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Abstract

The convex consistency dimension of a supervised learning task is the
lowest prediction dimension d such that there exists a convex surrogate
L :R?x Y — R that is consistent for the given task. We present a new tool
based on property elicitation, d-flats, for lower-bounding convex consistency
dimension. This tool unifies approaches from a variety of domains, including
continuous and discrete prediction problems. We use d-flats to obtain a new
lower bound on the convex consistency dimension of risk measures, resolving
an open question due to Frongillo and Kash (NeurIPS 2015). In discrete
prediction settings, we show that the d-flats approach recovers and even
tightens previous lower bounds using feasible subspace dimension.

1 Introduction

A loss function is called a surrogate when it is used to solve a related, but not identical,
“target” problem of interest. Selecting a hypothesis by minimizing surrogate risk is one of the
most widespread techniques in supervised machine learning. There are two main reasons
why a surrogate loss is necessary: (I) the target problem is to minimize a loss, the target
loss, that does not satisfy some desiderata such as continuity or convexity; or (II) the target
problem is to estimate some target statistic and some associated surrogate loss is required
to do so, as in many continuous estimation problems. In both settings, a key criteria for
choosing a surrogate loss is consistency, a precursor to excess risk bounds and convergence
rates. Roughly speaking, consistency means that minimizing surrogate risk corresponds to
solving the target problem of interest, i.e. in (I) the target risk is also minimized, or in (IT)
the continuous prediction approaches the true conditional statistic.

Despite the ubiquity of surrogate losses, we lack general frameworks to design and analyze
consistent surrogates. This state of affairs is especially dire when one secks low prediction
dimension, the dimension of the surrogate prediction domain. For example, in multiclass
classification with n labels, the prediction domain might be R™. In many type (I) settings,
such as structured prediction and extreme classification, the prediction dimension of any
convex and consistent surrogate often becomes intractably large, forcing one to sacrifice
consistency for computational efficiency. To understand whether this sacrifice is necessary,
recent work developed tools like the feasible subspace dimension to lower bound the prediction
dimension of any consistent convex surrogate [33]. Challenges of type (II) include estimating
risk measures such as conditional value at risk (CVaR), with applications in financial
regulation, robust engineering design, and algorithmic fairness [1, 14, 35, 42]. Risk measures
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are not elicitable, meaning they cannot be specified via a target loss, and thus we seek a
surrogate loss of low (or at least finite) prediction dimension. Recent work [15, 19, 20] gives
prediction dimension bounds for some of these risk measures, but without the requirement
that the surrogate be convex; bounds for convex surrogates are left as a major open question.

We present a new tool, d-flats, which unifies existing techniques to bound the convex
consistency dimension in both settings above. Using this tool, we resolve the above open
question for type (II), giving the first prediction dimension bounds for risk measures with
respect to convex surrogates. We also resolve a similar open question for the mode and
modal interval, posed by Dearborn and Frongillo [10]. In settings of type (I), d-flats recover
and tighten the feasible subspace dimension result of Ramaswamy and Agarwal [33]. Our
framework rests on property elicitation, a weaker and simpler condition than calibration, as
a way to understand consistency across a wide variety of domains.

The “four quadrants” of problem types. Above, we discuss a significant divergence in
previous frameworks: constructing a surrogate given a target loss versus a target statistic. In
addition to the two possible targets, we may have one of two domains: a discrete (i.e. finite)
target prediction space, like a classification problem, or a continuous one, like a regression
or point estimation problem. We informally refer to the four resulting cases—target loss
vs. target statistic, and discrete vs. continuous predictions—as the “four quadrants” of
supervised learning problems, shown in Table 1. In the context of these quadrants, Figure 1
gives a roadmap of our main results.

Literature on consistency and calibration. We focus on surrogate losses L : R*x) — R
that are consistent, roughly meaning that minimizing L-loss corresponds to solving the target
problem of interest.

We give informal definitions of consistency in § 2.2, with formal definitions in § A.

When given a target loss ¢, we roughly define L to be consistent if minimizing L, and
applying a link function, minimizes ¢ [33, 39, 41, 44]. When given instead a target statistic
such as the conditional quantile or variance, we introduce a notion of consistency in line

Target loss Target statistic
Discrete lassificati . hical fcati
prediction Q1, e.g. classification Q2, e.g. hierarchical classification
S;ZZLZZZZ‘S Q3, e.g. least-squares regression Q4, e.g. variance estimation

Table 1: The four quadrants of problem types, with an example for each as discussed in § 3.1.

Consistency | p L Lo conscyx bounds for
Top, 7 Oot'{l Q1, Q2. (Cor. 6)
. . Thm. 1 -
(3, 40] ’ Indirect elicitation }—ﬁ d-flats in level sets ‘
\% conscvx bounds for

Calibration (Q1) Q3, Q4. (Thm. 2, 3)

Figure 1: Flow and implications of our results. Compared to calibration, we suggest indirect
elicitation as a simpler but almost-as-powerful necessary condition for consistency. In particular,
we obtain a testable condition (Theorem 1), based on d-flats, for the existence of a d-dimensional
consistent convex surrogate. This condition recovers and strengthens existing calibration-based
results for Q1, while simultaneously applying to other quadrants. We illustrate the breadth and
power of d-flats by resolving two open questions for Q3 and Q4 in § 4.



with classical statistics [11, 21, 36]. Here we define L to be consistent if minimizing L and
applying a link function yields predictions converging to the correct statistic value. The key
observation which underpins our approach is that consistency for target losses is a special
case of consistency for target statistics (Lemma 1). Therefore, property elicitation—which
studies the exact minimizers of loss functions—allows us to give general lower bounds on
prediction dimension of any convex surrogates corresponding to a target task; these bounds
apply across all four quadrants. See § 2.3 for other prior work on notions of prediction
dimension.

As definitions of consistency are difficult to apply directly, the literature often focuses on
a weaker condition called calibration, which only applies when given a target loss, e.g.
Quadrants 1 and 3. Particularly, several authors [3, 28, 33, 41, 44] show the equivalence
of consistency and calibration in Quadrant 1. We discuss the additional relationship of
elicitation and calibration in § C, and re-derive Proposition 1 via calibration.

2 Setting

In supervised learning, data is drawn from a distribution D over the space X x ) and the goal
is to produce a hypothesis f : X — R. Here X is the feature space, ) the label space, and R
the report or prediction space, possibly different from ). For example, in ranking problems,
R may be all |Y|! permutations over the |Y| labels forming J. We focus on surrogate losses,
target problems, and their relationships to conditional distributions p := D,, = Pr[Y|X = z]
over ) given some z € X. We can often abstract away x, working directly with a set of
(conditional) distributions over outcomes P C Ay, where Ay :={p € Rlﬁjl | lpll = 1} is the
probability simplex over labels. We then write e.g. E,¢(r,Y") to mean the expected loss of
prediction r € R when Y ~ p.

If given, we use £ : R x Y — R to denote a target loss, with predictions r € R. Similarly,
L :R% x Y — R will typically denote a surrogate loss, with surrogate predictions u €
R?. In this case, d is the prediction dimension of d. We write £y for the set of (Borel)
B(R?) ® Y-measurable and lower semi-continuous surrogates L : R? x JJ — R such that
Ey~pL(u,Y) < oo for all u € R%,p € P, that are minimizable in that argmin, E,L(u,Y)
is nonempty for all p € P. (See § F.1 for a discussion of this assumption.) Moreover,
LGY* C L4 is the set of convex (in R? for every y € ) losses in L£4. Set £ = UgenLaq, and
LY =UgenL3™. Aloss £: R x Y — R is discrete if R is a finite set.

2.1 Property elicitation

Arising from the statistics and economics literature, property elicitation is similar to cal-
ibration, but only characterizes exact minimizers of a surrogate [17, 18, 25-27, 30, 37].
Specifically, given a statistic or property I' of interest, which maps a distribution p € P C Ay,
to the set of desired or correct predictions, the minimizers of L should precisely coincide
with T'. For example, squared loss L(r,y) = (r — y)? elicits the mean I'(p) = {E,Y}.

Definition 1 (Property, elicits). A property is a set-valued function T : P — 2R\ {(},
which we denote I' : P =3 R. A loss L: R x )Y — R elicits the property I if

VpeP, T'(p) =argminE,L(u,Y) . (1)
u€ER

The level set of T at valuer e Ris T, :={p e P :r €T (p)}. We call a property ' : P = R
discrete if R is a finite set, as in Quadrants 1 and 2. A property is single-valued if |I'(p)| =1
for all p € P, in which case we may write I' : P — R and I'(p) € R. As an example, the mean
is single-valued. We define the range of a property by rangel' = (J,» I'(p)) € R. When
L € L, we use T' := propp[L] to denote the unique property elicited by L (for distributions
in P) from eq. (1). Typically, we denote the target property by 7, and the surrogate by T.



2.2 Consistency and indirect elicitation

As discussed above, notions of consistency have appeared in the literature with respect to
target losses, and to target statistics or properties. We give informal definitions of both
notions here, with formal versions deferred to § A.

Definition 2 (Consistent: loss (informal)). A loss L € L and link (L,1)) are consistent
with respect to a target loss £ if, for all distributions D over X x Y and all sequences of
measurable hypothesis functions {fm : X = R},

EpL(fm(X),Y) _>irflf]EDL(f(X)7Y) = Epl((¢0 fm)(X),Y) —>ir}fED€((¢0f)(X)aY) -

Consistency with respect to a property follows similarly, but instead of converging to the
optimal target loss, one should approach the optimal (conditional) property value.

Definition 3 (Consistent: property (informal)). Suppose we are given a loss L € L, link
function ¢ : RT — R, and property v : P = R. Moreover, let jp : R x P — Ry be any
function satisfying u(r,p) =0 < r € v(p). We say (L,1)) is consistent with respect to
if, there exists a p such that, for all D over X x Y and sequences of measurable functions
{fm : X — R};

EDL(fm(X)vY) - H}fEDL(f(X)vy) = EX:U'(w © fm(X)vDX) —0. (2)

Lemma 1 in § A shows that, in fact, one can capture consistency with respect to a target
loss as a special case of consistency with respect to a target property. Specifically, given a
target loss ¢, one can take v = propp[f] and define p(r,p) := Epl(r,Y) — min,s E,0(r',Y)
to be the f-regret of the report r. This observation allows us to translate consistency from
Quadrant 1 to Quadrant 2, and from Quadrant 3 to Quadrant 4; in particular, it will allow
us to prove bounds for all four quadrants simultaneously.

As observed in the literature, e.g. [2, 40], both notions of consistency imply in particular
that the link function must map exactly optimal surrogate reports to exactly optimal target
reports. In property elicitation, this condition is known as indirect elicitation: for single-
valued properties, I and ¢ indirectly elicit v if v = ¢ o I'. The definition below covers the
general set-valued case as well.

Definition 4 (Indirect Elicitation). A surrogate loss and link (L,v) indirectly elicit a
property v : P = R if L elicits a property T : P = R% such that for all u € R, we have
'y © Yy(u)- We say L indirectly elicits «y if such a link 1 exists.

Proposition 1. For a surrogate L € L, if the pair (L,v) is consistent with respect to a
property v : P = R or a loss € eliciting vy, then (L, 1) indirectly elicits .

In other words, indirect elicitation is a necessary condition for consistency. In light of
Lemma 1, we can use this fact to build prediction dimension lower bounds across all four
quadrants.

Implicit in the above elicitation definitions is that L is minimizable: since I' = propp[L]
is nonempty everywhere, the expected loss E,L(-,Y") always achieves a minimum. This
restriction is also implicit in previous work, e.g., [2]. See § F.1 for further discussion.

2.3 Convex consistency dimension and elicitation complexity

Various works have studied the minimum prediction dimension d needed in order to construct
a consistent surrogate loss L : R? x ) — R, typically through proxies such as calibration [2,
33, 40] and property elicitation [15, 18, 20]. Motivated by the importance of convex surrogates
in machine learning, Ramaswamy and Agarwal [33] introduce the following definition for
Quadrant 1; we generalize it to all quadrants.

Definition 5 (Convex Consistency Dimension). Given target loss £ : R x Y — R or property
~v:P =R, its convex consistency dimension conseyx () is the minimum dimension d such
that 3L € LG™ and link v such that (L,) is consistent with respect to £ or .



In the case of a target property 7, Lambert et al. [27] similarly introduce the notion of
elicitation complezity. Later generalized by Frongillo and Kash [20], elicitation complexity is
the lowest prediction dimension of an elicitable property, from some class of properties, from
which one can compute . We give here the definition for convex-elicitable properties.

Definition 6 (Convex Elicitation Complexity). Given a target property -y, the convex
elicitation complexity eliceyx(7y) s the minimum dimension d such that there is a L € L™
indirectly eliciting .

As consistency implies indirect elicitation, we have the following.

Corollary 1. Given a property v : P = R or loss ¢ : R x Y — R eliciting v, we have
eliceyx () < conseyx () = conseyx(£).

Finally, related to our work is the embedding dimension of Finocchiaro et al. [12], which
is a lower bound on both convex elicitation complexity of discrete properties and convex
consistency dimension of discrete losses and finite statistics.

3 Lower bounding convex consistency dimension via d-flats

We now turn to the question of bounding the convex consistency dimension for a given task.
From Proposition 1, given a target property «y or loss £ with v = propp[¢], this task reduces
to lower bounding the convex consistency dimension of 7. Theorem 1, crystallized from the
proofs of Ramaswamy and Agarwal [33, Theorem 16] and Agarwal and Agarwal [2, Theorem
9], considers a particular distribution p and surrogate prediction v € R which is optimal for p.
Theorem 1 will show that if d is small, then the level set {p € P : u € argmin,, E,L(v/,Y)}
must be large; in fact, it must roughly contain a high-dimensional flat (of codimension
d). By definition of indirect elicitation, there is some level set ~, (where u is linked to r)
containing this flat as well. We can then leverage the contrapositive of this result: if v has a
level set intricate enough not to contain any high-dimensional flats, then v cannot have a
low-dimensional consistent convex surrogate.

Definition 7 (d-flat). For d € N, a d-flat, or simply flat, is a nonempty set F' = kerp W :=
{g€P:E,W =0} for some measurable W : Y — R,

The following lemma yields consistency bounds when combined with Proposition 1. A similar
result is found in Agarwal and Agarwal [2, Theorem 9], which bounds the dimension of level
sets of a single-valued propp[L]. Theorem 1 instead bounds the dimension of flats contained
in the level sets, an additional power which we leverage in our examples.

Theorem 1. Let T': P = R? be (directly) elicited by L € LS for some d € N. Let Y be
either a finite set, or Y = R, in which case we assume each p € P admils a Lebesque density
supported on the same set for all p € P.1 For all u € rangel and p € T, there is some
d-flat F such thatp € F CT,,.

Proof (finite case). We will prove the result for the case of finite ), and defer the ) = R case
to § B. As L is convex and elicits T, we have u € T'(p) <= 0 € IE,L(u,Y). With ) finite,
this is additionally equivalent to 0c ®,py0L(u,y), where & denotes the Minkowski sum [23,
Theorem 4.1.1].2 Expanding, we have &,p,0L(u,y) = {2 ,ey PyTy | Ty € OL(u,y) Vy € V1,
and thus there is a W such that Wp = Ey PyZy = 0 where W = [T1,...,2,] € R¥*™ cf. [33,
A™ in Theorem 16]. Let V,, : Y — R% y — W, be the function encoding the columns

of W. Observe that E,V,, = 0. We take the flat F := kerp V,,, and have p € F by
construction. To see F' C Ty, from the chain of equivalences above, we have for any ¢ € P
that ¢ € kerp V,, = 0€ IE,L(u,Y) = ueI(q) = ¢, O

1 This assumption is largely for technical convenience, to ensure that V), , does not depend on p.
Any such assumption would suffice, and we suspect even that condition can be relaxed.
29 represents the subdifferential 9f(z) = {2 : f(z') — f(x) > (2,2’ — 2) V2'}.



: : Figure 2: Hierarchical prediction example
[ Active | Non-act g p p
o ol with labeling tone of speech. We take Y =R
[ Median | [ Passive | to be the leaves of this tree, shown in blue.

Theorem 1 now allows us to derive bounds on convex consistency dimension by considering
distributions and property values that are either single-valued (Corollary 2) or on the relative
interior of the simplex with finite ) (Corollary 3). Proofs are deferred to § B.

Corollary 2. Let target property v: P = R and d € N be given. Let Y be either a finite
set, or Y =R, in which case we assume each p € P admits a Lebesgue density supported on
the same set for allp € P. Let p € P with |y(p)| = 1, and take v(p) = {r}. If there is no
d-flat F with p € F C v, then conscyx(y) > eliceyx(y) > d + 1.

Corollary 3. Let an elicitable target property v : P = R be given, where P C Ay is defined
over a finite set of outcomes Y, and let d € N. Let p € relint(P). If there is no d-flat F with
p € F C ., then conseyx(y) > eliceyx(y) > d + 1.

3.1 Illustrating the condition in all four quadrants

We now illustrate how to apply Theorem 1 to construct lower bounds on convex consistency
dimension for targets across all four quadrants of Table 1. Throughout the examples, we will
have || = 3 so that the probability simplex can be visualized in two dimensions (Figure 3).
For each, we take d = 1, and thus ask whether any 1-flat (a line in the figures) passes through
the point p while staying within the corresponding level set.

Q1: Classification with an abstain option. The abstain target loss is a well-studied
variation of 0-1 loss that allows for an “abstain” report that gives a lesser punishment
1/2 for abstaining, r = L [7, 8, 29, 33, 34]. Formally, the target loss is (1/2(r,y) =
{r & {y, L}} + (1/2)I{r = L}. Since we are given a discrete target loss, this problem fits
nicely into Quadrant 1.

To apply Theorem 1, we first consider the abstain property v elicited by ¢/2, where one
predicts the most likely outcome y if Pr[Y = y] > 1/2 and otherwise “abstains” by predicting
L. For the depicted distribution p € relint(y, ), we cannot fit a 1-flat (line) fully contained in
~v1 that passes through p. By Corollary 3, we can conclude conseyy(v'/2) > 2 when || = 3,
meaning there is no consistent convex surrogate in 1 dimension. This lower bound matches
the upper bound from the convex surrogate of Ramaswamy and Agarwal [33].

Q2: Variation of hierarchical classification. Ramaswamy et al. [32] study hierarchical
classification tasks, in which labels are arranged in a tree and one wishes to predict the
deepest node in a tree that is “likely enough” [5, 43]. Consider the variation of this task where
one can only predict leaves of this tree. For example, Figure 2 depicts a speech classification
task where speech is either active or non-active, and non-active is further subdivided into
median and passive. It is natural to predict active if that label is more likely than both
non-active labels combined, and otherwise to predict the most likely of median and passive:

active  Pactive > 1/2
7(p) = { median  Pactive < 1/2 A Pmedian = Ppassive -
passive Pactive S 1/2 A Ppassive 2 Pmedian
This “T-shaped” property, depicted in Figure 3 (Q2), falls under Quadrant 2, as it is not

elicited by any target loss.? Like abstain, we cannot fit a 1-flat (line) entirely contained in
the level set Ypassive through the depicted p, so Corollary 3 gives conscvx(y) = 2.

Q3: Least-squares regression Squared loss is commonly used in machine learning
and statistics for continuous estimation, making it the canonical choice for Quadrant 3.

3The cells of finite elicitable properties form power diagrams, a generalization of Voronoi diagrams,
which disallow this “T-shaped” configuration [17, 26].



Figure 3: Example properties for
each quadrant. Throughout, we
take e to be the distribution
p = (0.3,0.3,0.4) according to
the left, top, and right outcomes
respectively. (Q1,Q2) We can-
not fit a 1-flat (line) through p
without leaving the level sets v
and Ymedian, respectively; The-
orem 1 implies that there is
no 1-dimensional consistent con-
vex surrogate for either prob-
lem. (Q3) Squared error is a
1-dimensional convex loss, and
indeed it elicits the mean of Y,
whose level sets are all 1-flats.
(Q4) The level sets of the vari-
ance are curved and cannot fit
a 1-flat; from Theorem 1 there
y=-1 y=1 Y= 1 Co.60 7 ¥y=1 s no 1-dimensional convex surro-
gate consistent for the variance.

Squared loss is a 1-dimensional convex loss which elicits the mean T'(p) = E,[Y]. Theorem 1
therefore states that we can fit a 1-flat through any distribution p while staying within
the corresponding level set. In fact, the level sets of the mean are all exactly 1-flats, as
demonstrated in Figure 3 (Q3).

Q4: Variance Consider the task of estimating the variance Var(p) = E,[Y?] — E,[Y]%
The variance is not (directly) elicitable as its level sets are not convex [27, 31], meaning this
task falls under Quadrant 4. Interestingly, the fact that the variance is not elicitable does
not yield a lower bound on elicitation complexity of 2, as it does not rule out the variance
being a link of a real-valued convex-elicitable property; cf. Frongillo and Kash [20, Remark
1]. In § F.2, we show eliceyy(Var) = 2, meaning the lowest dimension of a convex loss to
estimate conditional variance is 2. This lower bound will follow from Theorem 2 in § 4 using
the fact that variance is the Bayes risk of squared loss. While perhaps intuitively obvious,
even this simple result is novel.

3.2 Relation to feasible subspace dimension

In Quadrant 1, Ramaswamy and Agarwal [33] give a lower bound on convex consistency
dimension roughly by the co-dimension of the subspace of feasible directions Sc(p) of a convex
set C at a given distribution p such that p € C, which is loosely the “most full” subspace of C
containing a neighborhood around p.

Sc(p) = {v € R™ | 3¢ > 0 such that p+ ev € CVe € (—€p,€0)}

Theorem 1 subsumes the bounds given by Ramaswamy and Agarwal [33] by showing that,
if there is a d-flat through p fully contained in a level set ~, (so we can apply Theorem 1)
then the subspace of feasible directions at the same p € C := , has co-dimension at most d,
discussed in detail in § D.1.

Proposition 2. Suppose we are given a discrete loss £ : R x Y — R eliciting the property
v:Ay = R. Fizp € relint(Ay) and take r € R such that p € ~,. If conseyx(¢) = d, then
there exists a d-flat F' C ~y, through p. Moreover, F is a subspace of feasible directions over
the set vy, intersected with the simplex. Therefore, codim(S,,. (p)) < d, and in turn, this
implies ccdim(¢) > d > codim(S,, (p)).

In other words, any d-flat through p is a subspace of feasible directions of co-dimension at
most d, so Theorem 1 provides a weakly tighter lower bound on convex consistency dimension
than Ramaswamy and Agarwal [33, Theorem 16]. In fact, the d-flats bound can be strictly
tighter; in § D we show that the abstain example from Figure 3 (Q1) yields a d-flats lower



bound of 2 and a feasible subspace dimension lower bound of 1. This gap stems from the
fact that feasible subspace dimension uses only local information of the property to construct
lower bounds, while d-flats in Theorem 1 allow us to additionally use global information.
See Figure 4 in § D for an illustration.

4 Application: Risk Measures, Mode, and Modal Interval

We now turn to two main applications of Theorem 1: new lower bounds on the convex
consistency dimension of risk measures (§ 4.1) and the mode and modal interval (§ 4.2). In
both cases, we build on previous results due to Frongillo and Kash [19, 20] and Dearborn and
Frongillo [10] which showed lower bounds with respect to identifiable properties; a property is
d-identifiable if its level sets are all d-flats, as in Figure 3 (Q3). In contrast, properties elicited
by convex losses are generally not identifiable, particularly when the loss is non-smooth. For
example, the properties elicited by hinge loss and the abstain surrogate are not identifiable,
as their level sets are not flats; see Figure 3 (Q1). It therefore might appear that entirely new
ideas are needed. Indeed, both papers above pose developing similar bounds with respect to
convex-elicitable properties as a major open question.

Using our d-flats framework, we resolve both open questions with new lower bounds in
both settings. Our framework clarifies the relationship between d-identifiable properties and
properties elicited by d-dimensional convex losses: the level sets of the former are d-flats by
definition, while the level sets of the latter are unions of d-flats by Theorem 1. A careful
examination of the arguments of Frongillo and Kash [19, 20] and Dearborn and Frongillo
[10] reveals that they largely rely on the containment of d-flats in level sets, rather than
the full structure of identifiable properties. As such, although quite subtle in the case of
risk measures, the general structure of these previous proofs go through for convex-elicitable
properties: since no d-flat could be contained in a particular level set, no union of d-flats could
be either. Our lower bounds therefore match both of these papers, though we conjecture
that our convex consistency bounds could be tightened in some cases.

4.1 Risk measures (Q4)

The problem of estimating a risk or uncertainty measure of Y is of central importance
in financial regulation [1, 6, 14] and robust engineering design [4, 35, 38]. Risk measures
include the upper confidence bound E[Y] + A\y/Var[Y], or the conditional value at risk
(CVaR) defined below in eq. (3), in either conditional or unconditional contexts. Uncertainty
measures include the variance, entropy, or norm of the distribution of Y. Risk and uncertainty
measures are typically not elicitable, so this problem falls under Quadrant 4. Frongillo and
Kash [19, 20] give prediction dimension lower bounds for a broad class of risk and uncertainty
measures, namely Bayes risks. As stated above, these bounds are with respect to identifiable
properties, and bounds for convex surrogates are left as a major open question.

We resolve this open question using our d-flats framework, giving a matching result for
convex-elicitable properties (Theorem 2). First we recall the definition of the Bayes risk.

Definition 8. Given loss function L : R x Y — R for some report set R, the Bayes risk of
L is defined as L(p) := inf,cg B, L(r,Y).

Condition 1. For some r € rangel’, the level set I, = kerp V is a d-flat presented by some
V:Y — R? such that 0 € int {E,V : p € P}.

Theorem 2. Let P be a convex set of Lebesque densities supported on the same set for all
pE€P. Let I : P — RY satisfy Condition 1 for some r € R, Let L € L elicit T' such that
L is non-constant on T'y.. Then conscyy (L) > eliceyx (L) > d + 1.

To illustrate the theorem, we briefly apply it to one of the most prominent financial risk
measures, the conditional value at risk (CVaR). Several other applications from Frongillo
and Kash [19, 20], such as other risk measures, entropy, and norms, follow similarly. The
authors observe that CVaR can be expressed as a Bayes risk; for 0 < o < 1, we may define

CVaR,(p) = ig}%]Ep {Lr-Y)L>y -1}, (3)



which is the Bayes risk of the transformed pinball loss La(r,y) = 2(r — y)1,5, — 7. In

turn, L, elicits the a-quantile, the quantity ¢, (p) such that Prp[Y > ¢4 (p)] = a. Following
Frongillo and Kash [20], we will restrict to the set P, of probability measures over R with
connected support and whose CDFs are strictly increasing on their support, so that ¢, is
single-valued. Under mild assumptions, we find that there is no consistent real-valued convex
surrogate for CVaR,.

Corollary 4. Let P be a conver set of continuous Lebesgue densities on' Y = R with allp € P
having support on the same interval. If we have p1,pa,ps3,py € P with qo(p1) < ¢u(p2) <
da(p3) and CVaR,(p2) # CVaRy (ph), then conseyx(CVaRy) > eliceyx(CVaRy) > 2.

As first shown by Fissler et al. [15], the pair (CVaR,, q,) is jointly identifiable and elic-
itable, but not by any convex loss [13, Prop. 4.2.31].We conjecture the stronger statement
eliceyx (CVaR,,) > 3, which if true would constitute an interesting gap between elicitation
complexity for identifiable and convex-elicitable properties.

4.2 Mode and modal interval (Q4, Q3)

For finite |V, the mode Ymode(p) = argmax, ¢y, p(y) is elicited by 0-1 loss. By contrast,
for Y = R, the mode is not elicitable [22], landing it in Quadrant 4. Defining the mode is
subtle for general distributions; here let us assume p has a smooth and bounded Lesbegue
density f,, and define the mode the same way, Ymode(p) = arg max,cy, f,(y). Dearborn and
Frongillo [10] recently showed a strong impossibility result, that the mode has countably
infinite elicitation complexity with respect to identifiable properties. In other words, it
is as hard to elicit the mode as the full distribution p itself. Complexity with respect to
convex-elicitable properties is left as an important open question.

We resolve this question, with a matching infinite lower bound for convex-elicitable properties.
In light of our d-flats framework, the result is nearly immediate, as the proof in Dearborn
and Frongillo [10] already showed that the level sets of the mode cannot contain any d-flats.

Theorem 3. The mode has conscyx(Ymode) = €liCevx(Vmode) = 00 (countably infinite) with
respect to P, the class of probability measures on Y = R with a smooth and bounded density
and such that Ymode 1S single-valued.

Proof. The proof of Dearborn and Frongillo [10, Theorem 1] gives a distribution p € P with
Ymode(P) = 0 =: u. It then introduces an arbitrary identification function V' : Rx) — R*,
k € N, and value € R such that p € kerp V(r,-). Letting F = kerp V(r,-), we therefore
have an arbitrary k-flat containing p. The proof then proceeds to construct some p’ € F
with Yimode(p') # u. Corollary 3 now gives conscyx (Ymode) = €liCeyx(Vmode) > kK + 1. As k
was arbitrary, the result follows. O

A closely related property for any 8 > 0 is the (midpoint of the) modal interval of width
23, given by v5(p) = arg max, g p([x — 5,2 + f]). Interestingly, unlike the mode for Y =R,
the modal interval is elicitable, by the target loss ¢5(r,y) = 1{|r — y| > 8}. The problem of
estimating the modal interval therefore could be thought of as falling under Quadrant 3.

As observed in Dearborn and Frongillo [10, Corollary 1], the properties ymode and s coincide
with the family of distributions needed in their Theorem 1, meaning the conclusion of
Theorem 3 transfers to the modal interval as well.

Corollary 5. For any > 0, the modal interval v3 : Pz — R has conseyx(73) = €licevx(V3) =
oo (countably infinite) with respect to Pg, the class probability measures on Y = R with a
smooth and bounded density, and such that Ymode and vg are single-valued.

Thus, while 3 is elicitable, it does not have any consistent finite-dimensional convex surrogate.
While this statement may seem counter-intuitive, recall that the mode for finite || has
CONScyx (Ymode) = |V| — 1. Taking the limit as |Y| — oo, one may therefore expect an infinite
convex consistency dimension for both the mode and modal interval.



5 Conclusions and future work

In this work, we introduce a new tool to generate lower bounds on the convex consistency
dimension of general prediction tasks. This tool is simultaneously broader, stronger, and
easier to understand than previous results. Its breadth is demonstrated by applying to
multiple problem types simultaneously (§ 3), while its strength is demonstrated by proving
new bounds on convex consistency dimension (§ 4), and ease is apparent when observing
that indirect elicitation is a strictly weaker notion than calibration — the most common proxy
for consistency. We then apply our framework to yield new bounds on convex consistency
dimension for entropy, risk measures, the mode, and modal intervals.

Several important questions remain open. Particularly for the discrete settings, we would like
to know whether one can lift the restriction that surrogates always achieve a minimum; we
conjecture positively (see § F.1). The observation that our bounds are as tight as calibration-
based bounds, yet we use the weaker condition of indirect elicitation, motivates the study of
how much weaker indirect elicitation is than calibration. More broadly, we would like to
characterize conscyx and elic.,x and develop a general framework for constructing surrogates
achieving the best possible prediction dimension.
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A Consistency Implies Indirect Elicitation

In this section, we connect consistency of any surrogate to an indirect elicitation requirement.
This will allow us to show indirect elicitation gives state-of-the-art lower bounds on convex
consistency dimension.

We start by formalizing consistency in two ways that generalize across our four quadrants.
First, given a target loss £, we say L is consistent if optimizing L and applying a link
optimizes ¢ (Definition 9). Second, given a target property ~, such as the a-quantile, we
say L is consistent if optimizing L implies approaching, in some sense, the correct statistic
~(D,,) of the conditional distributions D, = Pr[Y|X = z] (Definition 10). We then observe
that Definition 9 is subsumed by Definition 10, and use this to show consistency implies L
indirectly elicits propp[¢] or v respectively.

Condition 2 (Covers). A set D C A(X x ) covers a convex set P C Ay if, for allp € P,
there exists D € D and x € X such that D has a point mass on x and p = D,.

Definition 9 (Consistent: loss). A loss L € L and link (L,1)) are D-consistent for a set D
of distributions over X x Y with respect to a target loss € if, for all D € D and all sequences
of measurable hypothesis functions {fm : X — R},

EpL(fm(X),Y) = fEpL(f(X),Y) == Epl((¢ © fm)(X),Y) = nfEpl((y o £)(X),Y) .

For a given convex set P C Ay, we simply say (L, 1) is consistent if it is D-consistent for
some D covering P.

Instead of a target loss £, one may want to learn a target property, i.e. a conditional statistic
such as the expected value, variance, or entropy. In this case, following the tradition in
the statistics literature on conditional estimation [11, 21, 36], we formalize consistency as
converging to the correct conditional estimates of the property. Convergence is measured by
functions p(r, p) that formalize how close 7 is to “correct” for conditional distribution p. In
particular we should have p(r,p) =0 < r € y(p).

Definition 10 (Consistent: property). Suppose we are given a loss L € L, link function
Y R* = R, and property v : P = R. Moreover, let 1 : R x P — R, be any function
satisfying p(r,p) =0 < r € v(p). We say (L,v) is (i, D)-consistent with respect to v if,
for all D € D and sequences of measurable functions {fm : X — R},

EpL(fm(X),Y) —>h}fIEDL(f(X),Y) — Exp(yo f(X),Dx) =0 . (4)

We simply say (L,) is p-consistent if it is (u, D)-consistent for some D covering P. Addi-
tionally, we say (L, ) is consistent if there is a p such that (L,) is u-consistent.

Typical definitions of consistency require D to be the set of all distributions over X x Y,
while our conditions are much weaker. As the main focus of this paper is lower bounds on
the prediction dimension, i.e., showing that surrogates of a certain prediction dimension
cannot exist, these weaker conditions translate to stronger impossibility statements.

Given a target loss £, we can define a statistic 7, the property it elicits. Intuitively, consistency
of a surrogate L with respect to £ and ~y are equivalent, i.e. in both cases estimates should
converge to values that minimize ¢-loss. We formalize this by letting 1 be the f-regret,
Ry :=Eyl(r,Y) — min. E,¢(r',Y), yiclding Lemma 1.

Lemma 1. Let a convex P C Ay be given. Given a surrogate loss L € L, link ¢, and target
loss €, set u(r,p) :==E,l(r,Y) — min,» E,£(r",Y) as the excess risk of {, R¢. Then there is
a D covering P such that (L,v) is D-consistent with respect to £ if and only if (L,v) is
(i, D)-consistent with respect to ~y := propp[{].

Proof. First, observe that u(r,p) =0 <= El(r,Y) = infer EJ(r,Y) < r € ~(p).
Now suppose (L, 1) are consistent with respect to £, and take any sequence { f,, } of measurable
hypotheses. Rewriting the right-hand side of Definition 9,

Epl(y o fm(X),Y) — infs Epl(y o f(X),Y) (5)
= ExRy(yo frn(X),Dx)— 0
i EX,U,(’l/)Ofm(X),Dx)—)O . (6)
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Therefore, EpL(fm(X),Y) — inf EpL(f(X),Y) implies (5) if and only if it implies (6).
Observe that the assumptions on £ allow us to apply the Fubini-Tonelli Theorem [16,
Theorem 2.37], which yields the equivalence of eq. 5 to the next line. O

Because each target loss in L elicits some property, but not all target properties can be
elicited by a loss (e.g. the variance), consistency with respect to a property is the strictly
broader notion. In a loose sense, Proposition 1 lets us translate problems about target losses
to be about the properties these losses elicit. This points to indirect elicitation as a natural
necessary condition for consistency, as formalized in Proposition 1.

Proposition 1. For a surrogate L € L, if the pair (L,v) is consistent with respect to a
property v : P = R or a loss € eliciting v, then (L, 1) indirectly elicits .

Proof. By Lemma 1, it suffices to show the result for consistency with respect to a property =,
setting v := propp[¢] if £ is given instead. We show the contrapositive; suppose (L, 1) does not
indirectly elicit v, meaning we have some p € P so that u € I'(p) but ¥(u) & v(p), where I" :=
propp[L]. Observe that we use the fact I'(p) # 0. By definition, if we had consistency, there
must be some distribution D on X' x ) with a point mass on some z € X and D, = p. Consider
a constant sequence {f,} with f,, = f’ such that f'(z) = u, so that EpL(f(X),Y) =
Ep, L(fm(2),Y) =E,L(u,Y). Since u € I'(p), we have E,L(u,Y) = infs Ep L(f(z),Y) =
inf; EpL(f(X),Y). In particular, we have Ep L(f(X),Y) — inf; Ep L(f(X),Y). However,
we have Ex (¢ o f,(X), Dx) = pu(fim (), p) = p((u),p) # 0, since (u) € v(p). Therefore
(L,) is not consistent with respect to v (Definition 10). O

This result allows us to state elicitation complexity as a lower bound for convex consistency
dimension.

Corollary 1. Given a property v : P = R or loss £ : R x Y — R eliciting v, we have
eliceyx () < conseyx () = conseyx (£).

B Implications of Convex Indirect Elicitation Bounds

We start by fully proving Theorem 1.

Theorem 1. Let I': P = R? be (directly) elicited by L € LS for some d € N. Let Y be
either a finite set, or Y =R, in which case we assume each p € P admits a Lebesgue density

supported on the same set for all p € P.* For all u € rangel’ and p € 'y, there is some
d-flat F such thatp € F CT,.

Proof. As L is convex and elicits T, we have u € T'(p) <= 0 € 9E,L(u,Y). We proceed in
two cases, depending on |Y].

Finite Y: 1f Y is finite, this is additionally equivalent to 0 € ®ypyOL(u,y), where @ denotes
the Minkowski sum [23, Theorem 4.1.1].° Expanding, we have ®,p,0L(u,y) = {Eyeypyxy |
zy € OL(u,y) Vy € Y}, and thus Wp = Zypyxy = 0 where W = [z1,...,2,] € R,
cf. [33, A™ in Theorem 16]. Let V,, : ¥ — R4y — W, be the function encoding the
columns of W. Observe that E,V,, , = 0.

Y =R: Any L € L3 satisfies the assumptions of [24], so we may interchange subdiffer-
entiation and expectation. Specifically, letting V,, = {V : ¥ — R? | V measurable, V (y) €
OL(u,y) p-a.s.}, we have OB, L(u,Y) = { [ V(y)dp(y) | V € Vup}. As 0 € OE,L(u,Y), in
particular, there is some V,, , € V,, ;, such that E,V, , = 0. For any ¢ € P, as by assumption
q is supported on the same set as p, we have V,, ,(y) € L(u,y) g-a.s., so that V,, , € V4.
Thus, E;V, , = 0 implies 0 € 0E,L(u,Y) by the above.

4This assumption is largely for technical convenience, to ensure that V,,, does not depend on p.
Any such assumption would suffice, and we suspect even that condition can be relaxed.
°0 represents the subdifferential 8f(z) = {2 : f(z') — f(z) > (2,2’ — 2) V2'}.
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In both cases, we take the flat F' := kerp V,, ,, and have p € F' by construction. To see
F C Ty, from the chain of equivalences above, we have for any ¢ € P that ¢ € kerp V,,,, =

0B, L(u,Y) = uecl(q) = qeTl,. O

In order to apply Theorem 1 to various properties, we need the following lemmas about
separating hyperplanes.

A hyperplane weakly separates two sets if its two closed halfspaces respectively contain the
two sets.

Lemma 2. Ifv:P =R is an elicitable property, then for any pair of predictions r,7’ € R
where v, # Yy, there is a hyperplane H = {x € RY : v-x = 0}, for some v € RY, that weakly
separates v, and vy and has v, NV H = v N H = v, Ny,

Proof. Let { elicit v. Let v = £(r,-) — £(r',-), interpreted as a nonzero vector in RY. Let
H={q:v-q=0}. Ifv-q <0, then 7’ cannot be optimal, so ¢ & v,». So v~ C {q:v-q > 0}.
Symmetrically, v C {¢ : v-q < 0}. This is weak separation, and it immediately implies
that v N~ C H. Finally, if and only if v-q =0, i.e. ¢ € H, by definition the expected
losses of both reports are the same. So ¢ € v, N H <= ¢ € v~ N H. This gives
Y NH =7 NH=7 Ny NH =N O

Lemma 3. Suppose we are given an elicitable property v : P = R, where Y is finite, and
distribution p € relint(P) such that p € . Ny for r,r’ € R. Then for any flat F containing
p, FCr. < F Cryp.

Proof. 1If 7, = ~,., we are done. Otherwise, Lemma 2 gives a hyperplane H = {x € RY :
v-2 =0} and a guarantee that v, C {¢ € Ay :v-¢ < 0}, while y» C{g€ Ay :v-q >0},
and finally v N~ C H.

Suppose F' C v,.; we wish to show F' C 7,.. Let ¢ € F. By Lemma 7(i), we have p € relint(F),
so there exists € > 0 so that ¢ =p —€e(¢—p) € F.

Now, suppose for contradiction that ¢ ¢ ~,». Then v-¢ < 0: containment in ~, gives
v-q<0,andifv-¢q=0then qe€vy.NH = q € v, a contradiction. But, noting that

p € H, we have v- ¢ = —€¢(v - q) > 0, so ¢ is not in 7,. This contradicts the assumption
F C ~,. Therefore, we must have ¢ € v,+, so we have shown F C v,.. Because r and r’ were
completely symmetric, this completes the proof. O

Now we can understand the application of Theorem 1.

Corollary 2. Let target property v : P = R and d € N be given. Let Y be either a finite
set, or Y =R, in which case we assume each p € P admits a Lebesgque density supported on
the same set for all p € P. Let p € P with |y(p)| = 1, and take v(p) = {r}. If there is no
d-flat F with p € F C 7, then conscyx(7y) > eliceyx(y) > d + 1.

Proof. Let (L,) indirectly elicit v, where L € £, and let I" = propp[L]. As T is non-
empty, there is some u € T'(p). Since 7 is single-valued at p, we have r = 1)(u); by Theorem 1,
we know there is a d-flat F' = kerp V,,, so that p € F C I'y. By definition of indirect
elicitation, we additionally have ', C .. Thus, we have p € F C ~,. If no flat F satisfies
the above conditions, then no L € £5™ indirectly elicits v, so eliceyx () > d + 1, and recall
CONScyx (7Y) > eliceyx () by Corollary 1. O

Corollary 3. Let an elicitable target property v : P = R be given, where P C Ay is defined
over a finite set of outcomes ), and let d € N. Let p € relint(P). If there is no d-flat F with
p € F C,, then conscyx(y) > eliceyx(y) > d + 1.

Proof. Let (L,) indirectly elicit v and the convex function L and elicit I'. As I is non-empty,
there is some u € I'(p), and suppose 1’ = ¢(u). Take F' C T, to be the flat that exists by
Theorem 1. If r = 7/, then p € FF C T",, C , by indirect elicitation. Otherwise, by Lemma 3,
for elicitable properties with p € v, N ~,., we observe p € F C v, <= p € F C 7.

As above, if no flat F satisfics the above conditions, then no L € £ indirectly clicits «y, so
€onScyx (7) > eliceyx () > d + 1, recalling Corollary 1 for the first inequality.

15



C Definitions of Calibration

When given a discrete target loss, such as for classification-like problems, direct empirical
risk minimization is typically NP-hard, forcing one to find a more tractable surrogate. To
ensure consistency, the literature has embraced the notion of calibration from Steinwart and
Christmann [40, Chapter 3], which aligns with the definition in Tewari and Bartlett [41]
for multiclass classification, and its generalizations to arbitrary discrete target losses [2, 33].
Calibration is more tractable and weaker than consistency, yet the two are equivalent under
suitable assumptions [33, 41], notably in Quadrant 1. Intuitively, calibration says one cannot
achieve the optimal surrogate loss while linking to a suboptimal target prediction.
Definition 11 (Calibrated: Quadrant 1). Let £: R x Y — R be a discrete target loss. A
surrogate loss L : R x Y — R and link v : R* — R pair (L,1) is P-calibrated with respect
to £ if

VpeP: E,L(u,Y) > inf E,L(u,Y) . (7)

inf
u€R¥p(u)gargmin, E,0(r,Y) u€Rd

We simply say L is calibrated if P = Ay.

Many works characterize calibrated surrogates for specific discrete target losses [3, 28, 41, 44],
including the canonical 0-1 loss for binary and multiclass classification. We give another
definition of calibration which is a special case of calibration via Steinwart and Christmann
[40], and show it is equivalent to Definition 11 in discrete prediction settings, but can be
applied in continuous estimation settings as well. We use this more general definition of
calibration when proving statements about the relationship between consistency, calibration,
and indirect elicitation.

The close connection between indirect elicitation and consistency was first explored by
Agarwal and Agarwal [2]. In particular, calibration of L € £ with respect to ¢ implies
indirect elicitation quite directly: take u € R? and p € T, implying u € I'(p). From eq. (1),
E,L(u,Y) =inf,/ cga E,L(v,Y), so we must have ¢(u) € v(p) from eq. (7), as desired.

For a given p € P, the (conditional) regret, or excess risk, of a loss L is given by Ry (u,p) :=
E,L(u,Y) — inf,- E,L(u*,Y).

Definition 12 (Calibrated: Quadrants 1 and 3). A loss L : RYx Y — R is P-calibrated with
respect to a loss £ : R x Y — R if there is a link ¢ : RY — R such that, for all distributions
p € P, there exists a function ¢ : Ry — Ry with ¢ continuous at 07 and ((0) = 0 such that
for all u € R, we have

£((u);p) — Up) < C(BpL(u,Y) — L(p)) - (8)
If P = Ay, we simply say (L,) is calibrated.

Consider the following four conditions: Suppose we are given ¢ : Ry — R,..

A ( satisfies ¢ : 0 — 0 and is continuous at 0.

B éen =0 = ((en) = 0.

C Given ¢ : R — Ry, for all u € R, Ry(¢(u);p) < (R (u;p)).

D For all p € P and sequences {u,, } so that Ry, (um,;p) — 0, we have Ry(¢)(um);p) — 0.

The existence of a function ¢ so that (A A C') defines calibration as in Definition 12, and we
show A <= B in Lemma 4. Lemma 5 shows calibration if and only if D, which yields a
condition equivalent to calibration without dependence the function (.

Proposition 3. When R and Y are finite, a continuous loss and link (L, ) are P-calibrated

with respect to a target loss £ via Definition 12 if and only if they are P-calibrated via
Definition 11.

Proof. = We prove the contrapositive; if (L, ) is not calibrated with respect to £ by Def-
inition 11, then it is not calibrated via Definition 12 either. If (L, 1)) are not calibrated with
respect to £ by Definition 11, then there is a p € P so that inf,., )¢ ) Epl(u,Y) =
inf, E,L(u,Y). Thus there is a sequence {un,} so that lim, o ¥(um,) € (p) and

16



E,L(tum,Y) — L(p). Now we have Ry, (tn;p) — 0 but Re(¢(um);p) # 0, so by Lemma 5,
we contradict calibration by Definition 12.

<= Suppose there was a function ¢ satisfying the bound in eq. (8) for a fixed distribution
p € P. Observe the bound in eq. (7) can be written as Ry, (u,p) > 0 for all p € Ay and u
such that ¥ (u) # v(p). By eq. (8), for any sequence {u,,} so that ¥(u.,) 4 v(p), we have
must have (R (v (um),p)) # 0 as we would otherwise contradict the bound in eq. (8) since
Re(¢(u),p) 4 0. Therefore Ry, (um,p) # 0; thus, the strict inequality holds. O

The following Lemma shows that conditions A and B are equivalent, so that we can using
condition B in lieu of condition A in the proof of Lemma 5

Lemma 4. A function { : R — R is continuous at 0 and {(0) = 0 if and only if the sequence
{um} =0 = ((um) — 0.

Proof. = Suppose we have a sequence {u,,} — 0. By continuity, we have lim,, 0 ((um) =
¢(0) =0, so ((um) — 0.

<= Suppose ((0) # 0 but ¢ was continuous at 0. The constant sequence {u,,} = 0 then
converges to 0, but as ¢ is continuous at 0, we must have lim,, oo {(uy,) = ¢(0) # 0, so

C(um) # 0.

Now suppose ¢(0) = 0 but ¢ was not continuous at 0. There must be a sequence {um,} — 0
so that lim,—e0 C(um) # €(0) = 0, so {(um) # 0. O

Lemma 5 now gives a condition equivalent to calibration without requiring one to already
have a function ¢ in mind.

Lemma 5. A continuous surrogate and link (L, 1) are P-calibrated (via definition 12) with
respect to € if and only if, for all p € P and sequences {u,,} so that Ry (um;p) — 0, we have
Re(¢(um);p) = 0.

Proof. = Take a sequence {u,,} so that Rp(u,;p) — 0. Since ¢(0) = 0 and ¢ is
continuous at 0, we have (R (u.,;p)) — 0. As the bound from Equation (8) is satisfied for
all u € R? by assumption, we observe

Vm, 0<L Rg(i/)(um);p) < C(RL(um;p))
= 0< lim Re(t)(un)ip) < lim ((Rp(umip)) =0

m—o0

= () = 11_1)11 Ry(v(um);p) -

<= Fixp € P, and consider ((c) := sup,,.g, (4 p)<c Re(¥(u);p). We will show Ry, (um;p) —
0 = Re(¥(um);p) — 0 gives calibration via the function ¢ constructed above. With ¢ as
constructed, we observe that the bound in equation (8) is satisfied for all u € R? and apply
Lemma, 4 to observe that if there is a sequence {€,,} — 0 so that {(e,,) # 0, it is because

RL(umap) 7L> 0 /ﬁ Rl(ib(um)»p) — 0.

Now, we observe that the bound in Equation (8) is satisfied for all u € R? by construction of ¢.
Let S(v) := {u' € R*: Rp(u';p) < Re(v,p)}. Showing Re(y(u);p) < supyes(u) Re(¥(w');p)
for all u € R? gives the condition C. As u is in the space over which the supremum is being
taken (as Ry (u;p) < Rp(u;p)), we then have calibration by definition of the supremum.

Now suppose there exists a sequence {¢,,} — 0 so that ((e,,) # 0. Consider S(e) = {u €
Re: Rp(u,p) < €}

€1 < e = S(e1) C S(ea)
= ((e1) < ((e2) -

Now suppose there exists a sequence {u,,} so that Ry (u,,p) — 0. Then for all € > 0, there
exists a m’ € N so that Ry, (um,p) < € for all m > m/. Since this is true for all €, we have
S(€) nonempty for all € > 0, and therefore ¢(c) is discrete for all ¢ > 0. Now if {(e,,) 4 0, it
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must be because Ry(¢(um),p) # 0 for some sequence converging to zero surrogate regret,
and therefore we contradict the statement Ry (um,p) = 0 = Ry¢(¢(um),p) — 0.

Moreover, we argue that such a sequence of {u,,} with converging surrogate regret always
exists by continuity and boundedness from below of the surrogate loss, since we can take
the constant sequence at the (attained) infimum. O

C.1 Relating calibration, consistency, and indirect elicitation.

Even with the more general notion of calibration that extends beyond discrete predictions,
we still have consistency implying calibration.

Proposition 4. If a loss and link (L,v) are consistent with respect to a loss £, then they
are calibrated with respect to (.

Proof. We show the contrapositive. If (L,v) are not calibrated with respect to ¢, then
there is a sequence {u,,} such that Rp(um,;p) — 0 but Ry(¢(um);p) 4 0 via Lemma 5.
Suppose D ~ X x Y has only one x € X with Prp(X = z) > 0 so that p := D, and
Epf(X,Y)=E,f(z,Y). Consider any sequence of functions {f,,} — f with f,,,(z) = u,
for all fp,. Now we have EpL(fn(X),Y) = infs EpL(f(X),Y), but Epl(¢ o f(X),Y) /A
infy Epl(y o f(X),Y), and therefore (L,) is not consistent with respect to £. O

Moreover, we have calibration implying indirect elicitation.

Lemma 6. If a surrogate and link (L,v) with L € L are calibrated with respect to a loss
0:R x )Y — R, then L indirectly elicits the property 7y := propp[{].

Proof. Let T' be the unique property directly elicited by L, and fix p € Ay with u such that
p € I'y. We know such a u exists since I'(p) # 0. As p € Ty, then ((E,L(u,Y) — L(p)) =
¢(0) = 0, we observe the bound £(¢)(u); p) < £(p). We also have £(y)(u); p) > £(p) by definition
of £, so we must have £(1(u); p) = £(p) = £(y(p); p), and therefore, p € vy (,). Thus, we have
'y € Yy(u), 80 L indirectly elicits . O

Combining the two results, we can observe the result of Proposition 1 another way: through
calibration.

D Quadrant 1: Previous Lower Bounds and Comparisons

The main known technique for lower bounds on surrogate dimensions is given by Ramaswamy
and Agarwal [33] for the Quadrant 1 (target loss and discrete predictions). The proof heavily
builds around the “limits of sequences” in the definition of calibration. By restricting slightly
to the broad class of minimizable losses £LV*, we show their bound follows relatively directly
from Corollary 3. (We conjecture that the minimizability restriction to £°V* can be lifted;
see § 5.) Ramaswamy and Agarwal [33] construct what they call the subspace of feasible
dimensions and give bounds in terms of its dimension.

Definition 13 (Subspace of feasible directions). The subspace of feasible directions S¢(p) of a
convex set C CR™ atp € C is Se(p) = {v € R™ : e > 0 such that p+ev € C Ve € (—¢€p, €0)}-

Ramaswamy and Agarwal [33] gives a lower bound on the dimensionality of all consistent
convex surrogates, i.e. conseyx(£) > [|pllo —dim(S,, (p)) —1 for all p and r € v(p), particularly
in the setting where one is given a discrete prediction problem and target loss over finite
outcomes. It turns out that the subspace of feasible directions is essentially a special case of
a flat described by Theorem 1. So, by making a slight restriction to the class of minimizable
convex surrogates L°V*, we can derive this lower bound from our general technique in a way
that we find shorter and simpler.

Corollary 6 ([33] Theorem 18). Let £: R x Y — R be a discrete loss eliciting v: Ay = R
with Y finite. Then for all p € Ay and r € v(p),

consen() > [lpllo — dim(S,, (p)) — 1 . (9)
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Sketch. If conscyx(y) < d, then there is a L € L3 so that L is consistent with respect to
~, and in turn, indirectly elicits 7. Theorem 1 says that there is some d-flat F' = kerp V'
such that p € F' C ,. In particular, if p € relint(Ay), we can see dim(F) = dim(S,, (p)).
Since affhull(Ay) has dimension V| — 1 = ||p|lo — 1, by rank-nullity and rank(V') < d (more
precisely, the corresponding linear map ¢ — E, V') we have d > ||p|lo — 1 — dim(S,,.(p)).

When p & relint(Ay), we can project down to the subsimplex on the support of p, again of
dimension ||p||o — 1, and modify L and ¢ accordingly. Now p is in the relative interior of this
subsimplex, so the above gives conscyx () > ||pllo — 1 — dim(S,, (p)), where now S is relative
to RsUPP(P)  Finally, the feasible subspace dimension in the projected space is the same as in
the original space because of p’s location on a face of Ay. O

There are some cases where the bound provided by Corollaries 2 and 3 is strictly tighter than
the bound provided by feasible subspace dimension in Corollary 6. For an example of how
Corollary 2 applies to a discrete property for which there is no target loss — a non-clicitable
property, i.e. Quadrant 2, which is not considered by Ramaswamy et al. [34] — we refer the
reader to Figure 3.

Example: Abstain Recall the abstain target loss (9%(r,y) = I{r ¢ {y,L}} +
(1/2)I{r = L}, we can consider the abstain property it elicits, where one predicts the most
likely outcome y if Pr[Y = y|z] > 1/2 and “abstain” by predicting L otherwise. Ramaswamy
and Agarwal [33] present a convex surrogate for the abstain loss that takes as input a
prediction whose dimension is logarithmic in the number of outcomes, yielding new upper
bounds on conseyy (£4°%) which are an exponential improvement over previous results, e.g., [9].

To lower bound the dimension of convex surrogates, we can consider two different distributions;
in the first, our bound yields a strict gap over the feasible subspace dimension bound,
and in the second, the bounds are equal. First, we choose p = e to be the uniform
distribution (see Figure 4). In this case, the bound by feasible subspace dimension yields
conscvx(ﬁabs) >3 —2—1=0, as the feasible subspace dimension is 2 since we are on the
relative interior of the level set and simplex, as shown in Figure 4 (L).

However, consider any 1-flat containing e. When intersected with the simplex, one can see
that any line (a 1-flat, since ® € relint(Ay)) in the simplex through e also leaves the cell v,
which contains p. See Figure 4 (R) for intuition; a 1-flat through p € relint(Ay) would be a
line in such a figure. Therefore, we have no 1-flat containing p staying in «,, so we obtain a
better lower bound, cons.yy (£?%*) > 2. Combining this with the upper bounds given by [34],
we observe the bound consgx (£2%%) = 2 is tight in this case with |Y| = 3.

Our bounds sometimes match those of [33]; consider the distribution x = (1/4,1/4,1/2),
shown in Figure 4. The feasible subspace dimension of both v, and 73 at x is 1, since one
only moves toward the distributions (0,1/2,1/2) and (1/2,0,1/2) without leaving the level
sets, and the three points are collinear in afthull(Ay), suggesting Sy, (¢) = 1. This yields
CONSeyx (£2%) > 3 —1—1 = 1. The same line segment defines a flat contained in both v, and

73, 50 we have conseyy (£9%) > 1 by Corollary 3, matching the feasible subspace dimension
bound.

Bounds using d-flats appear to work well at distributions where previous bounds via feasible
subspace dimension would have been vacuous. In essence, flats allow us a “global” view of
the property we are eliciting, while the feasible subspace method only permits a “local” look
at the property, so we find our method works better for distributions in relint(Ay).

D.1 Reconstructing Ramaswamy and Agarwal [33, Thm. 16]

Lemma 7. Let the d-flat F' C P (defined over finite J) contain some p € relint(P). Then
(i) p € relint(F);
(i) dim(Sp(p)) > dim(affhull(P)) — d.
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Figure 4: (Left) Feasible subspace dimension S, (e) = 2 and S, (*) = 1, giving the bound
CONSeyx(£9%°) >3 — 1 — 1 = 1. (Right) No 1-flat through e (a line since o € relint(Ay)) stays fully
contained in v, SO cONSeyx (£2%) > 2.

Proof. As F is a d-flat, we have some W : ) — R? such that F' = kerp W. Throughout,
given a point (typically a distribution) p and convex set P, we define P, := P — {p}. Define

Ty : span(P,) — R4 v — E,W.

(i) Since p € relint(P), for all ¢ € P, there is some small enough € > 0 so that for all
a € (—¢,€), the point ¢, := p — a(q — p) is still in P. In particular, for ¢ € F, we claim
o € F. As p,q € F, we have E,W = E,W = 0. By linearity of expectation, we then have
E, W = 0. This implies ¢, € F, and therefore p € relint(F).

(i) We first show span(F),) = Sp(p). First, take v € Sp(p), and take €y as in the definition.
For € = €y/2, we then have p+ ev € F => ¢ev € F,, and therefore, v € span(F),). Now take

v € span(F,). Since p € relint(F) (i), we have 0 € relint(F,). Therefore there is an ¢y > 0
so that ev € F), for all € € (—ep, €9) by convexity of F. Therefore, v € Sp(p), and we observe

Sr(p) = span(F,).

We now show Sg(p) = ker(Tw ). Observe that Sp(p) C ker(Tyy ) follows trivially from the
definitions of the two functions. Now let v € ker(Tyy), and v’ € Fj,. This means E,W = 0,
so it suffices to show v = cv’ € F),, thus showing v € Sp(p). Since p € relint(P), we must
have 0 € relint(F},), so we know there is some small enough ¢ > 0 so that —av’ € F, for
a € (—¢,€). Take ¢ = —a, and we conclude v € Sp(p). Therefore, ker(Tyw ) = Sr(p).

We finally want to show dim(affhull(P)) = dim(span(P,)). Consider that any ¢ € span(P,)
can be written as a scalar multiple of an element of P,, which can be written as a convex

combination of elements of the minimal basis P,. In particular, since 0e Pp, it can be
written as an affine combination of elements of the basis, so dim(affhull(P)) > dim(span(P,)).
We also have afthull(P) — {p} C span(P,), so dim(afthull(P)) = dim(afthull(P) — {p}) <
span(P,). Therefore, dim(afthull(P)) = dim(span(P,)).

As Y is a finite set, span(P,) is a finite-dimensional vector space. The rank-nullity
theorem states dim(im(Tw)) + dim(ker(Tw)) = dim(span(Pp)) = dim(affhull(P)). As
dim(im(Tw)) < d, and we have shown above that Sp(p) = span(F,) = ker(Tw), the
conclusion follows. O

Corollary 6 ([33] Theorem 18). Let £ : R x Y — R be a discrete loss eliciting v : Ay = R
with Y finite. Then for all p € Ay and r € y(p),

conseyx () 2 [|pllo — dim(S,, (p)) — 1. (9)

Proof. Let L € L3™ be a calibrated surrogate for £, and let I' := propa,,[L]. Consider
YV :={yeY:p, >0} and p' = (py)yey € Ayr. Take L' := L|y and ¢' := {|y.. Define
h:RY" — Ry such that h(q') = ¢ such that qy = q, for y € Y" and ¢, = 0 otherwise. Take
I"=Toh,y =vo0h.

We wish to first show L’ indirectly elicits «’. Since L indirectly elicits v, we have a link
¢ such that for all u € RY, T, C yy,. As I(q) = T'(h(q)) and v/(q) = v(h(q)), we have
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qell, < h(q €Ty = h(Q) € W <= (@)yey € ’y:b(u)’ and therefore, L'
indirectly elicits 7' via the link 1) o proj()”’), where proj(y’) : ¢ — (qy)yey-
We aim to show dim(S,, (p)) > dim(S,, (p')). We do this by showing that (S, (p)) € S, (p),

and the result holds as h is linear and injective. Suppose v € h(S,/ (p')), then there exists
a v’ so that v = h(v') and an ey > 0 such that ev’ + p’ € ~/ for all € € (—€p,€p). Since
h is linear and recall h(v).) C ~,, this implies ev + p € ~, for all € € (—€g, €9). Therefore

v € S5, (p), and the result follows.

As L’ indirectly elicits 4', by Corollary 3, we know there exists a d-flat F with p’ € F C ~/.
Taking P = Ay, we know p’ € relint(Ay-) by construction, so we can apply Lemma 7(ii),
which gives dim(Sg(p’)) > dim(affhull(Ay/)) —d = ||p|lo — 1 — d.® Additionally, Sp(p) C
S, (p") by subset inclusion of the sets themselves. Chaining these results, we obtain

dim(S,, (p)) > dim(S,, () > dim(Sp(p)) > [Ipllo —1—d .

/
r

E Proof of Theorem 2

Throughout this section, we will assume P is convex. See Frongillo and Kash [20, §E.5] for a
discussion of how to relax this assumption.

E.1 General setting of elicitation complexity

We briefly introduce the general notion of elicitation complexity, of which Definition 6 is a
special case, as some statements are more naturally made in this general setting.

Definition 14. T” refines T' if for all v’ € rangeI" there exists r € rangeI’ with I", C T,.

Equivalently, T refines T' if there is a link function ¢ : rangeI”¥ — rangeI’ such that
IV, C Ty for all 7' € rangeT”.

Definition 15. For k € NU {0}, let E(P) denote the class of all elicitable properties
[':P— Rk and E(P) = Ukenugoo Ek(P). When P is implicit we simply write €.
Definition 16. Let C be a class of properties. The elicitation complexity of a property T’
with respect to C, denoted elice(T), is the minimum value of k € NU {oco} such that there
exists I' € CN E(P) that refines I

E.2 Supporting statements

Proposition 5 (Osband [31]). Let T be elicitable. Then T, is convez for all r € rangeT.

Lemma 8 (Set-valued extension of Frongillo and Kash [20, Lemma 4]). IfI” refines T' then
elice (I) > elice(T).

Proof. As TV refines I', we have some 1) : range I — rangeI" such that for all ' € rangeI”
we have I', C T'y(,+). Suppose we have I' € C and ¢ : rangeT' — rangeT" such that for all

u € range ' we have ', C 1":0 ) Then for all u € rangef‘ we have T, C F:O(u) C T (gop)(u)-

(u

In particular, if elice (I') = m, then we have such a [': P = R™, and hence elicc (I < m.

has Bayes risk L. Then for any p,p’ € P with T'(p) # T'(p'), we have L(Ap+ (1 — \)p’) >
AL(p) + (1 = N L(p") for all X € (0,1).

Lemma 10 (Adapted from Frongillo and Kash [20, Theorem 4]). If L elicits a single-valued
', and I" refines L, then I refines I

5To reason about dim(affhull(Ayr)) = |p|lo — 1, observe that the uniform distribution on Ay
has full support and therefore requires ||p|lo — 1 elements in its basis.
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Proof. Suppose for a contradiction that I' does not refine T'. Then we have some u € rangef‘
such that for all € range T we have 'y € T',.. In particular, recalling that T is single-valued,
we must have p,p’ € I’y such that T'(p) # T'(p/). Moreover, as I refines L, we also have
L(p) = L(p'). From Lemma 9 and A = 1/2 we have L(q) > $L(p) + +L(p') = L(p), where
q= %p + 19/, As the level set I, is convex by Proposition 5, we also have q € fu, and hence
L(q) = L(p), a contradiction. O

Lemma 11 (Minor modifications from Frongillo and Kash [20]). Let V be a real vector
space. Let f :V — RF be linear and C CV conver with spanC =V, and let m € N. Suppose
that 0 € int f(C), and for all v € S := C Nker f, there exists a linear fv :V = R™ with
veCnkerf, CS. Thenm > k. If m = k, we additionally have 0 € int ﬁ,(C) for some
veES.

Proof. The condition 0 € int f(C) is equivalent to the existence of some vy, ... vk € C such
that 0 € intconv{f(v;) : ¢ € {1,...,k+1}}. Let aq,..., a1 > 0, Zk:ll a; = 1, such that

i
Zi; a;f(v;) = 0. As these are barycentric coordinates, this choice of «; is unique, a fact

which will be important later. We will take v = Zf:ll a;v;, an element of C' by convexity,

and thus an element of S as f(v) = 0.

Let fv :V — R™ be linear with v € S := C’Okerfv CS. Let B1,...,8k11 € R, Zf:ll Bi =0,
such that Zf;l Bi fv (v;) = 0. We will show that the 3; must be identically zero, i.e. that
{fo(v;) i€ {1,...,k+1}} are affinely independent. By construction, v’ := Zf:ll iU €
ker fm and as v € ker fv, for all A > 0 we have vy ;= v+ M\ = Zf:ll(az + ABi)v; € ker fv.
Taking A sufficiently small, we have ~; := a; + AB; > 0 for all ¢, and Zf;l ¥ = Zf:ll o; +

/\Zfill B; = 1. By convexity of C, we have vy € C. Now vy € C ﬂkerfv CS=Cnkerf,

and in particular vy € ker f. Thus, f(vy) = Zf:ll ~vif(vi) = 0. By the uniqueness of
barycentric coordinates, for all ¢ € {1,...,k + 1}, we must have v; = ; and thus 8; = 0, as
desired.

As f,(C) contains k + 1 affinely independent points, we have m > dimimf, > k. When
m = k, by affine independence, the set conv{ fv(vi) :1€{1,...,k+1}} has dimension % in
RF. As 0 = fu(v) = Zf;l a; fo(v;), and o; > 0 for all 4, we conclude 0 € int conv{f,(v;) :
ic{l,....k+1}} Cint f,(O). O

Lemma 12 (Frongillo and Kash [20, Lemma 14]). Let V be a real vector space. Let

f:V = RF be linear, C CV conver with spanC =V, and let S = C Nker f. If 0 € int f(C)
then spanS = ker f.

E.3 Proving the lower bound for Bayes risks

Let C; be the class of properties I' which are elicited by a convex loss L € L5'* for some
d € N, and let C* := [J;eyC;- Then for all properties v, if elice-(v) < oo, we have
elice« () = elicevx (), a fact we use tacitly in the proof.

Theorem 2. Let P be a convex set of Lebesque densities supported on the same set for all
p€P. Let T : P — RY satisfy Condition 1 for some r € R%. Let L € L elicit I such that
L is non-constant on I',.. Then conscyy(L) > eliceyx (L) > d + 1.

Proof. Let V : Y — R% and r be given by the statement of the theorem and from Condition 1.
Let m = elice« (L), so that we have I' € C¥, which refines L. By Lemma 10 we have T refines

We now establish the conditions of Lemma 11 for C = P. Let f : spanP — R, p— E,V.
From Condition 1, we have 0 € int f(P) and ker fNP = kerp V =1I'.. Now let p € I,

be arbitrary, and take any u € f(p) As T is single-valued, r € rangel is the unique
value with p € T'.. As T refines T', there exists ' € rangeT’ with I';, C T',, and since
p € I'y, we conclude 7 = r from the above. From Theorem 1, we have some V, , with
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p € kerpV,, CT, CT, = kerp V. Letting f, : spanP — R, p s E,V, ,, we have now
satisfied the conditions of Lemma 11. We conclude m > d, and moreover, if m = d, then
there exists some ¢ € I, such that 0 € int fi(P).

Now suppose m = d for a contradiction. Let S := ker fqNP. Applylng Lemma 12 to the
functions f and fq we have spanker f = spanl’,. and span ker fq = bpanS As § C T, we
have ker fq = SpanS C spanl’, = ker f. By the first isomorphism theorem, we also have
codim ker fq = codim ker f = d, as the images of these linear maps span all of RZ. By the
third isomorphism theorem we conclude I, = S. Moreover, as S - r « C I', we have
S=T,=r,.

We now see that L is constant on I',. since there is some link function % : R™ — R such
that T, = I, C Ly, meaning L(p) = ¢(u) for all p € T',.. This statement contradicts the
assumption that L is non-constant on I',. ]

F Omitted Discussion and Examples

F.1 Note on restricting minimizable assumption

While some popular surrogates such as logistic and exponential loss are not minimizable, these
losses are still covered in Corollary 3 and Theorem 2 as T'(p) # @) when p € P := relint(Ay);
moreover, by thresholding L'(u,y) = max(L(u,y),€) for sufficiently small e > 0 we can
achieve L' € L for both. We expect that a generalization of property elicitation which
allows for “infinite” predictions (e.g., along a prescribed ray) would allow us to assume
minimizability without loss of generality, as convex losses would always admit this more
general minimizer.

F.2 Lower-bounding the convex consistency dimension of the variance

Corollary 7. Let P be a set of continuous Lebesque densities on' Y = R with all p € P having
the same support. If there exist p,q,q' € P with E,Y =E,)Y # E,Y and Var(p) # Var(q),
then conseyx(Var) = elicey (Var) = 2.

Proof. For the upper bound, we may elicit the first two moments via the convex loss
L(r,y) = (11 —y)? + (r2 — y?)?, and recover the variance via ¥(r) = ry, — 7%, giving
eliceyx(Var) < 2. Now for the lower bound. Without loss of generality, E;Y < E¢Y. Let r =
iE,Y 4+ 3E,Y, and define V: Y - R,y —y —r. Thenkerp V ={p' € P |E,Y =r} =T,
where I' : p’ — E,Y is the mean. As E;Y < r < E,Y, we conclude E;V < 0 < E,/V.
We have now satisfied Condition 1 for d = 1. To apply Theorem 2, it remains to show
that Var is non-constant on I',.. By our assumptions and the definition of Var, we have
E,Y? # E,Y?. Letting p1 = 3¢+ 3¢/, p2 = 5p + 2¢/, we have E,, )Y = r for i € {1,2}, but
E, Y?= %IE]qY2 + %Iﬁlq/Y2 % %IE]UY2 + %Eq/YQ =E,,Y?. As pi,p> have the same mean but
different second moments, we conclude Var(p;) # Var(pz). O
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