) = Z−1e−βE(f) , with Z a normalisation constant and β > 0. As
β → ∞, the probability distribution P (f) concentrates around the solution of the minimisation
problem of Eq. (S1), i.e. the predictor of kernel regression. Hence, one can replace f in the right-hand
side of Eq. (S5) with an average over P (f) at finite β, then perform the limit β → ∞ after the
calculation so as to recover the generalisation error. The simplification stems from the fact that, once
f is replaced with its eigendecomposition, the energy function E(f) becomes a quadratic function
of the coefficients cρ. Then, under the assumption that the data distribution enters only via the first
and second moments of the eigenfunctions φρ(x) w.r.t x, all averages in Eq. (S5) reduce to Gaussian
integrals.

Mathematically, κλ(P )/P is related to the Stieltjes transform [40] of the Gram matrix KP /P in the
large-P limit. Intuitively, it plays the role of a threshold: the modal contributions to the error tend to
0 for ρ such that λρ � kλ(P )/P , and to E[|cρ|2] for ρ such that λρ � kλ(P )/P . This is equivalent
to saying that the algorithm predictor f(x) captures only the eigenmodes having eigenvalue larger
than kλ(P )/P (see also [41, 21]).

This intuitive picture can actually be exploited in order to extract the learning curve exponent β from
the asymptotic behaviour of Eq. (S6) and Eq. (S7) in the ridgeless limit λ→ 0+. In the following,
we assume that both the kernel and the target function have a power-law spectrum, in particular

1Notice that the risk considered in [17, 18] slightly differs from Eq. (S1) by a factor 1/P in front of the sum.
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λρ ∼ ρ−a and E[|c∗ρ|2] ∼ ρ−b, with 2a> b − 1. First, we approximate the sum over modes in
Eq. (S7) with an integral using the Euler-Maclaurin formula. Then we substitute the eigenvalues
inside the integral with their asymptotic limit, λρ = Aρ−a. Since, κ0(P )/P → 0 as P →∞, both
these operations result in an error which is asymptotically independent of P . Namely,

κ0(P )

P
=
κ0(P )

P

1

P

(∫ ∞
0

dρAρ−a

Aρ−a + κ0(P )/P
+O(1)

)
(S8)

=
κ0(P )

P

1

P

((
κ0(P )

P

)− 1
a
∫ ∞

0

dσ σ
1
a−1A

1
a a−1

1 + σ
+O(1)

)
,

where in the second line, we changed the integration variable from ρ to σ=κ0(P )ρa/(AP ). Since
the integral in σ is finite and independent of P , we obtain that κ0(P )/P = O(P−a). Similarly, we
find that the mode-independent prefactor ∂λ (κλ(P )/P ) |λ=0 = O(1). As a result we are left with,
modulo some P -independent prefactors,

ε(P ) ∼
∑
ρ

P−2a

(Aρ−a + P−a)
2E[|cρ|2]. (S9)

Following the intuitive argument about the thresholding role of κ0(P )/P ∼ P−a, it is convenient to
split the sum in Eq. (S10) into sectors where λρ � κ0(P )/P , λρ ∼ κ0(P )/P and λρ � κ0(P )/P ,
i.e.,

ε(P ) ∼
∑
ρ�P

P−2a

(Aρ−a)
2E[|cρ|2] +

∑
ρ∼P

1

2
E[|cρ|2] +

∑
ρ�P

E[|cρ|2]. (S10)

Finally, Eq. (8) is obtained by noticing that, under our assumptions on the decay of E[|cρ|2] with
ρ, the contribution of the sum over ρ � P is subleading in P whereas the other two sums can be
gathered together.

B NTKs of convolutional and locally-connected networks

We begin this section by reviewing the computation of the NTK of a one-hidden-layer fully-connected
network [16].
Definition B.1 (one-hidden-layer FCN). A one-hidden-layer fully-connected network with H hidden
neurons is defined as follows,

fFCN (x) =
1√
H

H∑
h=1

ahσ(wh · x+ bh), (S11)

where x ∈ Rd is the input, H is the width, σ is a nonlinear activation function, {wh ∈ Rd}Hh=1,
{bh ∈ R}Hh=1, and {ah ∈ R}Hh=1 are the network’s parameters. The dot · denotes the standard
Euclidean scalar product.

Inserting Eq. (S11) into Eq. (11), one obtains

ΘFC
N (x,y;θ) =

1

H

H∑
h=1

(σ(wh · x+ bh)σ(wh · y + bh) (S12)

+ a2
hσ
′(wh · x+ bh)σ′(wh · y + bh)(x · y + 1)

)
,

where σ′ denotes the derivative of σ with respect to its argument. If all the parameters are initialised
independently from a standard Normal distribution, ΘFC

N (x,y;θ) is a random-feature kernel that in
the H →∞ limit converges to

ΘFC(x,y) = Ew,b[σ(w · x+ b)σ(w · y + b)] (S13)

+ Ea[a2]Ew,b[σ
′(w · x+ b)σ′(w · y + b)](x · y + 1).
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When σ is the ReLU activation function, the expectations can be computed exactly using techniques
from the literature of arc-cosine kernels [36]

ΘFC(x,y) =
1

2π

√
‖x‖2 + 1

√
‖y‖2 + 1 (sinϕ+ (π − ϕ) cosϕ) (S14)

+
1

2π
(x · y + 1)(π − ϕ),

with ϕ denoting the angle

ϕ = arccos

(
x · y + 1√

‖x‖2 + 1
√
‖y‖2 + 1

)
. (S15)

Notice that, as commented in Section 3, for ReLU networks ΘFC(x,y) displays a cusp at x = y.

Proof of Lemma 3.1

Proof. Inserting Eq. (9) into Eq. (11),

ΘCN
N (x,y;θ) =

1

|P|2
∑
i,j∈P

(
1

H

H∑
h=1

(
σ(wh · xi + bh)σ(wh · yj + bh) (S16)

+ a2
hσ
′(wh · xi + bh)σ′(wh · yj + bh)(xi · yj + 1)

))
In the previous line, the single terms of the summation over patches are the random-feature kernels
ΘFC
N obtained in Eq. (S12) acting on s-dimensional inputs, i.e. the patches of x and y. Therefore,

ΘCN
N (x,y;θ) =

1

|P|2
∑
i,j∈P

Θ
(FC)
N (x,y). (S17)

If all the parameters are initialised independently from a standard Normal distribution, the H →∞
limit of Eq. (S17) yields Eq. (12).

Proof of Lemma 3.2

Proof. Inserting Eq. (10) into Eq. (11),

ΘLC
N (x,y;θ) =

1

|P|
∑
i∈P

(
1

H

H∑
h=1

(
σ(wh,i · xi + bh,i)σ(wh,i · yi + bh,i) (S18)

+ a2
h,iσ

′(wh,i · xi + bh,i)σ
′(wh,i · yi + bh,i)(xi · yi + 1)

))
.

In the previous line, the single terms of the summation over patches are the random-feature kernels
ΘFC
N obtained in Eq. (S12) acting on s-dimensional inputs, i.e. the patches of x and y. Therefore,

ΘLC
N (x,y;θ) =

1

|P|
∑
i∈P

Θ
(FC)
N (xi,yi). (S19)

If all the parameters are initialised independently from a standard Normal distribution, Eq. (13) is
recovered in the H →∞ limit.
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C Mercer’s decomposition of convolutional and local kernels

In this section we prove the eigendecompositions introduced in Lemma 3.3 and Lemma 3.4, then
extend them to overlapping-patches kernel (cf. C.1). We define the scalar product in input space
between two (complex) functions f and g as

〈f, g〉 =

∫
p(ddx) f(x)g(x). (S20)

Proof of Lemma 3.3

Proof. We start by proving orthonormality of the eigenfunctions. By writing the d-dimensional
eigenfunctions Φρ in terms of the s-dimensional eigenfunctions φρ of the constituent kernel as in
Eq. (17), for ρ, σ 6= 1,

〈Φρ,Φσ〉 =
s

d

∑
i,j∈P

∫
p(ddx)φρ(xi)φσ(xj). (S21)

Separating the term in the sum over patches in which i and j coincide from the others, and since the
patches are not overlapping, the RHS can be written as

s

d

∑
i∈P

∫
p(dsxi)φρ(xi)φσ(xi) +

∑
i,j 6=i∈P

∫
p(dsxi)φρ(xi)

∫
p(dsxj)φσ(xj). (S22)

From the orthonormality of the eigenfunctions φρ, the first integral is non-zero and equal to one
only when ρ = σ, while, from assumption i),

∫
p(s)(dsx)φρ(x) = 0 for all ρ> 1, so that the second

integral is always zero. Therefore,

〈Φρ,Φσ〉 = δρ,σ, for ρ, σ > 1. (S23)

When ρ = 1 and σ 6= 1,
∫
p(ddx)Φ1(x)Φσ(x) = 0 from assumption i), i.e. Φ1 = 1 and∫

p(s)(dsx)φρ(x) = 0 for all ρ> 1. Finally, if ρ = σ = 1,
∫
p(ddx)Φ1(x)Φ1(x) = 1 trivially.

Then, we prove that the eigenfunctions and the eigenvalues defined in Eq. (17) satisfy the kernel
eigenproblem. For ρ = 1,

∫
p(ddy)KCN (x,y) =

∫
p(ddy)

s2

d2

∑
i,j∈P

C(xi,yj) =
s2

d2

∑
i,j∈P

λ1 = Λ1, (S24)

where we used
∫
p(s)(dsy)C(x,y) = λ1 from assumption i). For ρ > 1,

∫
p(ddy)KCN (x,y)Φρ(y) =

∫
p(ddy)

s2

d2

∑
i,j∈P

C(xi,yj)

√
s

d

∑
l∈P

φρ(yl). (S25)

Splitting the sum over l into the term with l = j and the remaining ones, the RHS can be written as

s2

d2

∑
i,j∈P

(∫
p(dsyj)C(xi,yj)

√
s

d
φρ(yj) (S26)

+

∫
p(dsyj)C(xi,yj)

√
s

d

∑
l 6=j∈P

∫
p(dsyl)φρ(yl)

)
.
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Using assumption i), the third integral is always zero, therefore

∫
p(ddy)KCN (x,y)Φρ(y) =

s2

d2

∑
i,j∈P

λρ

√
s

d
φρ(xi) = ΛρΦρ(x). (S27)

Finally, we prove the expansion of Eq. (16) from the definition of KCN ,

KCN (x,y) =
s2

d2

∑
i,j∈P

C(xi,yj) (S28)

=
s2

d2

∑
i,j∈P

∑
ρ

λρφρ(xi)φρ(yj)

= λ1
s2

d2

∑
i,j∈P

φ1(xi)φ1(yj) +
∑
ρ>1

( s
d
λρ

)(√ s

d

∑
i∈P

φρ(xi)

)√ s

d

∑
j∈P

φρ(yj)


=
∑
ρ

ΛρΦρ(x)Φρ(y).

Proof of Lemma 3.4

Proof. We start again by proving the orthonormality of the eigenfunctions. By writing the d-
dimensional eigenfunctions Φρ,i in terms of the s-dimensional eigenfunctions φρ of the constituent
kernel as in Eq. (19), for ρ, σ 6= 1,

〈Φρ,i,Φσ,j〉 =

∫
p(ddx)φρ(xi)φσ(xj) = δρ,σδi,j , (S29)

from the orthonormality of the eigenfunctions φρ when i = j, and assumption
i),

∫
p(s)(dsx)φρ(x) = 0 for all ρ> 1, when i 6=j. Moreover, as Φ1(x) = 1,∫

p(ddx)Φ1(x)Φσ 6=1,j(x) = 0 and
∫
p(ddx)Φ1(x)Φ1(x) = 1.

Then, we prove that the eigenfunctions and the eigenvalues defined in Eq. (19) satisfy the kernel
eigenproblem. For ρ = 1,∫

p(ddy)KLC(x,y) =

∫
p(ddy)

s

d

∑
i∈P

C(xi,yi) =
s

d

∑
i∈P

λ1 = Λ1, (S30)

where we used
∫
p(s)(dsy)C(x,y) = λ1 from assumption i). For ρ > 1,∫
p(ddy)KLC(x,y)Φρ,i(y) =

∫
p(ddy)

s

d

∑
j∈P

C(xj ,yj)φρ(yi). (S31)

Splitting the sum over j in the term for which j = i and the remaining ones, the RHS can be written
as

s

d

∫
p(dsyi)C(xi,yi)φρ(yi) +

s

d

∑
j 6=i∈P

∫
p(dsyj)C(xj ,yj)

∫
p(dsyi)φρ(yi). (S32)

Using assumption i), the third integral is always zero, therefore∫
p(ddy)KCN (x,y)Φρ(y) =

s

d
λρφρ(xi) = Λρ,iΦρ,i(x). (S33)
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Finally, we prove the expansion of Eq. (16) from the definition of KLC ,

KLC(x,y) =
s

d

∑
i∈P

C(xi,yi) (S34)

=
s2

d2

∑
i∈P

∑
ρ

λρφρ(xi)φρ(yi) (S35)

= λ1
s

d

∑
i∈P

φ1(xi)φ1(yi) +
∑
ρ>1

∑
i∈P

( s
d
λρ

)
φρ(xi)φρ(yi) (S36)

= Λ1Φ1(x)Φ1(y) +
∑
ρ>1

∑
i∈P

Λρ,iΦρ,i(x)Φρ,i(y). (S37)

C.1 Spectra of convolutional kernels with overlapping patches

In this section Lemma 3.3 and Lemma 3.4 are extended to kernels with overlapping patches, having
P = {1, . . . , d} and |P|= d. Such extension requires additional assumptions, which are stated below:

i) The d-dimensional input measure p(d)(ddx) is uniform on the d-torus [0, 1]d;
ii) The constituent kernel C(x,y) is translationally-invariant, isotropic and periodic,

C(x,y) = C(||x− y||), C(||x− y + n||) = C(||x− y||) ∀n ∈ Zs. (S38)

Assumptions i) and ii) above imply that C(x,y) can be diagonalised in Fourier space, i.e. (with k
denoting the s-dimensional wavevector)

C(x− y) =
∑

{k=2πn|n∈Zs}

λkφk(x)φk(y) =
∑

{k=2πn|n∈Zs}

λke
ik·(x−y), (S39)

and the eigenvalues λk depend only on the modulus of k, k=
√
k · k.

Let us introduce the following definitions, after recalling that a s-dimensional patch xi of x is a
contiguous subsequence of x starting at xi, i.e.

x = (x1, x2, . . . , xd)⇒ xi = (xi, xi+1, . . . , xi+s−1), (S40)
and that inputs are ‘wrapped’, i.e. we identify xi+nd with xi for all n ∈ Z.

• Two patches xi and xj overlap if xi ∩ xj 6= ∅. The overlap xi∩j ≡ xi ∩ xj is an o-
dimensional patch of x, with o= |xi ∩ xj |;

• let P denote the set of patch indices associated with a given kernel/architecture.
We denote with Pi the set of indices of patches which overlap with xi, i.e.
Pi = {i− s+ 1, . . . , i, . . . , i+ s− 1} = {P−,i, i,P+,i};

• Given two overlapping patches xi and xj with o-dimensional overlap, the union xi∪j ≡
xi ∪ xj and differences xirj ≡ xirxj and xjri ≡ xj rxi are all patches of x, with
dimensions 2s− o, s− o and s− o, respectively.

We also use the following notation for denoting subspaces of the k-space ∼= Zs,

Fu = {k= 2πn |n ∈ Zs; n1, nu 6= 0; nv = 0∀v s. t. u < v ≤ s} . (S41)

Fs is the set of all wavevectors k having nonvanishing extremal components k1 and ks. For u<s,
Fu is formed by first considering only wavevectors having the last s− u components equal to zero,
then asking the resulting u-dimensional wavevectors to have nonvanishing extremal components.
Practically, Fu contains wavevectors which can be entirely specified by the first u-dimensional
patch k(u)

1 = (k1, . . . , ku) but not by the first (u− 1)-dimensional one. Notice that, in order to safely
compare k’s in different F ’s, we have introduced an apex u denoting the dimensionality of the patch.
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Lemma C.1 (Spectra of overlapping convolutional kernels). Let KCN be a convolutional kernel
defined as in Eq. (14a), with P = {1, . . . , d} and constituent kernel C satisfying assumptions i), ii)
above. Then, KCN admits the following Mercer’s decomposition,

KCN (x,y) = Λ0 +

s∑
u=1

( ∑
k∈Fu

ΛkΦk(x)Φk(y)

)
, (S42)

with eigenfunctions

Φ0(x) = 1, Φk(x) =
1√
d

d∑
i=1

φk(xi) ∀k 6= 0, (S43)

and eigenvalues

Λ0 =λ0, Λk =
s− u+ 1

d
λk ∀k ∈ Fu with u ≤ s. (S44)

Proof. We start by proving the orthonormality of the eigenfunctions. In general, by orthonormality
of the s-dimensional plane waves φk(x), we have

〈Φk,Φq〉 =
1

d

∫
[0,1]d

ddx

(
d∑
i=1

φk(xi)

) d∑
j=1

φq(xj)


=

1

d

∑
i∈P

∑
j /∈Pi

∫
dsxi e

ik·xi
∫
dsxj e

−iq·xj +
1

d

∑
i∈P

∫
dsxi e

i(k−q)·xi

+
1

d

∑
i∈P

∑
j∈Pi,+

∫
(ds-oxirj) e

ik
(s−o)
1 ·xirj

∫
(doxi∪j) e

i(k
(o)
s−o+1−q

(o)
1 )·xi∪j

∫
(ds-oxjri) e

iq
(s−o)
o+1 ·xjri

+
1

d

∑
i∈P

∑
j∈Pi,−

{i↔ j,k↔ q}

=
1

d

∑
i∈P

δ(k,0)
∑
j /∈Pi

δ(q,0) +
1

d

∑
i∈P

δ(k, q)

+
1

d

∑
i∈P

 ∑
j∈Pi,+

δ(k
(s−o)
1 ,0) δ(k

(o)
s−o+1, q

(o)
1 ) δ(q

(s−o)
o+1 ,0)

+
∑

j∈Pi,−

δ(q
(s−o)
1 ,0) δ(k

(o)
1 , q

(o)
s−o+1) δ(k

(s−o)
o+1 ,0)

 , (S45)

with δ(k, q) denoting the multidimensional Kronecker delta. For fixed i, the three terms on the RHS
correspond to j’s such that xj does not overlap with xi, to j= i and to j’s such that xj overlaps with
xi, respectively. We recall that, in patch notation, k(s−o)

1 denotes the subsequence of k formed with
the first s− o components and k(o)

s−o+1 the subsequence formed with the last o components.

By taking k and q in Fs, as k1, ks 6= 0 and q1, qs 6= 0, Eq. (S45) implies

〈Φk,Φq〉 = δ(k, q). (S46)

In addition, by taking k ∈ Fs and q = q
(u)
1 ∈ Fu with u<s,〈

Φk,Φq
(u)
1

〉
= 0 ∀u < s. (S47)
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Thus the Φk’s with k ∈ Fs are orthonormal between each other and orthogonal to all Φ
q
(u)
1

’s with
u<s. Similarly, by taking k ∈ Fu with u<s and q ∈ Fv with v≤u, orthonormality is proven
down to Φ

k
(1)
1

. The zero-th eigenfunction Φ0(x) = 1 is also orthogonal to all other eigenfunctions
by Eq. (S45) with k= 0 and trivially normalised to 1.

Secondly, we prove that eigenfunctions from Eq. (S43) and eigenvalues from Eq. (S44) satisfy the
kernel eigenproblem of KCN . For k=0,

∫
[0,1]d

ddy KCN (x,y) =
1

d2

d∑
i,j=1

∫
[0,1]d

ddy
∑
q

λke
iq·(xi−yj) = λ0, (S48)

proving that Λ0 and Φ0 satisfy the eigenproblem. For k 6= 0,

∫
[0,1]d

ddy KCN (x,y)

(
1√
d

d∑
l=1

eik·yl

)
=

1

d5/2

d∑
i,j,l=1

∫
[0,1]d

ddy
∑
q

λqe
iq·(xi−yj)eik·yl

=
1

d5/2

d∑
i=1

∑
q

λqe
iq·xi

d∑
j=1

δ(k, q) +
∑
l∈Pj,+

δ(q
(s−o)
1 ,0) δ(q

(o)
s−o+1,k

(o)
1 ) δ(k

(s−o)
o+1 ,0)

+
∑
l∈Pj,−

δ(k
(s−o)
1 ,0) δ(q

(o)
1 ,k

(o)
s−o+1) δ(q

(s−o)
o+1 ,0)

 .

(S49)

When k ∈ Fs, the deltas coming from the terms with j ∈ Pj,± vanish, showing that the eigenproblem
is satisfied with Λk =λk/d and Φk(x) =

∑
l e
ik·x/

√
d. When k ∈ Fu with u<s, as the last s−u

components of k vanish, there are several q’s satisfying the deltas in the bracket. There is q=k, from
the l= j term, then there are the s−u q’s such that δ(q(s−o)

1 ,0)δ(q
(o)
s−o+1,k

(o)
1 )δ(k

(s−o)
o+1 ,0) = 1.

These are all the q’s having a u-dimensional patch equal to k(u)
1 and all the other elements set to zero,

thus there are (s − u + 1) such q’s. Moreover, as λq depends only on the modulus of q, all these
q’s result in the same eigenvalue, and in the same eigenfunction

∑
l e
iq·x/

√
d, after the sum over

patches. Therefore,

∫
[0,1]d

ddy KCN (x,y)Φ
k
(u)
1

=
(s− u+ 1)

d
λ
k
(u)
1

Φ
k
(u)
1

= Λ
k
(u)
1

Φ
k
(u)
1
. (S50)

Finally, we prove the expansion of the kernel in Eq. (S42),

KCN (x,y) =
1

d2

∑
i,j∈P

C(xi,yj) (S51)

=
∑
k

1

d
λk

(
1√
d

∑
i∈P

φk(xi)

) 1√
d

∑
j∈P

φk(yj)

. (S52)

The terms on the RHS of Eq. (S51) are trivially equal to those of Eq. (S42) for k ∈ Fs. All the k
having s−u vanishing extremal components can be written as shifts of k(u)

1 ∈ Fu, which has the last
s−u components vanishing. But a shift of k does not affect λk nor

∑
l e
ik·x, leading to a degeneracy

of eigenvalues having k which can be obtained from a shift of k(u)
1 ∈ Fu. Such degeneracy is

removed by restricting the sum over k to the sets Fu, u≤ s, of wavevectors with non-vanishing
extremal components, and rescaling the remaining eigenvalues with a factor of (s − u + 1)/d, so
that Eq. (S42) is obtained.
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Lemma C.2 (Spectra of overlapping local kernels). LetKLC be a local kernel defined as in Eq. (14b),
with P = {1, . . . , d} and constituent kernel C satisfying assumptions i), ii) above. Then, KLC

admits the following Mercer’s decomposition,

KLC(x,y) = Λ0 +

s∑
u=1

( ∑
k∈Fu

d∑
i=1

Λk,iΦk,i(x)Φk,i(y)

)
(S53)

with eigenfunctions

Φ0(x) = 1, Φk,i(x) =φk(xi) ∀k ∈ Fu with 1 ≤ u ≤ s and i = 1, . . . , d, (S54)

and eigenvalues

Λ0 =λ0,Λk,i =
s− u+ 1

d
λk ∀k ∈ Fu with u ≤ s and i = 1, . . . , d. (S55)

Proof. We start by proving the orthonormality of the eigenfunctions. The scalar product 〈Φk,i,Φq,j〉
depends on the relation between the i-th and j-th patches.

∫
[0,1]d

ddxφk(xi)φq(xj)

= δ(k
(s−o)
1 ,0) δ(k

(o)
s−o+1, q

(o)
1 ) δ(q

(s−o)
o+1 ,0), if j ∈ Pi,+, (S56a)

= δ(q
(s−o)
1 ,0) δ(k

(o)
1 , q

(o)
s−o+1) δ(k

(s−o)
o+1 ,0), if j ∈ Pi,−, (S56b)

= δ(k,0) δ(q,0), if j /∈ Pi, (S56c)
= δ(k, q), if j = i. (S56d)

Clearly, 〈Φ0,Φ0〉 = 1 and setting one of q and k to 0 in Eq. (S56) yields orthogonality between Φ0

and Φk,i for all k 6= 0 and i= 1, . . . , d. For any k and q 6= 0, Eq. (S56d) implies

〈Φk,i,Φq,j〉 = δ(k, q)δi,j (S57)

unless k=k
(u)
1 ∈ Fu and q is a shift of k(u). But such a q would have q1 = 0 and there is no

eigenfunction Φq with q1 = 0, apart from Φ0. Hence, orthonormality is proven.

We then prove that eigenfunctions and eigenvalues defined in Eq. (S54) and Eq. (S55) satisfy the
kernel eigenproblem of KLC . For k=0,

∫
[0,1]d

ddy KLC(x,y) =
1

d

d∑
i=1

∫
[0,1]d

ddy
∑
q

λke
iq·(xi−yi) = λ0. (S58)

In general,

∫
[0,1]d

ddy KLC(x,y)eik·yl =
1

d

d∑
i=1

∫
[0,1]d

ddy
∑
q

λqe
iq·(xi−yi)eik·yl

=
1

d

∑
q

λq

δ(k, q)eik·xl +
∑
i/∈Pl

δ(q, 0) δ(k, 0)

+
∑
i∈Pl,+

eiq·xiδ(k
(s−o)
1 ,0) δ(k

(o)
s−o+1, q

(o)
1 ) δ(q

(s−o)
o+1 ,0)

+
∑
i∈Pl,−

eiq·xiδ(q
(s−o)
1 ,0) δ(k

(o)
1 , q

(o)
s−o+1) δ(k

(s−o)
o+1 ,0)

 .

(S59)
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For k ∈ Fu, with u = 1, . . . , s, the deltas which set the first component of k to 0 are never satisfied,
therefore

∫
[0,1]d

ddy KLC(x,y)eik·yl

=
1

d

∑
q

λq

δ(k, q)eik·xl +
∑
i∈Pl,−

eiq·xiδ(q
(s−o)
1 ,0) δ(k

(o)
1 , q

(o)
s−o+1) δ(k

(s−o)
o+1 ,0)

 .

(S60)

The second term in brackets vanishes for k ∈ Fs and the eigenvalue equation is satisfied with
λk,l = λk/d. For k = k

(u)
1 ∈ Fu with u<s, δ(k(s−o)

o+1 ,0) = 1 for any o≥u. As a result of the
remaining deltas, the RHS of Eq. (S60) becomes a sum over all q’s which can be obtained from shifts
of k(u)

1 , which are s−u+ 1 (including k(u)
1 itself). The patch xi which is multiplied by q in the

exponent is also a shift of xl, thus all the factors eiq·xi appearing in the sum coincide with eik
(u)
1 ·xi .

As λq depends on the modulus of q, all these terms correspond to the same eigenvalue, λ
k
(u)
1

, so that∫
[0,1]d

ddy KLC(x,y)eik
(u)
1 ·yl =

(
s− u+ 1

d
λ
k
(u)
1

)
eik

(u)
1 ·xl . (S61)

Finally, we prove the expansion of the kernel in Eq. (S53),

KLC(x,y) =
1

d

∑
i∈P

C(xi,yi) =
∑
k

1

d
λk
∑
i∈P

φk(xi)φk(yi). (S62)

As in the proof of the eigendecomposition of convolutional kernels, all the k having s−u vanishing
extremal components can be written as shifts of k(u)

1 ∈ Fu, which has the last s−u components
vanishing. The shift of k does not affect λk nor the product φk(xi)φk(yi), after summing over i
leading to a degeneracy of eigenvalues which is removed by restricting the sum over k to the sets
Fu, u≤ s, and rescaling the remaining eigenvalues λ

k
(u)
1

with a factor of (s − u + 1)/d, leading
to Eq. (S53).

D Proof of Theorem 4.1

Theorem D.1 (Theorem 4.1 in the main text). Let KT be a d-dimensional convolutional kernel
with a translationally-invariant t-dimensional constituent and leading nonanalyticity at the origin
controlled by the exponent αt> 0. Let KS be a d-dimensional convolutional or local student kernel
with a translationally-invariant s-dimensional constituent, and with a nonanalyticity at the origin
controlled by the exponent αs> 0. Assume, in addition, that if the kernels have overlapping patches
then s ≥ t; whereas if the kernels have nonoverlapping patches s is an integer multiple of t; and that
data are uniformly distributed on a d-dimensional torus. Then, the following asymptotic equivalence
holds in the limit P →∞,

B(P ) ∼ P−β , β = αt/s. (S63)

Proof. For the sake of clarity, we start with the proof in the nonoverlapping-patches case, and then
extend it to the overlapping-patches case. Since KT and KS have translationally-invariant constituent
kernels and data are uniformly distributed on a d-dimensional torus, the kernels can be diagonalised in
Fourier space. Let us start by considering a convolutional student: because of the constituent kernel’s
isotropy, the Fourier coefficients Λ

(s)
k of KS depend on k (modulus of k) only. Notice the superscript

indicating the dimensionality of the student constituents. In particular, Λ
(s)
k is a decreasing function

of k and, for large k, Λk ∼ k−(s+αs). Then, B(P ) reads

B(P ) =
∑

{k|k>kc(P )}

E[|ck|2], (S64)
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where kc(P ) is defined as the wavevector modulus of the P -th largest eigenvalue and E[|ck|2] denotes
the variance of the target coefficients in the student eigenbasis. kc(P ) is such that there are exactly P
eigenvalues with k≤ kc(P ),

P =
∑

{k|k<kc(P )}

1 ∼
∫

dsk

(2π)s
θ(kc(P )− k) =

1

(2π)s
πs/2

Γ(s/2 + 1)
kc(P )s, (S65)

i.e. kc(P ) ∼ P 1/s.

By denoting the eigenfunctions of the student with Φ
(s)
k , the superscript (s) indicating the dimension

of the constituent’s plane waves,

E[|ck|2] =

∫
[0,1]d

ddxΦ
(s)
k (x)

∫
[0,1]d

ddyΦ
(s)
k (y)E[f∗(x)f∗(y)] (S66)

=

∫
[0,1]d

ddxΦ
(s)
k (x)

∫
[0,1]d

ddyΦ
(s)
k (y)KT (x,y).

Decomposing the teacher kernel KT into its eigenvalues Λ
(t)
q and eigenfunctions Φ

(t)
q (y),

E[|ck|2] =

∫
[0,1]d

ddxΦ
(s)
k (x)

∫
[0,1]d

ddyΦ
(s)
k (y)

(
Λ

(t)
0 (S67)

+
s

d

∑
q 6=0

Λ(t)
q

∑
i∈P(t)

φ(t)
q (xi)

∑
j∈P(t)

φ
(t)
q (yj)

)
.

The q = 0 mode of the teacher can give non-vanishing contributions to c0 only, therefore it does
not enter any term of the sum in Eq. (S64). Once we removed the term with q = 0, consider the
y-integral:

Ik(x) =

∫
[0,1]d

ddy

√
s

d

∑
m∈P(s)

φ
(s)
k (ym)

s

d

∑
q 6=0

Λ(t)
q

∑
i∈P(t)

φ(t)
q (xi)

∑
j∈P(t)

φ
(t)
q (yj) (S68)

=
( s
d

) 3
2
∑
q 6=0

Λ(t)
q

∑
i∈P(t)

φ(t)
q (xi)

∑
m∈P(s)

∑
j∈P(t)

∫
[0,1]d

ddy φ
(s)
k (ym)φ

(t)
q (yj).

As all the t-dimensional patches of the teacher must be contained in at least one of the s-dimensional
patches of the student, in the nonoverlapping case we require that s is an integer multiple of t. Then,
each of the teacher patches is entirely contained in one and only one patch of the student. If the
teacher patch yj is not contained in the student patch ym, we can factorise the integration over y into
two integrals over yj and ym. These terms give vanishing contributions to Ik(x) since the integral of
a plane wave over a period is always zero for non-zero wavevectors. Instead, if the teacher patch yj
is contained in the student patch ym, denoting with l the index of the element of ym which coincide
with the first element of yj , we can factorise the student eigenfunctions as follows

φ
(s)
k (ym) = φ

(t)

k
(t)
l

(yj)φ
(s−t)
krk

(t)
l

(ymrj). (S69)

Here k(t)
l denotes the t-dimensional patch of k starting at l and k r k(t)

l the sequence of elements
which are in k but not in k(t)

l . As s is an integer multiple of t, l= l̃× s/t with l̃ = 1, . . . , t. Inserting
Eq. (S69) into Eq. (S68),

Ik(x) =

t∑
l=l̃s/t, l̃=1

δ(k r k(t)
l ,0) Λ

(t)

k
(t)
l

√
s

d

∑
i∈P(t)

φ
(t)

k
(t)
l

(xi). (S70)
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The x-integral of Eq. (S66) can be performed by the same means after expanding Φ
(s)
k as a sum of

s-dimensional plane waves, so as to get,

E[|ck|2] =

t∑
l=l̃s/t, l̃=1

δ(k r k(t)
l ,0) Λ

(t)

k
(t)
l

. (S71)

Therefore, E[|ck|2] is non-zero only for k’s which have at most t consecutive components greater or
equal than zero, and the remaining s− t being strictly zero. Inserting Eq. (S71) into Eq. (S64),

B(P ) =
∑

{k|k>kc(P )}

t∑
l=l̃s/t, l̃=1

δ(k r k(t)
l ,0) Λ

(t)

k
(t)
l

∼
∫ ∞
P 1/s

dkkt−1k−(αt+t) ∼ P−
αt
s . (S72)

When using a local student, the convolutional eigenfunctions in the RHS of Eq. (S66) are replaced by
the local eigenfunctions Φk,i(x) of Eq. (18). Repeating the same computations, one finds

kc ∼
(
P

d/s

) 1
s

, (S73)

E[|ck,i|2] =
s

d

t∑
l=l̃s/t, l̃=1

δ(k r k(t)
l ,0) Λ

(t)

k
(t)
l

. (S74)

As a result,

B(P ) =
∑
i∈P

∑
{k|k>kc(P )}

s

d

t∑
l=l̃s/t, l̃=1

δ(k r k(t)
l ,0) Λ

(t)

k
(t)
l

(S75)

∼
∫ ∞

( P
d/s )

1
s

dkkt−1k−(αt+t) ∼
(
P

d/s

)−αts
. (S76)

As we showed in Appendix C, when the patches overlap the set of wavevectors which index the
eigenvalues is restricted from Zs to the union of theFu’s for u= 0, . . . , s. In addition, the eigenvalues
with k ∈ Fu, 0<u<s, are rescaled by a factor (s− u+ 1)/d. Therefore, in the overlapping case
the eigenvalues do not decrease monotonically with k and B(P ) cannot be written as a sum of over
k’s with modulus k larger than a certain threshold kc. By considering also that, with t≤ s, E[|ck|2]
is non-zero only for k’s which have at most t consecutive nonvanishing components, we have

B(P ) =

t∑
u=0

∑
k∈Fu

E[|ck|2]χ(Λ
(s)
k >ΛP ), (S77)

where ΛP denotes the P -th largest eigenvalue and the indicator function χ(Λ
(s)
k >ΛP ) ensures that

the sum runs over all but the first P eigenvalues of the student. The sets {Fu}u<t have all null
measure in Zt, whereas F t is dense in Zt, thus the asymptotics of B(P ) are dictated by the sum over
F t. When k’s are restricted to the latter set, eigenvalues are again decreasing functions of k and the
constraint Λ

(s)
k >ΛP translates into k >kc(P ). Having changed, with respect to the nonoverlapping

case, only an infinitesimal fraction of the eigenvalues, the asymptotic scaling of kc(P ) with P remains
unaltered and the estimates of Eq. (S72) and Eq. (S74) extend to kernels with nonoverlapping patches
after substituting the degeneracy d/s with |P| = d.

E Asymptotic learning curves with a local teacher

Theorem E.1. LetKT be a d-dimensional local kernel with a translationally-invariant t-dimensional
constituent and leading nonanalyticity at the origin controlled by the exponent αt> 0. Let KS be a

13



d-dimensional local student kernel with a translationally-invariant s-dimensional constituent, and
with a nonanalyticity at the origin controlled by the exponent αs> 0. Assume, in addition, that if the
kernels have overlapping patches then s ≥ t; whereas if the kernels have nonoverlapping patches s
is an integer multiple of t; and that data are uniformly distributed on a d-dimensional torus. Then,
the following asymptotic equivalence holds in the limit P →∞,

B(P ) ∼ P−β , β = αt/s. (S78)

Proof. The proof is analogous to that of Appendix D, the only difference being that eigenfunctions
and eigenvalues are indexed by k and the patch index i. This results in an additional factor of d/s
in the RHS of Eq. (S65). All the discussion between Eq. (S66) and Eq. (S71) can be repeated by
attaching the additional patch index i to all coefficients. Eq. (S72) for B(P ) is then corrected with
an additional sum over patches. The extra sum, however, does not influence the asymptotic scaling
with P .

F Proof of Theorem 6.1

Theorem F.1 (Theorem 6.1 in the main text). Let us consider a positive-definite kernel K with
eigenvalues Λρ,

∑
ρ Λρ < ∞, and eigenfunctions Φρ learning a (random) target function f∗ in

kernel ridge regression (Eq. (3)) with ridge λ from P observations f∗µ = f∗(xµ), with xµ ∈ Rd
drawn from a certain probability distribution. Let us denote withDT (Λ) the reduced density of kernel
eigenvalues with respect to the target and ε(λ, P ) the generalisation error and also assume that

i) For any P -tuple of indices ρ1, . . . , ρP , the vector (Φρ1(x1), . . . ,ΦρP (xP )) is a Gaussian
random vector;

ii) The target function can be written in the kernel eigenbasis with coefficients cρ and
c2(Λρ) =E[|cρ|2], with DT (Λ) ∼ Λ−(1+r), c2(Λ) ∼ Λq asymptotically for small Λ and
r > 0, r < q < r+ 2;

Then the following equivalence holds in the joint P →∞ and λ→ 0 limit with 1/(λ
√
P )→ 0:

ε(λ, P ) ∼
∑

{ρ|Λρ<λ}

E[|cρ|2] =

∫ λ

0

dΛDT (Λ)c2(Λ). (S79)

Proof. In this proof we make use of results derived in [21]. Our setup for kernel ridge regression
correspond to what the authors of [21] call the classical setting. Let us introduce the integral operator
TK associated with the kernel, defined by

(TKf)(x) =

∫
p
(
ddy
)
K(x,y)f(y). (S80)

The trace Tr[TK ] coincide with the sum of K’s eigenvalues and is finite by hypothesis. We define
the following estimator of the generalisation error ε(λ, P ),

R(λ, P ) = ∂λϑ(λ)

∫
p(ddx) (f∗(x)− (Aϑf∗)(x))

2
, (S81)

where ϑ(λ) is the signal capture threshold (SCT) [21] andAϑ =TK(TK+ϑ(λ))−1 is a reconstruction
operator [21]. The target function can be written in the kernel eigenbasis by hypothesis (with
coefficients cρ) and TK has the same eigenvalues and eigenfunctions of the kernel by definition.
Hence,

R(λ, P ) = ∂λϑ(λ)

∞∑
ρ=1

ϑ(λ)2

(Λρ + ϑ(λ))2
|cρ|2 = ∂λϑ(λ)

∫ ∞
0

dΛDT (Λ)c2(Λ)
ϑ(λ)2

(Λ + ϑ(λ))2
, (S82)
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where DT is the reduced density of eigenvalues Eq. (25). We now derive the asymptotics ofR(λ, P )
in the joint P → ∞ and λ → 0 limit, then relate the asymptotics of R to those of ε(λ, P ) via a
theorem proven in [21].

Proposition 3 of [21] shows that for any λ> 0, ∂λϑ(λ)→ 1 and ϑ(λ)→ λ with corrections of order
1/N . Thus, we focus on the following integral,

∫ ∞
0

dΛDT (Λ)c2(Λ)
λ2

(Λ + λ)2
. (S83)

The functions DT (Λ) and c2(Λ) can be safely replaced with their small-Λ expansions Λ−(1+r) and
Λq over the whole range of the integral above because of the assumptions q > r and q≤ r + 2. In
practice, there should be an upper cut-off on the integral coinciding with the largest eigenvalue Λ1,
but the assumption q≤ r + 2 causes this part of the spectrum to be irrelevant for the asymptotics of
the error. In fact, we will conclude that the integral is dominated by the portion of the domain around
λ. After the change of variables y= Λ/λ,

∫ ∞
0

dΛDT (Λ)c2(Λ)
λ2

(Λ + λ)2
= λq−r

∫
dy

yq−1−r

(1 + y)2
, (S84)

where one recognises one of the integral representations of the beta function,

B(a, b) =

∫
dy

ya−1

(1 + y)a+b
=

Γ(a)Γ(b)

Γ(a+ b)
, (S85)

with Γ denoting the gamma function. Therefore,

∫ ∞
0

dΛDT (Λ)c2(Λ)
λ2

(Λ + λ)2
= λq−r

Γ(q − r)Γ(2− q + r)

Γ(2)
. (S86)

It is interesting to notice how the assumptions q > r and q < r+ 2 are required in order to avoid the
poles of the Γ functions in the RHS of Eq. (S86).

We now use Eq. (S86) to infer the asymptotics ofR(λ, P ) in the scaling limit λ→ 0 and P →∞
with 1/(λ

√
P ) → 0. The latter condition implies that λ decays more slowly than (P )−1/2, thus

additional terms stemming from the finite-P difference between ϑ and λ, of order P−1 are negligible
w.r.t. λq−r. The finite-P difference between ∂λϑ, also O(P−1), can be neglected too. Finally,

R(λ, P ) ∼
∫ ∞

0

dΛDT (Λ)c2(Λ)
λ2

(Λ + λ)2
∼ λq−r ∼

∫ λ

0

dΛDT (Λ)c2(Λ). (S87)

Theorem 6 of [21] shows the convergence of ε(λ, P ) towardsR(λ, P ) when P →∞. Specifically,

|ε(λ, P )−R(λ, P )| ≤
(

1

P
+ g

(
Tr[TK ]

λ
√
P

))
R(λ, P ), (S88)

where g is a polynomial with non-negative coefficients and g(0) = 0. With a decaying ridge λ(P )

such that 1/(λ
√
P )→ 0, bothR/P andRg(Tr[TK ]/(λ

√
P )) tend to zero faster thanR itself, thus

the asymptotics of ε(λ, P ) coincide with those ofR(λ, P ) and Eq. (S79) is proven.

Remark The estimate for the exponent β of Corollary 6.1.1 follows from the theorem above with
r= t/(s + αs), q= (αt + t)/(αs + s) and λ ∼ P−γ . Then q > r because αt> 0, whereas the
condition q < r + 2 is equivalent to the assumption αt< 2(αs + s) required in Section 4 in order to
derive the learning curve exponent in Eq. (20) from our estimate of B(P ).
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Figure S1: Learning curves for convolutional teacher and local and convolutional student kernels,
with filter sizes denoted by t and s respectively. Data are sampled uniformly in the hypercube [0, 1]d,
with d = 9 if not specified otherwise. The sample complexity P of the local students is rescaled
with the number of patches to highlight the pre-asymptotic effect of shift-invariance on the learning
curves.

G Numerical experiments

G.1 Details on the simulations

To obtain the empirical learning curves, we generate P + Ptest random points uniformly distributed
in a d-dimensional hypercube or on the surface of a d − 1-dimensional hypersphere embedded in
d dimensions. We use P ∈ {128, 256, 512, 1024, 2048, 4096, 8192} and Ptest = 8192. For each
value of P , we generate a Gaussian random field with covariance given by the teacher kernel, and
we compute the kernel ridgeless regression predictor of the student kernel using Eq. (4) with the
P training samples. The generalisation error defined in Eq. (5) is approximated by computing the
empirical mean squared error on the Ptest unseen samples. The expectation with respect to the target
function is obtained averaging over 128 independent teacher Gaussian processes, each sampled on
different points of the domain. As teacher and student kernels, we consider different combinations of
the convolutional and local kernels defined in Eq. (14a) and Eq. (14b), with Laplacian constituents
C(xi − xj) = e−‖xi−xj‖ and overlapping patches. In particular,

• the cases with convolutional teacher and both convolutional and local students with various
filter sizes are reported in Fig. 1 and Fig. S3 for data distributed in a hypercube and on a
hypersphere respectively;

• the cases with local teacher and both local and convolutional students are reported in Fig. S2
for data distributed in a hypercube.

Experiments are run on NVIDIA Tesla V100 GPUs using the PyTorch package. The approximate
total amount of time to reproduce all experiments with our setup is 400 hours. Code for reproducing
the experiments can be found at https://github.com/fran-cagnetta/local_kernels.

G.2 Additional experiments

Convolutional vs local students In Fig. S1 we report the empirical learning curves for convo-
lutional and local student kernels learning a convolutional teacher kernel, with filter sizes s and t
respectively. Data are uniformly sampled in the hypercube [0, 1]d. By rescaling the sample com-
plexity P of the local students with the number of patches |P| = d, the learning curves of local and
convolutional students overlap, confirming our prediction on the role of shift-invariance. Indeed, the
local student has to learn the same local task at all the possible patch locations, while the convolutional
student is naturally shift-invariant.

Local teacher In Fig. S2 we report the empirical learning curves for a local teacher kernel and
data uniformly sampled in the hypercube [0, 1]d. In panels I and J, also the student is a local kernel
and the same discussion of Section 5 applies. In panel K, the student is a convolutional kernel and
the generalisation error does not decrease by increasing the size of the training set. Indeed, a local
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Figure S2: Learning curves for local teacher and local and convolutional student kernels, with filter
sizes denoted by t and s respectively. Data are sampled uniformly in the hypercube [0, 1]d, with
d = 9 if not specified otherwise. Solid lines are the results of numerical experiments averaged over
128 realisations and the shaded areas represent the empirical standard deviations. The predicted
scaling are shown by dashed lines.

non-shift-invariant function is not on the span of the eigenfunctions of a convolutional kernel, and
therefore the student is not able to learn the target.

Spherical data In Fig. S3 we report the empirical learning curves for convolutional teacher and
convolutional (left panels) and local (right panels) student kernels. Data are restricted to the unit
sphere Sd−1. Panels L-O are the analogous of panels A-D of Fig. 1. Notice that when the filter size
of the student coincides with d (panels P, Q), the learning curves decay with exponent β = 1/(d− 1)
(instead of β= 1/d). Indeed, for data normalised on Sd−1, the spectrum of the Laplacian kernel
decays at a rateO(k−α−(d−1)) with α = 1. However, as the student filter size is lowered, we recover
the exponent 1/s independently of the dimension d of input space, as derived for data on the torus
and shown empirically for data in the hypercube. In fact, we expect that the s-dimensional marginals
of the uniform distribution on Sd−1 become insensitive to the spherical constraint when s� d.

Convolutional NTKs In Fig. S4 we report the empirical learning curves obtained using the NTK
of one-hidden-layer CNNs with ReLU activations, which corresponds to using the kernel ΘFC

defined in Eq. (S14) as the constituent. Since this kernel is not translationally invariant, it cannot be
diagonalised in the Fourier domain, and the analysis of Section 4 does not apply. However, as shown
in panels P-S, the same learning curve exponents β of the Laplacian-constituent case are recovered.
Indeed, ΘFC and the Laplacian kernel share the same nonanalytic behaviour in the origin, and their
spectra have the same asymptotic decay [32]. In Fig. S5 we present the same plots of panels R and
S, but instead of the analytical NTKs, we compute numerically the kernels of randomly-initialised
very-wide CNNs (H ≈ 106).

Real data In Fig. Fig. S6 we report the learning curves of local kernels with Laplacian con-
stituents applied to the CIFAR-10 dataset. We build the tasks by selecting two classes and as-
signing label +1 to data from one class and −1 to data from the other class. As before, we use
P ∈ {128, 256, 512, 1024, 2048, 4096, 8192} and Ptest = 8192. Differently from our assumptions,
image data are strongly anisotropic, and the distance between nearest-neighbour points decays faster
than P−1/d. Indeed, target functions defined on data of this kind are usually not cursed with the
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Figure S3: Learning curves for data uniformly distributed on the unit sphere Sd−1, with d = 10 if not
specified otherwise. The teacher and student filter sizes are denoted with t and s respectively. Solid
lines are the results of numerical experiments averaged over 128 realisations and the shaded areas
represent the empirical standard deviations.

full dimensionality d of the inputs, but rather with an effective dimension deff. deff is related to
the dimension of the manifold in which data lie [4], and may also vary when extracting patches
of different sizes. Nonetheless, as we found in our synthetic setup, the learning curve exponent β
increases monotonically with the filter size of the kernel, strengthening the concept that leveraging
locality is key for performance.
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Figure S4: Learning curves for convolutional NTKs and data uniformly distributed in the hypercube
[0, 1]d (panels R, S) or on the unit sphere Sd−1 (panels T, U). The teacher and student filter sizes are
denoted with t and s respectively. Solid lines are the results of numerical experiments averaged over
128 realisations and the shaded areas represent the empirical standard deviations.
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Figure S5: Learning curves for empirical NTKs of very-wide one-hidden-layer CNNs (H ≈ 106) and
data uniformly distributed in the hypercube [0, 1]d. The teacher and student filter sizes are denoted
with t and s respectively. Solid lines are the results of numerical experiments averaged over 128
realisations and the shaded areas represent the empirical standard deviations.
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Figure S6: Learning curves of local kernels with filters of size s on CIFAR-10 data. Solid lines are
the results of numerical experiments and dashed lines are power laws with exponent β interpolated in
the last decade.
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