A Implementation Details

A.1 Environment

All environments used in this work were implemented using OpenAl Gym [4]. Below, we describe
the MarlGrid Environments in more detail.

FindGoal The game map is a 15 x 15 grid world. On each episode reset, 1 goal tile and 25 obstacle
tiles are randomly placed on the map. Then, 3 agents are randomly placed on the remaining empty
space. Each agent can only observe a 7 x 7 partial view of the map centered on the agent. Each agent
has 5 actions: up, right, down, left, stay. The maximum episode length allowed is 512 time steps.

RedBlueDoors The game map is a 10 x 10 grid world. On each episode reset, 1 blue door and 1
red door are placed at a random position on either the leftmost side or the rightmost side of the map;
the doors must be on opposite sides. Then, 2 agents are randomly placed on the remaining empty
space. Each agent can only observe a 3 x 3 partial view of the map centered on the agent. Each agent
has 6 actions: up, right, down, left, stay, open door. The maximum episode length allowed is 2048
time steps.

A.2 Model

Image Encoder The Image Encoder is a convolutional neural network with 4 convolutional layers.
Each layer has a kernel size of 3, stride of 2, padding of 1, and outputs 32 channels. ELU activation
is applied to each convolutional layer. A 2D adaptive average pooling is applied over the output from
convolutional layers. The final output has 32 channels, a height of 3, and a width of 3.

Communication Autoencoder The Communication Autoencoder takes as input the output from the
Image Encoder. The encoder is a 3-layer MLP with hidden units [128, 64, 32] and ReLU activation.
The decoder is a 3-layer MLP with hidden units [32, 64, 128] and ReLU activation. The output
communication message is a 1D vector of length 10.

Message Encoder The Message Encoder first projects all input messages using an embedding layer
of size 32, then concatenates and passes the message embeddings through a 3-layer MLP with hidden
units [32, 64, 128] and ReL.U activation. Dimension of the output message feature is 128.

Policy Network Each policy network is consisted of a GRU policy with hidden size 128, a linear
layer mapping GRU outputs to policy logits for the environment action, and a linear layer mapping
GRU outputs to the baseline value function.

B Training Details

B.1 Hyperparameters
For all experiments, we use the Adam optimizer [23] with a learning rate of 0.0001 and parameters
B1=10.9, 8y = 0.999, ¢ = 10~8. We perform a sweep over the following values of these hyperpa-

rameter to select the combination that gives rise to best results: (0.01, 0.001, 0.0001, 0.00001) for
learning rate, (0.9, 0.99, 0.995) for 31, (0.995, 0.999) for 35, and (10~7, 10~®) for €.

B.2 Compute Resources

We ran all experiments on an internal cluster that consists of 4 NVIDIA GeForce RTX 2080 Ti GPUs.
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CIFAR RedBlueDoors FindGoal
methods

avg. r 1 avg. r 1 avg. t |
no-comm 0.082 £0.009 0.123 £0.096  169.0 4+ 26.8
fc-comm 0.107 £0.021 0.382 +£0.022 188.3 +33.6
latent-comm-1 0.129 +0.034 0.714 +0.073  160.0 + 13.0
latent-comm-2 0.092 £0.012 0.739 £0.080 228.6 £21.3
full-latent-comm 0.346 + 0.070 0912+ 0.046  111.1 £ 26.1
ae-comm (ours)  0.348 + 0.041  0.984 + 0.002 103.5 + 20.2

Table 3: Comparison with additional baselines. We compute the average reward for CIFAR Game
and RedBlueDoors environments, and average episode length for FindGoal environment. For each
set of results, we report the mean and 95% confidence intervals evaluated on 100 episodes per seed
over 10 random seeds.

C Additional Experiments

C.1 fc-command latent-comm Baselines

In addition to baselines presented in Section 5.2, we added two more baselines: fc-comm and
latent-comm. Below, we describe them in more details, and report comparisons between these
additional baselines and our method (ae-comm) on all three environments in Table 3.

For fc-comm, agents transmit discrete states that take the same form as the autoencoded messages
in ae-comm. These discrete states come from the policy network without autoencoding. For fair
comparison, a fully connected layer is added on top of the policy network states, such that the learned
messages for fc-comm are discretized and have the same shape and range as messages in ae-comm.

For latent-comm, agents transmit latent states from before the policy head as communication
vectors. For fair comparison, for latent-comm we again restrict agents to use the same fixed-size
discrete communication channel (except for full-latent-comm, which we will explain in the next
paragraph). The latent activation vectors in the policy nets are high-dimensional; reducing them to
the size of the communication channel can be achieved in multiple ways. In latent-comm-1, we
do so by reducing the size of the last hidden layer of the policy net so that it matches the size of the
communication channel. In latent-comm-2, we instead use the original policy architecture and
only transmit the first V features of the last hidden layer of the policy net, where NV is the size of the
communication channel. In all cases, we quantize the outputs identically and use a straight-through
estimator [1] to differentiate through the quantization. Their performance is better than fc-comm
baseline; since these latent states are continuously trained with the policy reward, we hypothesize
that they contain more useful and relevant information.

As an “upper bound”, we also compare all methods to full-latent-comm, a method that com-
municates the full, high-dimensional and continuous latent vector from the last hidden layer of
the policy net. As shown in the table, the performance of full-latent-comn is close to that of
ae-comm. Clearly, if agents can directly observe each other’s full internal states, they can coordinate
their behavior well. Our contribution is to show that similar performance can be achieved even
when agents are only allowed to make low-dimensional and discrete utterances — a setting that more
closely models communication in nature and may have greater practical utility (e.g., low-bandwidth
communication channels between robots).

C.2 Training Emergent Communication via Policy Optimization

Making policy optimization work on top of autoencoding is a difficult yet essential problem to solve.
We hypothesize that optimization is harder whenever the joint-exploration problem for learning
speaker and listener policies is introduced. We do not have a solution yet, but our empirical results
can confirm that the solution is not as simple as requiring more training iterations. We have run
training to up to 1 million iterations and did not see an improvement in the result. We have also
tried training the autoencoding component and RL component alternatingly, i.e. freezing one while
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Figure 7: Difficulty of training policy optimization: We tried training the autoencoding component
and RL component alternatingly, i.e. freezing one while training the other until loss stabilizes. The
alternating training is visualized as different segments in this training graph, starting from the segment
trained with autoencoding objective. Performance did not improve after extended training.
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Figure 8: Performance and representation: Both agent performance and autoencoder loss improve
over the course of learning.

training the other until loss stabilizes, yet performance does not improve whenever the RL objective
is optimized. As an example, we include a failed training graph in Figure 7.

C.3 Autoencoder Loss
In Figure 8, we observe that agent task performance improves as representation learning task loss

decreases. In particular, the agent task performance does not improve drastically until representation
task loss is sufficiently low.
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