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A Properties of Meijer-G function

Here we describe the properties of Meijer-G functions which we will use extensively in the following.

The first result concerns the Mellin transform of the Meijer-G function, which will be the key to solve
the integrals that we will face later.

Proposition A.1 ( Mellin transform of the Meijer G function).
� ∞

0

xs−1Gm,n
p,q (wx) = w−s

�m
j=1 Γ(bj + s)

�n
j=1 Γ(1− aj − s)�q

j=m+1 Γ(1− bj − s)
�p

j=n+1 Γ(aj + s)
. (26)

Proof. See Chapter 3.2 and 2.3 of Mathai and Saxena (2006). Conditions of validity: for the class of
Meijer-G functions that we consider here (p, n = 0, m = q = l and the coefficients are all real) the
Mellin transform exists (see Mathai and Saxena (2006), Section 2.3.1).

To establish the base case m = 1, we need the following results.

Proposition A.2. The following identities hold:

• exp(z) = G1,0
0,1

�
−z

����0
�

.

• multiplication by power property: zdGm,n
p,q

�
z| a1 ... ap

b1 ... bq

�
= Gm,n

p,q

�
z| a1+d ... ap+d

b1+d ... bq+d

�
.

Proof. See Chapter 2.6 of Mathai and Saxena (2006) for the first identity. The last property follows
directly from the definition of Meijer-G function.
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To perform the inductive step, we will encounter the following integral, that can be expressed in terms
of the Meijer-G function.

Proposition A.3.

� ∞

1

x−ρ(x− 1)σ−1Gm,n
p,q

�
αx| a1 ... ap

b1 ... bq

�
dx = Γ(σ)Gm+1,n

p+1,q+1

�
α| a1 ... ap ρ

ρ−σ b1 ... bq

�
. (27)

The conditions of validity for the class of Meijer-G that we consider here are again satisfied (see
Appendix B of Stojanac et al. (2017)).

B Proof for Linear Networks and Derivation of their Moments

Here we collect all the results regarding linear networks, establishing the relevant technical Lemmas
to derive the density and calculate the moments of the resulting distribution.

Lemma B.1. The units of any layer are uncorrelated, i.e.

Cov
�
f
(l)
k , f

(l)
k�

�
= 0, (28)

for all layers l, and for all k, k� ∈ [dl]

Proof.

Cov
�
f
(l)
k , f

(l)
k�

�
= Cov




dl−1�

j=1

f
(l−1)
j W

(l)
jk ,

dl−1�

j�=1

f
(l−1)
j� W

(l)
j�k�


 (29)

= E



dl−1�

j=1

f
(l−1)
j W

(l)
jk

dl−1�

j�=1

f
(l−1)
j� W

(l)
j�k�


 (30)

=

dl−1�

j=1

dl−1�

j�=1

E
�
f
(l−1)
j W

(l)
jk f

(l−1)
j� W

(l)
j�k�

�
(31)

=

dl−1�

j=1

dl−1�

j�=1

E
�
f
(l−1)
j f

(l−1)
j�

�
E
�
W

(l)
jk

�
E
�
W

(l)
j�k�

�
(32)

= 0. (33)

However, they are not independent, but only conditionally independent given the previous later’s
units. As a remark, note that as d1 → ∞, the units f (2)

k approach a Gaussian distribution, for which
uncorrelation implies independence.

B.1 Main technical Lemma for induction

Here we prove the main technical Lemma (Lemma 4.2) that allows us to perform the inductive step.
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Lemma. Let f l and f l−1 be a dl-dimensional and a dl−1-dimensional vectors, respectively. Let
σ2
w > 0, σ̃2 > 0 be two variance parameters, and b1, . . . bl−1 ∈ R. Then the following integral:

I :=

�

Rdl−1

1

(||f (l−1)||2) dl
2

e
− ||f(l)||2

2σ2
w||f(l−1)||2 Gl−1,0

0,l−1

� ||f (l−1)||2
2l−1σ̃2

����b1, . . . , bl−1

�
df l−1, (34)

has solution:

I = CGl,0
0,l

� ||f (l)||2
2lσ2

����0,
1

2
(dl−1 − dl) + b1, . . . ,

1

2
(dl−1 − dl) + bl−1

�
, (35)

where σ2 := σ2
wσ̃

2, and C := 1
2 C̃2

1
2 (dl−1−dl)(l−1)σ̃(dl−1−dl), where C̃ is a constant that depends

only on dl−1.

Proof. The proof is based in two steps: in the first steps, we will write the integral in hyper-spherical
coordinates. In the second step, we will apply a useful substitution and the properties of the Meijer-G
function to solve the integral.

1. Hyper-spherical coordinates Apply the following substitution:

f
(l−1)
1 = r cos(γ1) (36)

f
(l−1)
2 = r sin(γ1) cos(γ2) (37)
· · · (38)

f
(l−1)
dl−1

= r sin(γ1) · · · sin(γdl−1−1), (39)

where r ∈ R≥0 is the radius and γ1, . . . γdl−1−2 ∈ [0,π] and γdl−1−1 ∈ [0, 2π]. The Jacobian is:

Jn =




cos(γ1) −r sin(γ1) 0 0 . . . 0
sin(γ1) cos(γ2) r cos(γ1) cos(γ2) −r sin(γ1) sin(γ2) 0 . . . 0

. . . . . . . . .
r sin(γ1) · · · sin(γdl−1−1) r sin(γ1) · · · cos(γdl−1−1)




(40)

, where it can be shown that its determinant is:

|Jn| = rdl−1−1 sindl−1−2(γ1) sin
dl−1−3(γ2) · · · sin(γdl−1−2). (41)

Therefore:

dl−1�

i=1

df
(l−1)
i = rdl−1−1 sindl−1−2(γ1) sin

dl−1−3(γ2) · · · sin(γdl−1−2)drdγ1 · · · dγdl−1−1. (42)

By noting that the integral we are trying to solve depends only on ||f (l−1)||2 = r2, we have that the
density is, up to a normalization constant independent of f (l):

I = C̃

�
rdl−1−dl−1e

− ||f(l)||2
2σ2

wr2 Gl−1,0
0,l−1

�
r2

2l−1σ̃2

����b1, . . . , bl−1

�
dr (43)

= C̃

�
rdl−1−dl−1G1,0

0,1

� ||f (l)||2
2σ2

wr
2

����0
�
Gl−1,0

0,l−1

�
r2

2l−1σ̃2

����b1, . . . , bl−1

�
dr, (44)

where we call C̃ the angular constant due to the integration of the angle-related terms (that do not
depend on r, but only on dl−1). We compute the angular constant in Lemma B.4. In the last step we
have applied the identity between the exponential function and the Meijer-G function as in Proposition
A.2.
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2: Substitution and Meijer-G properties Defining d = 1
2 (dl−1 − dl), and applying the substitu-

tion x = r2

2l−1σ̃2 :

I = C̃

�
(2

l−1
2 σ̃x

1
2 )2d−1G1,0

0,1

� ||f (l)||2
2lσ2

wσ̃
2x

����0
�
Gl−1,0

0,l−1

�
x

����b1, . . . , bl−1

�
2

l−3
2 σ̃x− 1

2 dx (45)

=
1

2
C̃2d(l−1)σ̃2d

�
xd−1G1,0

0,1

� ||f (l)||2
2lσ2

wσ̃
2x

����0
�
Gl−1,0

0,l−1

�
x

����b1, . . . , bl−1

�
dx. (46)

Defining σ2 = σ2
wσ̃

2, a2 := ||f (l)||2
2lσ2 and C := 1

2 C̃2d(l−1)σ̃2d, and expanding the G1,0
0,1 term

according to the definition, we get:

I = C

�
xd−1 1

2πi

�
Γ(s)

�
a2

x

�−s

Gl−1,0
0,l−1

�
x

����b1, . . . , bl−1

�
dsdx (47)

= C
1

2πi

�
Γ(s)a−2s

�
xs+d−1Gl−1,0

0,l−1

�
x

����b1, . . . , bl−1

�
dxds. (48)

where we can change the order of integration due to the fact that the integrand is positive in the
integration region (Tonelli’s theorem). Now by using Proposition A.1, the inner integral has the
following solution:

�
xs+d−1Gl−1,0

0,l−1

�
x

����b1, . . . bl−1

�
dx =

l−1�

i=1

Γ(d+ bi + s) (49)

=

l−1�

i=1

Γ

�
1

2
(dl−1 − dl) + bi + s

�
. (50)

Therefore we can conclude that:

I = C
1

2πi

�
Γ(s)

l−1�

i=1

Γ(
1

2
(dl−1 − dl) + bi + s)a−2sds (51)

= CGl,0
0,l

�
a2
����0,

1

2
(dl−1 − dl) + b1, . . . ,

1

2
(dl−1 − dl) + bl−1

�
(52)

= CGl,0
0,l

� ||f (l)||2
2lσ2

����0,
1

2
(dl−1 − dl) + b1, . . . ,

1

2
(dl−1 − dl) + bl−1

�
, (53)

where we have simply applied the definition of the Meijer-G function.

B.2 Probability Density Function for linear networks

We proof the result on the probability density function for a linear network in the following.

Theorem. Suppose l ≥ 1, and the input has dimension d0. Then, the joint marginal density of the
random vector f (l) (i.e. the density of the l-th layer pre-activations) is proportional to:

p(f (l)) ∝ Gl,0
0,l

� ||f (l)||2
2lσ2

����0,
1

2
(d1 − dl) , . . . ,

1

2
(dl−1 − dl)

�
, (54)

where σ2 =
�l

i=1 σ
2
i .

Proof. We proof by induction. For the base case, consider l = 1. We have shown that

f (1) ∼ N (0,σ2
1I). (55)
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Therefore we can re-write its density as:

p(f (1), . . . f (d)) =
1

(2πσ2
1)

d1
2

exp

�
− ||f (1)||2

2σ2
1

�
(56)

=
1

(2πσ2
1)

d1
2

G1,0
0,1

� ||f (1)||2
2σ2

1

����0
�
, (57)

where we have used the identity between the exponential function and the Meijer-G function (Propo-
sition A.2).

Now let σ̃2 =
�l−1

i=1 σ
2
i . Assume that

p(f
(l)
1 , . . . , f

(l−1)
dl−1

) ∝ Gl−1,0
0,l−1

� ||f (l−1)||2
2l−1σ̃2

����0,
1

2
(d1 − dl−1) , . . . ,

1

2
(dl−2 − dl−1)

�
. (58)

Now we can use the fact that the the units of the l-th layer are conditionally independent given the
previous’ layer units. Furthermore the conditional distribution is Gaussian due to the fact that the
weights are i.i.d Gaussian. Therefore we can write:

p(f
(l)
1 , . . . f

(l)
dl

) =

�

Rdl−1

p(f
(l)
1 , . . . f

(l)
dl

|f (l−1)
1 , . . . f

(l−1)
d1

)p(f
(l−1)
1 , . . . f

(l−1)
d1

)df (l−1) (59)

∝
�

Rdl−1

1

(2π||f (l−1)||2) dl
2

e
− ||f(l)||2

2σ2
l
||f(l−1)||2 (60)

Gl−1,0
0,l−1

� ||f (l−1)||2
2l−1σ̃2

����0,
1

2
(d1 − dl−1) , . . . ,

1

2
(dl−2 − dl−1)

�
df (l−1). (61)

In the first step we have marginalized out the units of the l − 1 layer, and applied the product rule of
probabilities. In the second step we have applied the induction hypothesis.

The integral is in the form of Lemma 4.2. For the coefficients of the Meijer-G function b2 =
1
2 (d1 − dl−1), . . . , bl−1 = 1

2 (dl−2 − dl−1), note that:

1

2
(di − dl−1) +

1

2
(dl−1 − dl) =

1

2
(di − dl) (62)

holds for all i ∈ [dl−2] and clearly b1 + 1
2 (dl−1 − dl) = 1

2 (dl−1 − dl) as b1 = 0 in our case.
Therefore by Lemma 4.2 we can conclude that:

p(f
(l)
1 , . . . f

(l)
dl

) ∝ Gl,0
0,l

� ||f (l)||2
2lσ2

����0,
1

2
(d1 − dl) . . . ,

1

2
(dl−1 − dl)

�
. (63)

B.3 CDF of prior predictive

We also derive the CDF of the linear network in the following theorem and proceed to prove it.

Theorem B.2 (CDF of prior predictive). Let f l be the output of a of a linear network of l layers. We
assume the final layer is one dimensional. Then the the cdf is Fl(t) := 1− P (f l > t), t > 0. We
have that

P (f l > t) =
t

2C
Gl+1,0

1,l+1

�
ωt2

����
1
2

− 1
2 0 b1 ... bl−1

�
, (64)

where bi =
1
2 (di − 1), i ∈ [l − 1], C is the normalization constant and ω = 1

2lσ2 .
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Proof. Let X = f l.

P (X > t) =
1

C

� ∞

t

Gl,0
0,l

�
ωx2

����0, b1, . . . , bl−1

�
dx (65)

=
t

2C

� ∞

1

y−
1
2Gl,0

0,l

�
ωt2y

����0, b1, . . . , bl−1

�
dx (66)

=
t

2C
Gl+1,0

1,l+1

�
ωt2

����
1
2

− 1
2 0 b1 ... bl−1

�
, (67)

where in the first step we have used the result of 4.1, in the second step we have applied the substitution
y = x2

t2 , and in the last step we have used Equation 27 with ρ = 1
2 , σ = 1 and α = ωt2

B.4 Resulting Moments for Linear Networks

Define ω = 1
2lσ2 . Denote by p̃ the unnormalized measure and define the random variable

Z = ||f (l)||22. (68)

We are interested in the k-th moment of Z. Using spherical coordinates and the properties of the
Meijer-G function in a similar way as the proofs above, we get:

E
�
Zk

�
=

1

C

�

Rm

||z||2k2 Gl,0
0,l|

�
ω||z||22

����0,
1

2
(d1 − dl) , . . . ,

1

2
(dl−1 − dl)

�
dz (69)

=
C̃l

C

� ∞

0

r2k+dl−1Gl,0
0,l

�
ωr2

����0,
1

2
(d1 − dl) , . . . ,

1

2
(dl−1 − dl)

�
dr (70)

=
C̃l

2C

� ∞

0

xk+
dl
2 −1Gl,0

0,l

�
ωx

����0,
1

2
(d1 − dl) , . . . ,

1

2
(dl−1 − dl)

�
dx (71)

=
C̃l

2C
ω−k− dl

2

l�

i=1

Γ

�
di
2

+ k

�
(72)

= ω−k

�l
i=1 Γ

�
di

2 + k
�

�l
i=1 Γ

�
di

2

� (73)

=
�
2lσ2

�k l�

i=1

Γ
�
di

2 + k
�

Γ
�
di

2

� . (74)

Note that it can be equivalently written as:

E
�
Zk

�
= (2lσ2)k−1

l�

i=1

�
Γ
�
di

2 + k − 1
�

Γ
�
di

2

�
�
(2lσ2)

l�

i=1

�
di
2

+ k − 1

�
(75)

= E
�
Zk−1

�
σ2

l�

i=1

(di + 2(k − 1)) , (76)

so the kurtosis is:

κ =

�l
i=1 (di + 2(2− 1))

�l
i=1 di

=
l�

i=1

di + 2

di
(77)

If d1 = · · · = dl−1 = m, and dl = 1. For instance the variance (k = 1) is1:

�
2lσ2

��Γ(m2 + 1)

Γ(m2 )

�l−1
Γ(1 + 1

2 )

Γ( 12 )
= (2lσ2)

ml−1

2l−1

1

2
= σ2ml−1. (78)

1By symmetry, all the odd moments are zero
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B.5 Infinite width and depth limit

We also present the infinite-width and infinite-depth result for the linear case. Due to the linear nature,
the proof simplifies significantly compared to the ReLU case.

Lemma B.3. Consider the distribution of the output p(f (L)), as defined in Thm. 4.1. Denote
X ∼ N (0, 1), Y ∼ LN (−γ

2 ,
γ
2 ) and the normal log-normal mixture Z = XY .

For fixed depth L ∈ N, under NTK parametrization , it holds that

pm(f (L))
d−→ X for m −→ ∞ (79)

In contrast, for growing depth L = γm, we have the following convergence of the moments

E
��

f (L)
�2k

�
m−→∞−−−−→ E[Z2k] = eγk(k−1)(2k − 1)!! (80)

where (2k − 1)!! = (2k − 1) . . . 3 · 1 denotes the double factorial.

Proof. Recall that the moments of ||f (l)||2 are given by

E
�
||f (l)||2k2

�
=
�
2lσ2

�k l�

i=1

Γ
�
di

2 + k
�

Γ
�
di

2

� , (81)

where σ2 =
�l

i=1 σ
2
i . Assuming d1 = . . . dl−1 = m and dl = 1 and the NTK parametrization

σ2
1 = 1 and σ2

2 = · · · = σ2
l = 1

m simplifies this to

E
��

f (l)
�2k

�
=

�
2l

ml−1

�k
Γ(m2 + k)l−1

Γ(m2 )
l−1

Γ( 12 + k)

Γ( 12 )
(82)

=

�
2l

ml−1

�k
Γ(m2 + k)l−1

Γ(m2 )
l−1

2−k(2k − 1)!! (83)

=

�
2k

mk

Γ(m2 + k)

Γ(m2 )

�l−1

(2k − 1)!! (84)

=

�
2k

mk

�m
2

+ k − 1
�
. . .

�m
2

+ 1
� m

2

�l−1

(2k − 1)!!. (85)

Define the k-th order polynomial p(m) =
�
m
2 + k − 1

�
. . .

�
m
2 + 1

�
m
2 . Denote its coefficients by

αi for i = 1, . . . , k. We know that αk = 1
2k

and from Lemma C.3 that

αk−1 =
1

2k−1

k�

i=1

(k − i) =
1

2k−1

�
k2 − k(k + 1)

2

�
=

k2 − k

2k
. (86)

Assuming constant depth, performing the division by mk thus leads to
�
2k
�
αk + αk−1

1

m
+ · · ·+O

�
1

m2

���l−1

(2k − 1)!!

=

�
1 +

k(k − 1)

m
+O

�
1

m2

��l−1

(2k − 1)!!

=

�
1 +

(l − 2) ((k − 1)k)

m
+O

�
1

m2

��
(2k − 1)!!.

(87)

Now we can easily see that

E
��

f (l)
�2k

�
m−→∞−−−−→ (2k − 1)!!. (88)
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Recall that for X ∼ N (0, 1) we have the same moments ∀k ∈ N: E
�
X2k

�
= (2k − 1)!!, whereas

the odd moments vanish for both distributions due to symmetry. The convergence of the moments,
due to Billingsley (1986) and the identifiability of the Gaussian distribution implies convergence in
distribution.

On the other hand, if we assume that depth grows proportional to width, i.e. l − 1 = γm for γ > 0,
we arrive at a different limit given by

�
1 +

k(k − 1)

m
+O

�
1

m2

��γm

(2k − 1)!!
m−→∞−−−−→ eγk(k−1)(2k − 1)!!. (89)

Consider the random variable Z = XY where X ∼ N (0, 1) and Y ∼ LN (s, t2) are two independent
variables. For k ∈ N, we can compute the moments as

E [Zn] = E [XnY n] = E [Xn]E [Y n] =

�
0 n odd
(2k − 1)!!e2ks+2k2t2 n = 2k

(90)

Choosing s = −γ
2 and t2 = γ

2 hence recovers the moments exactly.

B.6 Normalization Constant and Angular Constant

We complete the picture by calculating the normalization constant of the resulting distribution.

Lemma B.4 (normalization constant). Under the conditions of Theorem 4.1, the normalization
constant C for the density of the l-th layer can be computed as:

C =
1

2
C̃l

�
1

2lσ2

�− dl
2

l�

i=1

Γ

�
di
2

�
, (91)

or, expanding C̃l according to Lemma B.5:

π
dl
2

Γ
�
dl

2

�
�

1

2lσ2

�− dl
2

l�

i=1

Γ

�
di
2

�
. (92)

proof of lemma B.4. The normalization constant has the following form:

C =

�

Rdl

p̃(f (l))df (l) =

�

Rdl

Gl,0
0,l

� ||f (l)||2
2lσ2

����0,
1

2
(d1 − dl) . . . ,

1

2
(dl−1 − dl)

�
df (l) (93)

= C̃l

� ∞

0

rdl−1Gl,0
0,l

�
r2

2lσ2

����0,
1

2
(d1 − dl) . . . ,

1

2
(dl−1 − dl)

�
dr (94)

=
1

2
C̃l

� ∞

0

x
dl
2 −1Gl,0

0,l

�
x

2lσ2

����0,
1

2
(d1 − dl) . . . ,

1

2
(dl−1 − dl)

�
dx (95)

=
1

2
C̃l

�
1

2lσ2

�− dl
2

l�

i=1

Γ

�
di
2

�
, (96)

where we used spherical coordinates and the substitution x = r2. We denote the angular constant by

C̃l, and according to Lemma B.5 has solution: C̃l =
2π

dl
2

Γ(
dl
2 )

.
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B.7 Angular constant

Lemma B.5. The angular constant:

C̃l =

� 2π

0

dγdl−1

� π

0

sindl−2(γ1)dγ1

� π

0

sindl−3(γ2)dγ2· · ·
� π

0

sin(γdl−2)dγdl−2 (97)

has solution:

C̃l =
2π

dl
2

Γ
�
dl

2

� . (98)

Proof. The angular constant C̃l can be calculated as follows (for dl ≥ 2):

C̃l =

� 2π

0

dγdl−1

� π

0

sindl−2(γ1)dγ1

� π

0

sindl−3(γ2)dγ2· · ·
� π

0

sin(γdl−2)dγdl−2

= 2π

dl−2�

k=1

� π

0

sindl−k−1(γk)dγk

= 2π

dl−2�

k=1

Γ(dl − k − 1)

2dl−k−1Γ
�
dl−k−1

2

�
Γ
�
dl−k−1

2 + 1
� (2π)

=
(2π)dl−1

2
1
2 (dl−2)(dl−1)

dl−2�

k=1

Γ(dl − k − 1)

Γ
�
dl−k−1

2

�
Γ
�
dl−k−1

2 + 1
� ,

where we have used Lemma B.6 to compute the integrals. If dl = 1, then there is no need to write the
integral in spherical coordinates and we can simply set C̃ = 1.

Now we can apply the Legendre duplication formula:

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z) (99)

to the numerator term 2z = dl − k − 1 and get:

C̃l =
(2π)dl−1

π
dl−2

2 2
1
2 (dl−2)(dl−1)

dl−2�

k=1

✘✘✘✘✘
Γ
�
dl−k−1

2

�
Γ(dl−k−1

2 + 1
2 )2

dl−k−2

✘✘✘✘✘
Γ
�
dl−k−1

2

�
Γ
�
dl−k−1

2 + 1
� . (100)

Note that that the product:
dl−2�

k=1

Γ(dl−k−1
2 + 1

2 )

Γ
�
dl−k−1

2 + 1
� =

Γ(dl−1
2 )

Γ(dl

2 )
· Γ(

dl−2
2 )

Γ(dl−1
2 )

· · · 1

Γ( 12 )
=

1

Γ(dl

2 )
(101)

Finally, we have the product
dl−2�

k=1

2dl−k−2 = 2dl(dl−2)− (dl−2)(dl−1)

2 −2(dl−2), (102)

from which we can conclude, after some elementary algebraic manipulations:

C̃l =
2π

dl
2

Γ
�
dl

2

� . (103)

Finally we prove the technical Lemma that we used in the previous proof.

Lemma B.6. � π

0

sink(x)dx =
Γ(k)

2kΓ
�
k
2

�
Γ
�
k
2 + 1

� (2π). (104)
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Proof. By integrating by parts, and using some algebraic manipulation, it is easy to see that:
�

sink(x)dx = −1

k
sink−1 x cosx+

k − 1

k

�
sink−2 xdx. (105)

Evaluating the integral between 0 and π, we get:
� π

0

sink(x)dx =
k − 1

k

� π

0

sink−2 xdx. (106)

By unrolling the recursion:
� π

0

sink(x)dx =
(k − 1)(k − 3) · · ·

k(k − 2) · · ·

�� π

0
dx = π if k is even� π

0
sin(x)dx = 2 if k is odd

. (107)

The following expression includes both the even and the odd case:
� π

0

sink(x)dx =
Γ(k)

2kΓ
�
k
2

�
Γ
�
k
2 + 1

� (2π) (108)

In fact, if k is even, then:

Γ(k)

2kΓ
�
k
2

�
Γ
�
k
2 + 1

� (2π) = (k − 1)(k − 2) · · ·
2k k

2 (
k
2 − 1)2(k2 − 2)2 · · · (2π)

=
(k − 1)(k − 3) · · ·

k(k − 2) · · · π

If k is odd, we use the identity:

Γ

�
k

2

�
=

(k − 2)!!
√
π

2
k−1
2

, (109)

where k!! is the double factorial. Following a very similar procedure, we get the desired result.

Important Remark: In the ReLU case, we will see that that the integral is from 0 to π
2 . In that

case, we get:
� π

2

0

sink(x)dx =
Γ(k)

2kΓ
�
k
2

�
Γ
�
k
2 + 1

�π. (110)

Therefore the angular constant is:

C̃l =

� π
2

0

dγdl−1

� π
2

0

sindl−2(γ1)dγ1

� π
2

0

sindl−3(γ2)dγ2· · ·
� π

2

0

sin(γdl−2)dγdl−2 (111)

=
π

2

dl−2�

k=1

� π
2

0

sindl−k−1(γk)dγk (112)

=
πdl−1

2

dl−2�

k=1

1

2dl−k−1

Γ(dl − k − 1)

Γ
�
dl−k−1

2

�
Γ
�
dl−k−1

2 + 1
� (113)

=
πdl−1

2π
dl−2

2

dl−2�

k=1

Γ(dl−k−1
2 + 1

2 )2
−1

Γ
�
dl−k−1

2 + 1
� (114)

=
πdl−1

2π
dl−2

2

2−(dl−2)

Γ(dl

2 )
(115)

=
π

dl
2

2dl−1Γ(dl

2 )
. (116)
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B.8 Kurtosis of Linear Networks

Using the closed form expressions from Section B.4, we can describe the kurtosis of the output f (l)

as

κlin :=
3σ2l

w (m+ 2)l−1

σ2l
wml−1

= 3

�
m+ 2

m

�l−1

. (117)

In particular, the distribution is always more heavy-tailed than a Gaussian, for which κ = 3 (i.e. the
distribution is leptokurtic). The second obvious conclusion is that depth increases the heavy-tailedness
exponentially, which is in-line with the theoretical results of (Vladimirova et al., 2019). On the
contrary, the width has the effect of "normalizing" the distribution, in particular in the limit of large
width we have that:

lim
m→∞

κ = 3, (118)

which is the kurtosis of the Gaussian distribution, as anticipated from Lemma B.3.

C Proofs for ReLU networks and Derivation of their Moments

Now, we extend these results to ReLU networks. We need the following additional notation: we call

δ(x − x0) the Dirac delta function centered at x0, and �A :=

�
1 x ∈ A

0 else
the indicator function.

Also, we indicate with S the set of indices 1, . . . , d that index d random variables, and with Ω its
power set, i.e. the set of all possible subsets of S. Note that |Ω| = 2d. We will use the following
lemma, which explains what happens to a joint density when the marginals are transformed by the
ReLU function.

C.1 Effect of ReLU activation function on the joint density

Lemma C.1. Let p(f1, . . . fd) be the joint density of the d random variables f1, . . . fd.a Assume
p(f1, . . . fd) is symmetric around zero. When we apply the transformation gi = ReLU(fi) to each
i ∈ [d], then the joint density of the transformed variables has the following form:

pReLU(g1, . . . gd) =
�

A∈Ω

1

2|A| p(gS\A)
�

j∈S\A
�gj>0

�

i∈A

δ(gi), (119)

where p(gS\A) is the marginal density of the random variables whose indexes are in S \A.

aWe use the same notation for the random variable and the corresponding dummy variable in the density
function.

Proof. Again we use conditional independence: the activations g1, . . . , gd are independent given the
pre-activations f1, . . . , fd. So we can write:

pReLU(g1, . . . , gd) =

�

Rd

p(g1, . . . , gd|f1, . . . , fd)p(f1, . . . , fd)df (120)

=

�

Rd

d�

i=1

p(gi|fi)p(f1, . . . , fd)df . (121)

Now, p(gi|fi) =
�
δ(gi) fi < 0

δ(gi − fi) fi ≥ 0
= δ(gi)�fi<0 + δ(gi − fi)�fi≥0. So we can write:
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pReLU(g1, . . . , gd) =

�

Rd

d�

i=1

(δ(gi)�fi<0 + δ(gi − fi)�fi≥0) p(f1, . . . , fd)df (122)

=

�

Rd

d�

i=1

(δ(gi)�fi<0 + δ(gi − fi)�fi≥0) p(f1, . . . , fd)df (123)

=

�

Rd

�

A∈Ω


�

i∈A

δ(gi)�fi<0

�

j∈S\A
δ(gj − fj)�fj≥0


 p(f1, . . . , fd)df (124)

=
�

A∈Ω

�

R|A|
<0

�

Rd−|A|

�

i∈A

δ(gi)
�

j∈S\A
δ(gj − fj)�fj≥0p(f1, . . . , fd)df (125)

=
�

A∈Ω

�

i∈A

δ(gi)

�

R|A|
<0

�

Rd−|A|

�

j∈S\A
δ(gj − fj)�fj≥0p(f1, . . . , fd)df (126)

=
�

A∈Ω

�

i∈A

δ(gi)

�

R|A|
<0

p(fA, gS\A)dfA

�

j∈S\A
�gj>0 (127)

=
�

A∈Ω

1

2|A|
�

i∈A

δ(gi)p(gS\A)
�

j∈S\A
�gj>0, (128)

where in the second to last step we have used the well known property of the Delta function�∞
−∞ f(x)δ(x− x0)dx = f(x0) and in the last step we used the fact that the density p is symmetric

around 0.

C.2 Proof of Theorem 4.3

Theorem. Suppose l ≥ 2, and the input has dimension d0. Define the multi-index set R =
[d1]× · · · × [dl−1] and introduce the vector ur ∈ Rl−1 through its components ur

i = 1
2 (ri − dl).

p(f
(l)
ReLU) =

�

r∈R
qrG

l,0
0,l

�
||f (l)

ReLU||2
2lσ2

����0,ur

�
+ q0δ(f

(l)
ReLU), (129)

where σ2 =
�l

i=1 σ
2
i and the individual weights are given by

qr = π− dl
2 2−

l
2dl(σ2)−

dl
2

l−1�

i=1

�
di
ri

�
1

2diΓ
�
ri
2

� , (130)

and

q0 = 1−
l−1�

i=1

2di − 1

2di
(131)

Proof. Before starting the proof, note that there is a special case the has to be handled separately: the
case in which all units are inactive, i.e., the ReLU activation sets to zero all the pre-activation in a
layer. This will be handled at end of the proof. First, let’s assume that there is at least one active unit
per layer.

The proof is again by induction. The base case (l = 2) is stated in Lemma C.2. For the general
case, we use again an identical approach as in Theorem 4.1. We expand the coefficients and
write clrl :=

�
dl

rl

�
1

2dlΓ
�

dl−rl
2

� , where l > 0 is the layer index. Induction step: assume that the
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pre-nonlinearities have the following form:

p(f
(l−1)
1 , . . . , f

(l−1)
dl−1

) =

d1−1�

r1=0

c1r1 · · ·
dl−2−1�

rl−2=0

cl−2
rl−2

π− dl−1
2 2−

(l−1)dl−1
2 (σ̃2)−

dl−1
2 (132)

Gl−1,0
0,l−1

� ||f (l−1)||2
2l−1σ̃2

����0,
1

2
(d1 − r1 − dl−1) , . . . ,

1

2
(dl−2 − rl−2 − dl−1)

�
,

(133)

where σ̃2 =
�l−1

i=1 σ
2
i . We know from Lemma C.1, that the activations g(l−1)

1 , . . . , g
(l−1)
dl−1

have the
following density:

pReLU(g
(l−1)
1 , . . . , g

(l−1)
dl−1

) =
�

A∈Ω

1

2|A|
�

i∈A

δ(g
(l−1)
i )p(g

(l−1)
S\A )

�

j∈S\A
�gj>0 (134)

=
�

A∈Ω

1

2|A|

d1−1�

r1=0

c1r1 · · ·
dl−2−1�

rl−2=0

cl−2
rl−2

π− dl−1
2 2−

(l−1)dl−1
2 (σ̃2)−

dl−1
2

(135)

Gl−1,0
0,l−1


 ||g(l−1)

S\A ||2

2l−1σ̃2

����0,
1

2
(d1 − r1 − dA) , . . . ,

1

2
(dl−2 − rl−2 − dA)




(136)
�

i∈A

δ(g
(l−1)
i )

�

j∈S\A
�gj>0, (137)

where dA := |S \A| = dl−1 − |A|. Also, here we abuse the notation and consider that S is not in the
power set, i.e., S �∈ Ω. This is to be consistent with the fact that we are handling the case in which at
least one unit is active after the ReLU activation is applied. Now following a similar procedure as in
Lemma C.2, we have

p(f
(l)
1 , . . . f

(l)
dl

) =

�

Rdl−1
≥0

p(f
(l)
1 , . . . f

(l)
dl

|g(l−1)
1 , . . . g

(l−1)
d1

)pReLU(g
(l−1)
1 , . . . g

(l−1)
d1

)dg(l−1), (138)

which is equal to:

�

Rdl−1
≥0

1

(2πσ2
l ||g(l−1)||2) dl

2

e
− ||f(l)||2

2σ2
l
||g(l−1)||2

�

A∈Ω

1

2|A|

d1−1�

r1=0

c1r1 · · ·
dl−2−1�

rl−2=0

cl−2
rl−2

(139)

π− dl−1−|A|
2 2−

(l−1)(dl−1−|A|)
2 (σ̃2)−

dl−1−|A|
2 (140)

Gl−1,0
0,l−1


 ||g(l−1)

S\A ||2

2l−1σ̃2

����0,
1

2
(d1 − r1 − dA) , . . . ,

1

2
(dl−2 − rl−2 − dA)


 (141)

�

i∈A

δ(g
(l−1)
i )

�

j∈S\A
�gj>0dg

(l−1) (142)

=
�

A∈Ω

π− dl−1−|A|
2 2−

(l−1)(dl−1−|A|)
2 (σ̃2)−

dl−1−|A|
2

2|A|(2πσ2
l )

dl
2

d1−1�

r1=0

c1r1 · · ·
dl−2−1�

rl−2=0

cl−2
rl−2

(143)

�

Rdl−1
>0

1

(||g(l−1)
S\A ||2) dl

2

e
− ||f(l)||2

2σ2
l
||g(l−1)

S\A ||2 (144)

Gl−1,0
0,l−1


 ||g(l−1)

S\A ||2

2l−1σ̃2

����0,
1

2
(d1 − r1 − dA) , . . . ,

1

2
(dl−2 − rl−2 − dA)


 dg

(l−1)
S\A (145)
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For each set A we have a (dl−1 − |A|)- dimensional integral that can be solved using once again
Lemma 4.2 2. Note that for the new Meijer-G coefficients of Lemma 4.2:

1

2
(di − ri − dl−1 + |A|) + 1

2
(dl−1 − |A|− dl) =

1

2
(di − ri − dl) (146)

holds for all i ∈ [dl−2]. Therefore the solution of each integral is equal to

1

2
C̃A2

1
2 (dl−1−|A|−dl)(l−1)σ̃(dl−1−|A|−dl) (147)

Gl,0
0,l

� ||f (l)||2
2lσ̃2

����0,
1

2
(d1 − r1 − dl) , . . . ,

1

2
(dl−1 − rl−1 − dl)

�
. (148)

The new coefficient for every set A is:

cA =
π− dl−1−|A|

2 2−
(l−1)(dl−1−|A|)

2 (σ̃2)−
dl−1−|A|

2

2|A|(2πσ2
l )

dl
2

1

2
C̃A2

1
2 (dl−1−|A|−dl)(l−1)σ̃(dl−1−|A|−dl) (149)

=
✘✘✘✘✘
π− dl−1−|A|

2

✭✭✭✭✭✭✭✭✭✭✭✭✭
2−

(l−1)(dl−1−|A|)
2 (σ̃2)−

dl−1−|A|
2

✟✟2|A|(2πσ2
l )

dl
2

1

✁2

✘✘✘✘✘
π

dl−1−|A|
2

2dl−1−✚✚|A|− ✄1Γ
�

dl−1−|A|
2

� (150)

C̃A2
1
2 (✘✘✘✘dl−1−|A|−dl)(l−1)σ̃(✘✘✘✘dl−1−|A|−dl) (151)

=
π− dl

2 2−
ldl
2 (σ2)−

dl
2

2dl−1Γ
�

dl−1−|A|
2

� (152)

Therefore, because the dependence on A is only through its cardinality rl−1
l−1 := |A|, we define:

cl−1
rl−1

:=

�
dl−1

rl−1

�
1

2dl−1Γ
�

dl−1−rl−1

2

� (153)

So the solution is:

p(f
(l)
1 , . . . , f

(l)
dl

) =

d1−1�

r1=0

c1r1 · · ·
dl−1−1�

rl−1=0

cl−1
rl−1

π− dl
2 2−

ldl
2 (σ2)−

dl
2 (154)

Gl,0
0,l

� ||f (l)||2
2lσl

����0,
1

2
(d1 − r1 − dl) , . . . ,

1

2
(dl−1 − rl−1 − dl)

�
. (155)

The final form of this equation stated in the theorem is obtained by grouping all the coefficients not
involving the Meijer-G function, and substituting ri ← di − ri and use the property

�
di

ri

�
=
�

di

di−ri

�
.

Special case: all units are inactive If at least in one layer it happens that all post-activations
are zero, then the distribution of the network is a point mass at 0. Let’s call this event E, and its
probability q0. The probability of its complement Ē is the probability that for all the intermediate
layers, at least one unit is active. These are l − 1 independent events, the probability of each being
2di−1
2di

(one unit is active in 2di − 1 cases out of the all possible combinations of units). Therefore we
can conclude that:

q0 = 1−
l−1�

i=1

2di−1

2di
(156)

2see proof of Lemma C.2 for a small but important detail of this integral
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C.3 Base case for ReLU nets

Lemma C.2 (second layer pre-activations density). Let σ = σ1σ2. Conditioned on the event that at
least one unit of the first layer is active (g(1)j �= 0 for at least one j ∈ [d1]), the density of the second

layer’s pre-activations f (2)
1 , . . . f

(2)
d2

is the following linear combination of Meijer-G functions:

p(f(2)1 ) =

d1−1�

r=0

cr2
−d2(σ2)−

d2
2 π

−d2
2 G2,0

0,2

� ||f (2)||2
4σ2

����0,
1

2
((d1 − r)− d2)

�
+ q0δ(f

(2)
1 ), (157)

where cr :=
�
d1

r

�
1

2d1Γ( d1−r
2 )

and q0 := 1− 2d1−1

2di
.

Proof.

p(f
(2)
1 , . . . f

(2)
d2

) =

�

Rd1
≥0

p(f
(2)
1 , . . . f

(2)
d2

|g(1)1 , . . . g
(1)
d1

)pReLU

�
g
(1)
1 , . . . g

(1)
d1

�
dg(1) (158)

=

�

Rd1
≥0

d2�

k=1

p(f
(2)
k |g(1))

d1�

k�=1

pReLU

�
g
(1)
k�

�
dg(1) (159)

=

�

Rd1
≥0

1

(2πσ2
2 ||g(1)||2) d2

2

exp

�
− ||f (2)||2
2σ2

2 ||g(1)||2
�
· (160)

�

A∈Ω

1

2|A|
�

i∈A

δ(g
(1)
i )

1

(2πσ2
1)

d1−|A|
2

exp

�
−
�

i∈S\A(g
(1)
i )2

2σ2
1

� �

i∈S\A
�
g
(1)
i >0

dg(1)

(161)

=
�

A∈Ω

1

2|A|
1

(2πσ2
1)

d1−|A|
2 (2σ2

2)
d2
2

�

Rd1
≥0

1

(||g(1)||2) d2
2

exp

�
− ||f (2)||2
2σ2

2 ||g(1)||2
�

(162)

�

i∈A

δ(g
(1)
i ) exp

�
−
�

i∈S\A(g
(1)
i )2

2σ2
1

� �

i∈S\A
�
g
(1)
i >0

dg(1), (163)

where we can exchange sum and integration due to non-negativeness of the integration variables
(Tonelli’s theorem). Also, here we abuse the notation and consider that S is not in the power set,
i.e., S �∈ Ω. This is to be consistent with the fact that we are conditioning on the event in which at
least one unit is active after the ReLU activation is applied in the first layer. Now we can use the
property of the delta function

�
f(x)δ(x− x0)dx = f(x0) and the property of the indicator function�

A
f(x)�x∈Bdx =

�
B
f(x)dx and get:

�

A∈Ω

1

2|A|
1

(2πσ2
1)

d1−|A|
2 (2σ2

2)
d2
2

(164)

�

Rd1
>0

1

(||g(1)
S\A||2)

d2
2

exp


− ||f (2)||2

2σ2
2 ||g

(1)
S\A||2


 exp


−

||g(1)
S\A||2

2σ2
1


 dg

(1)
S\A. (165)

Note that the above integral is (d1−|A|) dimensional due to the effect of the delta. Now the integral(s)
above can be solved in an equivalent manner as in the previous section using Lemma 4.23, and they
are equal to

1

2
C̃A(2σ

2
1)

1
2 (d1−|A|−d2)G2,0

0,2

� ||f (2)||2
4σ2

����0,
1

2
((d1 − |A|)− d2)

�
(166)

3Note that the integral is only for the positive reals. Lemma 4.2 can still be used because when switching to
spherical coordinates, we are interested in the radius part, while the angular constant can still be calculated, but
now we the angles are all from 0 to π

2
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So we can conclude that:

p(f
(2)
1 , . . . f

(2)
d2

) =
�

A∈Ω

1

2|A|
1

2
C̃A(2σ

2
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1
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(2πσ2
1)

d1−|A|
2 (2σ2
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2

(167)

G2,0
0,2

� ||f (2)||2
4σ2

����0,
1

2
((d1 − |A|)− d2)

�
(168)

= π− d1
2

d1−1�

r=0

�
d1
r

�
C̃r

2r+1(2σ2
1)

d2
2 (2σ2

2)
d2
2 π

−r+d2
2

(169)

G2,0
0,2

� ||f (2)||2
4σ2

����0,
1

2
((d1 − r)− d2)

�
, (170)

where we have used the fact that the expression depends on the set A ∈ Ω only through |A|, and
therefore we can use the fact that the number of subsets with r elements is given by the binomial
coefficient

�
d1

r

�
. Define:

cr :=

�
d1
r

�
π− d1

2
C̃r

2r+1
π

r
2 (171)

=

�
d1
r

�
π− d1

2
π

d1−r
2

2d1−r−1Γ
�
d1−r

2

� 1

2r+1
π

r
2 (172)

=

�
d1
r

�
1

2d1Γ
�
d1−r

2

� . (173)

So we can conclude:

p(f
(2)
1 , . . . f

(2)
d2

) =

d1−1�

r=0

cr2
−d2(σ2)

−d2
2 π

−d2
2 G2,0

0,2

� ||f (2)||2
4σ2

����0,
1

2
((d1 − r)− d2)

�
. (174)

Finally, there is the special case where all the units are inactive (set to zero). This happens with
probability q0 = 1−2di−1

2di
.

Remark Any non empty subset of d < d2 units has the same distribution (with terms involving d2
replaced by d).

C.4 Resulting moments

Let dl = 1, d1, . . . , dl−1 = m, and bi =
1
2 (ri − 1), i = 1, . . . , l − 1.

E
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(175)
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For instance, for the variance (k = 1) the sum becomes:

m�

r1=1

c1r1 · · ·
m�

rl−1=1

�
m

rl−1

�
1

2mΓ
� rl−1

2

�
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2
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�
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2
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(176)

=

m�

r1=1

�
m

r1

�
r1

2m+1
· · ·

m�

rl−1=1

�
m

rl−1

�
rl−1

2m+1
. (177)

Now each sum can be solved independently:
m�

ri=1

�
m

ri

�
ri

2m+1
=

1

2m+1

�
m�

ri=1

�
m

ri

�
ri

�
(178)

=
1

2m+1

�
m2m−1

�
(179)

=
m

4
. (180)

Therefore the variance is:

V[Z] = π− 1
2 2

l
2 (σ2)−

1
2

�
1

2lσ2

�−1− 1
2

Γ

�
1 +

1

2

�
ml−1

22(l−1)
(181)

=
1

2
2

l
2 (σ2)−

1
2

�
1

2−
3
2 l(σ2)−

3
2

�
ml−1

22(l−1)
(182)

=
1

2
2lσ2 ml−1

22(l−1)
(183)

=
σ2ml−1

2l−1
. (184)

Note how the variance of a ReLU net is significantly reduced if compared with the variance of a
linear network of the same depth (compare with Eq. 78). Similarly, one can get the fourth moment:

E[Z4] =
3(σ2)2(m+ 5)l−1ml−1

22(l−1)
. (185)

Therefore the kurtosis is:

κ = 3

�
m+ 5

m

�l−1

. (186)

Note how ReLU nets are more heavy-tailed than linear nets.

To calculate the asymptotic moments we need three technical Lemmas that express the quantities
encountered in a better form. First we describe the coefficients of a factorized polynomial:
Lemma C.3. Consider coefficients a1, . . . , am ∈ R. Define the polynomial

p(x) =

m�

i=1

(x+ ai) =
m�

i=1

αix
i. (187)

Then it holds that αm = 1 and αm−1 =
�m

i=1 ai.

Next we use Lemma C.3 to write the ratio of Gamma functions as a polynomial:
Lemma C.4. Fix k ∈ N and x ∈ R. Then we can express the fraction of Gamma functions as
follows:

Γ(k + x
2 )

Γ(x2 )
= Pk(x) =

k�

i=0

αix
i, (188)

where Pk is a k-th order polynomial with coefficients αk = 2−k and αk−1 = k2−k
2k

.
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Proof. The leading coefficient can easily be obtained from multiplying together the terms m
2 . From

Lemma C.3 we conclude that

αk−1 =
1

2k−1

k�

i=1

(k − i) =
1

2k−1

�
k2 − k(k + 1)

2

�
=

k2 − k

2k
. (189)

Next we need to control the sums involving the factorials. Since we just expressed the ratio of Gamma
functions as a polynomial, we essentially need to know how to control sums of the type

1

2m

m�

r=1

�
m

r

�
rk, (190)

which amounts to controlling the moments of a binomial distribution with fault probability p = 1
2 .

We do this as follows:
Lemma C.5. Fix k,m ∈ N. Then we can express the following sum as a polynomial ∀k ∈ N:

1

2m

m�

r=0

�
m

r

�
rk =

m

2k
Qk−1(m). (191)

where Qk−1 is a k − 1-th order polynomial. Moreover, writing Ql in monomial basis

Ql(m) =

l�

i=0

αim
i, (192)

it holds that αl = 1 and αl−1 = l(l+1)
2 ∀l ∈ N.

Proof. For a proof of the recursion, we refer to Boros and Moll (2004); Benyi (2005). Moreover the
polynomials satisfy the recursion

Qk(m) = 2mQk−1(m)− (m− 1)Qk−1(m− 1). (193)

Denote by α(k) the coefficients of Qk, so α
(k)
0 , . . . ,α

(k)
k . Notice that the leading coefficient of Qk is

thus α(k)
k and for Qk−1 it is α(k−1)

k−1 . Using the recursion and performing a comparison of coefficients
we see that

α
(k)
k = 2α

(k−1)
k−1 − α

(k−1)
k−1 = α

(k−1)
k−1 . (194)

Using the fact that for k = 1

1

2m

m�

r=0

�
m

r

�
r =

m

2
=

m

21
Q0(m), (195)

we conclude that α0
0 = 1 and thus αk = 1 ∀k ∈ N. For the second coefficient, namely α

(k)
k−1 for Qk

and α
(k−1)
k−2 for Qk−1, we will again use the recursion. Let us first again express the polynomials in

monomial bases, i.e.

Qk(m) =

k�

i=0

α
(k)
i mi , Qk−1(m) =

k−1�

i=0

α
(k−1)
i mi (196)

Using the recursion we thus see that
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α
(k)
i mi =

k−1�

i=0

2α
(k−1)
i mi+1 −

k−1�

i=0

α
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i (m− 1)i+1. (197)
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We have to understand the terms involving mk−1. Thus we need to expand (m− 1)k which we can
do with the help of Lemma C.3:

(m− 1)k = mk − kmk−1 + . . . (198)

We also need to expand the next polynomial as follows:

(m− 1)k−1 = mk−1 + . . . (199)

Collecting all the coefficients, we end up with the following recursion for the second coefficient:

α
(k)
k−1 = 2α

(k−1)
k−2 − α

(k−1)
k−2 + kα

(k−1)
k−1

= α
(k−1)
k−2 + k.

(200)

Using the fact that
Q1(m) = m+ 1. (201)

Thus α(1)
0 = 1, we conclude that

α
(k)
k−1 = 1 +

k�

i=2

i =
k(k + 1)

2
. (202)

Finally, we need a result on exponential functions and their limit definition:

Lemma C.6. Fix c ∈ R and γ ∈ R+. Then we have the following limit:

lim
m−→∞

�
1 +

c

m
+O

�
1

m2

��(γm)

= eγc. (203)

Moreover, it holds that

lim
m−→∞

�
1 +

c

m
+O

�
1

m2

��mβ

=

�∞ if β > 1

1 if β < 1
(204)

Proof. This can be found in standard analysis books such as Rudin (1976).

C.5 Proof of Theorem 5.1

We can now prove the convergence of the moments as follows.

Theorem. Consider the distribution of the output p
�
f
(L)
ReLU

�
, as defined in Thm. 4.3. Denote

X ∼ N (0, 1), Y ∼ LN (− 5
4γ,

5
4γ) for X ⊥ Y and the resulting normal log-normal mixture by

Z = XY , for γ > 0. Let the depth grow as L = c + γmβ where β ≥ 0 and c ∈ N fixed. Then it
holds that for k > 1

E
��

f
(L)
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�2k
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

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E[Z2k] = e
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2γk(k−1)(2k − 1)!! if β = 1

∞ if β > 1

(205)

where (2k − 1)!! = (2k − 1) . . . 3 · 1 denotes the double factorial (by symmetry, odd moments are
zero). Moreover, for β < 1 it holds that

p(f
(L)
ReLU)

d−→ X for m −→ ∞ (206)
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Proof. Recall that we arrived at

E
��

f
(l)
ReLU

�2k
�
= (2k − 1)!!2k(l−1)σ2kl

w

�
1

2m

m�

r=1

�
m

r

�
Γ
�
k + r

2

�

Γ
�
r
2

�
�l−1

. (207)

Using the NTK parametrization for ReLU, i.e. σ2
1 = 1 and σ2

2 = · · · = σ2
l = 2

m , this amounts to
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We thus essentially need to understand the term

M(m) =
22k

2mmk
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Γ
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We first use Lemma C.4 to expand the ratio
Γ(k+ r

2 )
Γ( r

2 )
as a polynomial. Denote the coefficients by βi

for i = 1, . . . , k (i �= 0 because the polynomial has no intercept). We then swap the two sums:
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Now we can apply Lemma C.5 to expand the inner sum for each i, denoting the corresponding
polynomials again by Qi:

M(m) =
22k

mk

k�

i=1

βi
m

2i
Qi−1(m). (211)

Notice that mQi−1(m) is a polynomial of order i. For large m, the factor 1
mk dominates all such

polynomials except for the one with i = k. Thus in the large-width limit it holds

M(m)
m−→∞−−−−→ 22kβk

1

2k
= 1. (212)

where we used that the leading coefficient of Qk−1 is 1. For fixed depth l ∈ N or depth growing as
l = mβ for β < 1, we can pull the limit limm−→∞ M(m)l−1 inside and conclude that
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If β > 1, we obtain a divergence of the even moments for k > 1 to infinity as m increases as the

exponent grows faster than m. Note that for k = 1 however, we have that E
��

f
(l)
ReLU

�2
�
= 1 also in

the β > 1 limit.
For depth growing as l − 1 = γm (so β = 1), we have to be a bit more careful since we need to
compute the coefficient in front of 1

m , similarly as in the linear case. We now need to collect all the
polynomial terms in M(m) giving rise to a 1

m factor. First recall that

M(m) =
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The only coefficients contributing to 1
m are the second highest coefficient of Qk−1 and the highest

coefficient of Qk−2. Using Lemma C.5 and Lemma C.4, we hence find that
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Applying C.6 concludes that
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Finally, taking X ∼ N (0, 1), Y ∼ LN (− 5
4γ,

5
4γ) and defining Z = XY , we can easily see that

E [Zn] =

�
0 n odd
e

5
2γk(k−1)(2k − 1)!! n = 2k

(217)

D Additonal results and lemmas

Here we list some of the moments arising from a Binomial distribution of the form U ∼ Bin(n, 1
2 ).

We invite the reader to sanity-check our results in Lemma C.5 regarding the coefficients of Qk.
Lemma D.1. Consider the random variable U ∼ Bin(m, 1

2 ). We can calculate its first 4 moments as
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�m
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