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Abstract

The adversarial training is a popular tool to remedy the vulnerability of deep learn-
ing models against adversarial attacks, and there is rich theoretical literature on the
training loss of adversarial training algorithms. In contrast, this paper studies the
algorithmic stability of a generic adversarial training algorithm, which can fur-
ther help to establish an upper bound for generalization error. By figuring out
the stability upper bound and lower bound, we argue that the non-differentiability
issue of adversarial training causes worse algorithmic stability than their natu-
ral counterparts. To tackle this problem, we consider a noise injection method.
While the non-differentiability problem seriously affects the stability of adversar-
ial training, injecting noise enables the training trajectory to avoid the occurrence
of non-differentiability with dominating probability, hence enhancing the stability
performance of adversarial training. Our analysis also studies the relation between
the algorithm stability and numerical approximation error of adversarial attacks.

1 Introduction

Successful machine learning algorithms require not only a good empirical performance but also
generalizing well to unseen data. For the robustness towards unseen data, empirical experiments
show that deep learning models can be fragile and vulnerable against adversarial input (Biggio
et al., 2013; Szegedy et al., 2014). To set an example, in image recognition problems, a deep neural
network will predict a wrong label when the testing image is slightly altered, while the change is
barely recognizable by human eyes (Papernot et al., 2016a).

Related research efforts in adversarial learning include designing adversarial attacks in various ap-
plications (Papernot et al., 2016a,b; Moosavi-Dezfooli et al., 2016), detecting attacked samples (Tao
et al., 2018; Ma and Liu, 2019), and modifications on the training process to obtain adversarially
robust models, i.e., adversarial training (Shaham et al., 2015; Madry et al., 2017; Jalal et al., 2017).

However, although adversarial training improves the adversarial robustness during testing, its gener-
alization performance is still poor. While Yin et al. (2018) presented that the adversarial Rademacher
complexity is never smaller than its natural counterpart, Schmidt et al. (2018); Zhai et al. (2019) ar-
gued that a better adversarial generalization requires more labeled/unlabeled data.

In the literature of natural DNN optimization via iterative gradient moves, the empirical loss at each
iteration can be characterized by convergence rate analysis, yet generalization properties are not well
understood. To characterize the generalization error, one popular way is to study the algorithmic sta-
bility. Algorithmic stability is first considered by Kearns and Ron (1999); Bousquet and Elisseeff
(2001, 2002). Later, Hardt et al. (2016) explored the connection between algorithmic stability and
generalization performance of gradient-type optimization. Some follow-up research studies the sta-
bility for different classes of algorithms, or relax the definition of stability to generalize its usage,
see Ramezani-Kebrya et al. (2018); Charles and Papailiopoulos (2018); Kuzborskij and Lampert
(2018); Zhou et al. (2018); Lei and Ying (2020); Ho et al. (2020); Madden et al. (2020).
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In general, there are two ways to utilize algorithmic stability. On the one hand, as showed by Hardt
et al. (2016), the algorithmic stability provides an upper bound for the generalization error; hence
it will be useful when establishing the convergence of generalization error. On the other hand, the
algorithmic stability itself is also a measure that evaluates the performance of an algorithm.

Our work extends algorithmic stability analysis to adversarial training. Our contributions are:

• Through figuring out the stability upper bound and lower bound, we argue that adversarial
training leads to poor algorithmic stability even the clean loss is smooth. To solve this
problem, we propose to inject noise into the adversarial training process. Although some
existing works proposed the usage of noise injection, we highlight that such a method is
more meaningful in adversarial training than its natural counterpart. Theoretical justifica-
tion of the noise injection method is provided for a wide range of data-generating models
in several tasks, including both linear regression and logistic classification.

• Noticing that, in practice, adversarial attacks are mostly approximated via numerical meth-
ods, e.g., fast gradient method (FGM) or projected gradient method (PGD), our theory
investigates the role of accuracy of attack approximation for the stability of adversarial
training algorithms. In short, a more accurate attack leads to better stability upper bound.

• The effectiveness of noise-injected adversarial training is further generalized to the L∞
attack. Compared with L2, L∞ training algorithm is generally less stable.

• Beyond the theoretical analysis under simple models, we provide a theory in two-layer
ReLU network with lazy training (training the hidden layer) and observe the effectiveness
of the noise injection method. We also obtain empirical evidence that for deep neural
networks model, proper forms of noise injection and more accurate attack calculation (e.g.,
PGD-k over FGM) improve the generalization error.

2 Related Works

Theories in adversarial training To theoretically understand how adversarial training works,
Sinha et al. (2018); Wang et al. (2019a) investigated the convergence of adversarial training when
the loss is strongly convex w.r.t. data attributes. In this case, it can be shown that the gradient of
adversarial loss w.r.t. model parameters is Lipschitz, leading to good stability. However, when the
loss is not strongly concave in data attributes, Xing et al. (2021a) figured out that adversarial training
does not have a Lipschitz gradient even for linear regression. Some studies in deep neural networks
(Gao et al., 2019; Zhang et al., 2020; Allen-Zhu and Li, 2020) studied the convergence of adversarial
training loss, and Allen-Zhu and Li (2020) also provided a theoretical guarantee of the adversarial
testing loss when attack strength is small enough. Some other literature in the generalization of
adversarial training can be found in Khim and Loh (2018); Awasthi et al. (2020); Pinot et al. (2021);
Xing et al. (2021b).

Observations in deep learning In terms of empirical studies, He et al. (2019); Zheltonozhskii
et al. (2020); Xie et al. (2020); Lee and Chandrakasan (2020); Wu et al. (2020) focused on improving
the performance of attack/adversarial robustness in deep learning.

In the literature, there are several ways to improve the adversarial training, including modifying the
objective function to help the convergence of the training process (Zhang et al., 2019; Wang et al.,
2019b), regularization (He et al., 2019; Zheltonozhskii et al., 2020; Wu et al., 2020), replacing non-
smooth components (Lee and Chandrakasan, 2020; Xie et al., 2020), and handling over-fitting issue
(Lee and Chandrakasan, 2020).

Stability for non-smooth loss and min-max problem Besides works in the algorithmic stability
of first-order optimization methods on smooth loss, Bassily et al. (2020) studied the case when loss
is convex but not smooth. In this scenario, the minimax lower bound and convergence upper bound
of stability together imply that stochastic gradient descent1 (SGD) and gradient descent (GD) have
poor stability. It is recommended to run SGD/GD with an extremely small learning rate for a vast
number of iterations, which implies that it is not practical to train a non-smooth model with good
stability. Consequently, adaptations are essential for non-smooth models to improve the training
process.

1We are considering sample-with-replacement SGD.
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Another recent work, Farnia and Ozdaglar (2020), considered the algorithmic stability in the min-
max problems for generative adversarial networks (GAN) to argue that simultaneous training in
generator and discriminator leads to good stability. However, besides the strongly-convex-concave
assumption in their loss, the “min-max” problem considered in GAN and adversarial training are
not the same. These two differences lead to different conclusions between GAN and adversarial
training.

3 Stability of adversarial training

In this section, we study the uniform argument stability (UAS) of adversarial training. Utilizing the
notations introduced in Section 3.1, we present in Section 3.2 the upper and lower bounds of UAS.
Section 3.3 studies the effect of attack error on stability.

3.1 Notations

Adversarial training To introduce adversarial training, let l denote the loss function and fθ(x) be
the model with parameter θ. The (population) adversarial loss is defined as

R(θ, ε) := E [l (fθ[x+Aε(fθ, x, y)], y)] ,

where Aε is an attack of strength ε > 0 and intends to deteriorate the loss in the following way

Aε(fθ, x, y) := argmax
z∈Bp(0,ε)

{l(fθ(x+ z), y)}, (1)

where Bp(x, r) is a Lp ball centering at x with radius r.

Given n i.i.d. samples S = {(xi, yi)}ni=1, the adversarial training minimizes the sample version of
R(θ, ε) w.r.t. θ:

RS(θ, ε) =
1

n

n∑
i=1

l (fθ[xi +Aε(fθ, xi, yi)], yi) , (2)

and the estimator θ̂ aims to minimize RS(θ, ε). We rewrite RS(θ, ε) as RS(θ) for simplicity when
there is no confusion.

The minimization in (2) is often implemented through an iterative two-step (min-max) update. In the
t-th iteration, we calculate the adversarial sample x̃(t)

i = xi + Aε(fθ(t) , xi, yi) based on the current
θ(t), and then update θ(t+1) based on the gradient of the adversarial training loss while fixing x̃(t)

i ’s
with learning rate ηt. The algorithm runs for T iterations. A more detailed pseudocode is postponed
to Algorithm 1 when introducing our adaptations. Note that for some loss function l or model fθ,
there may not be an analytic form for Aε (e.g. deep neural networks), and numerical methods, e.g.
FGM and PGD, are utilized to approximate Aε.

Risk decomposition Define θ0 and θ̄ as the minimizer of R and RS respectively. Then for the
algorithm output θ̂, the excess risk can be decomposed into four parts as below:

R(θ̂)−R(θ0) = R(θ̂)−RS(θ̂)︸ ︷︷ ︸
Egen

+RS(θ̂)−RS(θ̄)︸ ︷︷ ︸
Eopt

+RS(θ̄)−RS(θ0)︸ ︷︷ ︸
≤0

+RS(θ0)−R(θ0)︸ ︷︷ ︸
E=0

,

Since the last two parts are either negative or with zero expectation, we mainly focus on the first two
parts, namely, generalization error R(θ̂)−RS(θ̂) and optimization error RS(θ̂)−RS(θ̄). Based on
Hardt et al. (2016), Egen is upper bounded by algorithmic stability.

Uniform argument stability (UAS) UAS aims to quantify the output sensitivity in L2 norm w.r.t
an arbitrary change in a single data point. An algorithm is λ-UAS if for neighboring datasets S1 ∼
S2 (i.e., S1 and S2 differ only in a single data point), it satisfies that

sup
S1∼S2

‖θ̂(S1)− θ̂(S2)‖ := sup
S1∼S2

λ(S1, S2) ≤ λ.
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where ‖·‖ represents theL2 norm. Under proper conditions, the UAS bound implies a generalization
error bound (Bassily et al., 2020): if P (‖λ(S1, S2)‖ ≥ γ) ≤ κ0 for any neighboring (S1, S2), then
for any κ,

P

[
|Egen| ≥ c

(
γ(log n)(log(n/κ)) +

√
log(1/κ)

n

)]
≤ κ+ κ0. (3)

3.2 Upper and lower bound

This section presents the upper bound and lower bound of UAS of adversarial training when its
natural counterpart is convex and smooth.

The upper bound of UAS of adversarial training can be directly extended from Bassily et al. (2020)
as follows:
Proposition 1. Assume l(fθ(x), y) is L-Lipschitz and convex w.r.t. θ, and θ ∈ B2(0, r). The two
models θ(t)

1 and θ(t)
2 are adversarial training estimators obtained using datasets S1, S2 respectively.

For SGD,

sup
S1∼S2

E
[
‖θ(T )

1 − θ(T )
2 ‖

]
= O

min

r, L
√√√√ T∑

t=1

η2
t + L

∑T
t=1 ηt
n


 .

The upper bound of GD is the same.

The following theorem presents the lower bound of UAS. For simplicity, we consider the case of
constant learning rate, i.e., ηt = η for t = 1, ..., T .
Theorem 1. Assume θ ∈ B2(0, r). There exist some ε > 0 and some loss function l(fθ(x), y)

which is differentiable and convex w.r.t. θ, such that θ(t)
1 and θ(t)

2 , which are SGD-based adversarial
training estimators obtained using S1, S2 respectively under attack strength ε, satisfies that

sup
S1∼S2

E‖θ(T )
1 − θ(T )

2 ‖ = Ω

(
min

{
1,
T

n

}
η
√
T +

ηT

n

)
.

For GD, the lower bound is

sup
S1∼S2

‖θ(T )
1 − θ(T )

2 ‖ = Ω

(
min

{
1, η
√
T +

ηT

n

})
.

To prove Theorem 1, similar to Bassily et al. (2020), we design a smooth clean loss function with
two datasets S1 ∼ S2 and study the exact change of the model parameters. The detailed proof is
postponed to the Appendix D.

As discussed by Bassily et al. (2020), the non-smoothness of the loss is the main reason for poor
stability. The presented low bounds match the result of Bassily et al. (2020), but it is worth mention-
ing that the two results are not directly comparable since Bassily et al. (2020) studied the UAS
of clean training when the loss function l(fθ(x), y) is non-smooth, while our work studies the
UAS of adversarial training when the loss function is smooth. On the other hand, the UAS of
cleaning training under smooth loss, implied by Theorem 3.8 of Hardt et al. (2016), is of order
O(min{r, L

∑T
t=t0

ηt/n}). Therefore, we conclude that adversarial training has a worse stability
than its natural counterpart.

To ensure the convergence of optimization (i.e., ηT is not so small) and the generalization perfor-
mance (Proposition 1 and Theorem 1), one may take T = n2 and η = 1/n3/2. The resulting
optimization error and stability then becomeO(1/

√
n), which matches the minimax lower bound of

excess risk (Chen et al., 2018). However, such a choice of (η, T ) is impractical and needs to improve
(refer to the discussion in Bassily et al., 2020).

3.3 The role of numerical attack error

In real-world applications, calculating the exact attackAε for general models is not easy, and usually,
a numerical approximation A′ε (e.g., by FGM or PGD) is used in the adversarial training algorithm.
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Some recent literature start to aware the important impact of the numerical attack error (i.e., the
difference between Aε and A′ε). For example, Gao et al. (2019); Zhang et al. (2020) took account of
the attack approximation method in the convergence analysis of adversarial training, and Deng et al.
(2020) studied the convergence of PGD attack.

For algorithmic stability, extended from Proposition 1, the following result considers the effect of
attack error. Comparing the upper bounds of Proposition 1 and Corollary 1, it suggests one to control
the attack error carefully in the adversarial training.
Corollary 1. Under the same conditions of Proposition 1, assume the algorithm uses an approxi-
mation A′ε instead of the exact attack Aε with attack error min ‖Aε(x, y, w) − A′(x, y, w)‖ ≤ ∆ε
for any (x, y, w), where the minimum is taken when the exact attack (i.e., (1)) is not unique. Assume
Oθl(fθ(x), y) is κ-Lipschitz w.r.t. x. Then, for SGD

sup
S1∼S2

E‖θ(T )
1 − θ(T )

2 ‖ = O

min

r, L
√√√√ T∑

t=1

η2
t + L

∑T
t=1 ηt
n

+ κ∆ε

T∑
t=1

ηt


 .

The upper bound of GD is the same.

Besides the convex case, some discussions for non-convex case can be found in Appendix A. The
observations are similar.

4 Improving the stability

In this section, we show that injecting noise in adversarial training enhances the smoothness of
adversarial loss, and hence improves the stability of adversarial training.

4.1 Source of non-smoothness

As mentioned after Theorem 1, the non-smoothness issue in adversarial training is the main cause
of the poor stability. Summarizing from the related works, we identify two important sources of
non-smoothness in adversarial training even when the standard loss is smooth: (1) when the data are
overfitted, i.e., the training loss is almost 0 and Oxi l(fθ(xi), yi) ≈ 0, the adversary has no preference
on the attack direction at xi, and the numerical estimation of Aε is not stable, which possibly leads
to an unstable update iteration of adversarial training; (2) there exists a certain set of θ, such that the
adversarial training loss is always non-differentiable regardless of the training data, even when its
natural counterpart is smooth. For example, in linear regression, when θt is closed to the null model,
the non-smoothness issue occurs (Xing et al., 2021a).

To tackle both non-smooth issues, we propose incorporating noise injection in the training process
as described in the following section.

4.2 Injecting noise during training

In this section, we present the noise injection algorithm in adversarial training and provide some
theoretical justifications.

Algorithm 1 below illustrates the details of the noise injection method. The basic idea behind this is
that: the non-smoothness of adversarial loss occurs only when θ and xi’ belong to a certain special
region (e.g., in linear regression, when θ is closed to either zero or when θ>xi ≡ yi), thus injecting
some small noise to both θ and x helps them to escape from such region where non-smoothness
occurs, which further ensures the Lipschitz continuity property.
Remark 1. The Gaussian noise in Algorithm 1 is for proof simplicity. In general, it can be changed
to other noise distributions if the tail is not heavy.

In the literature, there have been some applications of noise injection. For example, He et al. (2019)
considered injecting noise to the weights as a regularization method to improve the adversarial
robustness. Besides literature in supervised learning (Weng et al. (2018); Wang et al. (2018); Ford
et al. (2019), injecting noise in data was also considered to stabilize the training process of GAN
(Arjovsky and Bottou, 2017; Jenni and Favaro, 2019).
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Algorithm 1 Add noise to weight and data
Input: data {(xi, yi)}ni=1, number of iterations T , learning rate {ηt}Tt=1, attack strength ε, noise
size (ξθ, ξx), scale parameter r , initialization θ(0).
for t = 1 to T do

Add Gaussian noise with variance ξ2
θ to each dimension of θt to form θ̃(t), and add Gaussian

noise with variance ξ2
x to each dimension of xt to obtain x̃it .

Calculate the attack (based on x̃it and θ̃(t)) as ẑit .
Take gradient w.r.t θ̃(t) on l(fθ̃(t)(ẑit), yit).
Update θ(t) to θ(t+1) with rate ηt.
Project θ(t+1) onto B2(0, r).

end for
Output: θ(T ).

In the following theorems, we provide a theoretical justification for the stability and optimization
when injecting noise into adversarial training for the following models:

• Linear regression: l(fθ(x), y) = (x>θ − y)2.

• Logistic regression: l(fθ(x), y) = − log1{y=1}(p) − log1{y=−1}(1 − p), where p =

p(x>θ) = 1/(1 + e−x
>θ).

• Smooth hinge loss: the hinge loss max{0, 1−y(x>θ)} is not smooth at 0, hence is approx-
imated by l(fθ(x), y) = (1 − y(x>θ))H((1 − y(x>θ))/h), where h > 0 is a bandwidth
parameter, and H is a smooth approximation of the indicator function I{x ≥ 0}. The
detailed conditions on H are postponed to Lemma 7 in the Appendix D.2.

The following assumption is imposed on the data:

Assumption 1. The independent variable x ∈ Rd follows multivariate Gaussian distribution with
zero-mean and Σ whose eigenvalues are bounded and away from zero.

For regression, E|y| and E‖yx‖ are finite. For some constant C > 0, any θ ∈ B2(0, Cr) satisfies
P (|x>θ − y| ∈ [ζ1r, ζ2r]) = O(ζ2 − ζ1) for ζ1, ζ2 > 0.

For classification, the label is y ∈ {±1}. The upper bound r satisfies r/maxi=1,...,n ‖xi‖ → 0.

The Gaussian assumption in x is merely for derivation simplicity. The assumptions w.r.t. regression
avoids |x>θ−y| from clustering around zero when ‖θ‖/r approaches zero. A linear model E[y|x] =
θ>0 x with Gaussian noise satisfies Assumption 1.

Given the above problems and data generating models, the following lemma studies the smoothness
(i.e., the Lipschitz constant) of Oθl(fθ(x), y), and of the gradient of noise injected adversarial loss.

Lemma 1 (Informal Statement for Lemma 3). Assume Assumption 1 holds. Denote L as the Lips-
chitz constant of l(fθ(x), yj) w.r.t. θ for any x ∈ B2(xj , 2ε) and all 1 ≤ j ≤ n. Then, in probability,
L is bounded by some finite L∗. Take the noise injected in data as zero-mean Gaussian with vari-
ance (ξ2

0/d)Id, and the noise injected in parameters is zero-mean Gaussian with variance (ξ2/d)Id
where ξ = ξ0L

∗. Denote E(θ+ δ, x̃, y) as the event that Oθl(fθ+δ(x̃+Aε(fθ+δ, x̃, y)), y) is B∗/ζ-
Lipschitz for some B∗ > 0. There exists some choice of (ξ, ζ) → 0 such that with probability
tending to one over the generation of S, uniformly for all θ ∈ B2(0, r),

P (Ec(θ + δ, x̃, y)|(x, y) ∈ S) = o(1).

The formal statement is postponed to Lemma 3 in the appendix.

Let P (Ec|S) := supθ∈B2(0,r),(x,y) P (Ec(θ + δ, x̃, y)|(x, y) ∈ S) in what follows, for notation
simplicity.

Remark 2. The terms r, L are generic representations. For different loss functions and data dimen-
sion d, their values may change. In addition, the exact rate of P (Ec|S) is affected by the value of
r, L as well as ξ, ζ. We postpone the details to Appendix D.2 during the proof.
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The following lemma is an intermediate step in the derivation of Theorem 2 below, and reveals the
important role played by B∗/ζ. Note that since Lemma 1 holds over the randomness of S, instead
of uniform argument stability, we turn to a bound similar to hypothesis stability (Bousquet and
Elisseeff, 2002) for the following results. To simplify the representation, the values of (B∗, L∗, r)
are treated as constants in the following main text.

Lemma 2. Under the same conditions as in Lemma 1, uniformly for all i = 1, ..., n, with probability
tending to one over the generation of S1 ∼ S2 where the i-th sample is replaced, for both GD and
SGD, given ‖θ(t−1)

1 − θ(t−1)
2 ‖ = ∆t−1, it follows that

E[‖θ(t)
1 − θ

(t)
2 ‖2|S1, S2,∆t−1] ≤

(
1 + 2η2

t

(B∗)2

ζ2
1{ηt ≥

ζ

B∗
}
)

∆2
t−1 + reminder,

where the detail of reminder term can be found in (8) in Appendix D.2. Note that the expectation
taken on ‖θ(t)

1 − θ
(t)
1 ‖2 in GD is over the injected random noise, and the one for SGD is taken for

both the sampling in SGD and the injected random noise.

Lemma 2 illustrates the relationship between ‖θ(t)
1 − θ

(t)
2 ‖2 and ∆2

t−1. Recall that B∗/ζ is the
Lipschitz constant of Oθl(fθ+δ(x̃+A), y). When ηt ≥ ζ/B∗, a larger Lipschitz constant implies a
larger upper bound of stability. When taking ηt < ζ/B∗, we have the following result:

Theorem 2. Under the same conditions as in Lemma 1, when taking ηt ≤ ζ/B∗, for both GD and
SGD, with probability tending to one (where the probability refers to the generation measure of the
n+ 1 distinct independent samples in S1 ∼ S2),

E[‖θ(T )
1 − θ(T )

2 ‖|S1, S2] = O

[√P (Ec|S1) + P (Ec|S2) +

√
1

n

]√√√√ T∑
t=t0

η2
t


+O

([
∆ε+

1

n
+ P (Ec|S1) + P (Ec|S2)

] T∑
t=t0

ηt

)
.

Furthermore, extending from Lemma 9 of Bousquet and Elisseeff (2002), the generalization gap is
upper bounded using hypothesis stability as follows.

Proposition 2. Assume θ ∈ B2(0, r). Denote θ̂(S) as the model obtained based on dataset S using
some algorithm. Assume l(fθ(x), y) ∈ [0,M ] when ‖x‖ ≤

√
d log n, we have for any i = 1, ..., n,

E
[(
R(θ̂(S1))−RS1

(θ̂(S1))
)2
]
≤ M2

2n
+ 4E

[
sup

θ∈B2(0,r)

l2(fθ(x+Aε), y)1{‖x‖ ≥
√
d log n}

]
(4)

+ 3ME
[∣∣∣l(fθ̂(S1)(xi +Aε), yi)− l(fθ̂(Si2)(xi +Aε), yi)

∣∣∣] ,
where Si2 represents the neighboring dataset of S1 whose ith sample is replaced. The notion Aε is
an abbreviation of the attack Aε(f, x, y) or Aε(f, xi, yi).

Note that the last term on the RHS of (4) can be bounded according to the result of Theorem 2, under
Lipschitz condition of the adversarial loss l(fθ(xi + Aε), yj). The second term on the RHS of (4)
can be bounded given some further conditions on the tail behavior of loss function.

Compared with the generalization upper bound obtained in Bousquet and Elisseeff (2002), in Propo-
sition 2, there is an extra term corresponding to ‖x‖ >

√
d log n. In Proposition 2, we only assume

l(fθ(x), y) ∈ [0,M ] when ‖x‖ ≤
√
d log n, which is weaker than the uniform bounded assumption

in Bousquet and Elisseeff (2002).

Besides, we also establish the optimization error bound. The following theorem presents the con-
vergence of noise-injected adversarial training when ηt ≡ η. For the proof, one can refer to the
Appendix D.2.
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Theorem 3. Under the same conditions as in Lemma 1, for both GD and SGD, θ̄ :=
argminθ∈B2(0,r)RS(θ), when ηt ≡ η,

E
[

min
t=1,...,T

RS(θ(t))− min
θ∈B2(0,r)

RS(θ)

∣∣∣∣S] ≤ E‖θ(0) − θ̄‖2

2ηT
− E[‖θ(T ) − θ̄‖2|S]

2ηT

+
η(L∗)2

2
+O(L∗ξ) +O(r∆ε).

Theorem 3 presents the convergence of adversarial training loss throughout the training. Under the
boundedness of θ and ξ = ξ0L

∗, when (η, T, ξ0) is chosen properly (e.g. (ηT ) → ∞ and ξ0 → 0)
and ∆ε→ 0, the adversarial training loss converges to its minimal asymptotically.

It is noteworthy that the general design of Algorithm 1 does not specify the noise distribution.

While in Section 4.3, we use Gaussian noise to justify our theorems under linear regression empiri-
cally, different forms of noise can be utilized for complex models, refer to our experiments on deep
neural networks in Section C.2.
Remark 3. If an intercept term exists in the loss function, e.g., l = (x>θ + b − y)2 for linear
regression, the analysis is similar to Lemma 1, leading to the same final conclusions as in Theorem
2 and 3.
Remark 4 (L∞ Attack in Adversarial Training). In general, the stability ofL∞ adversarial training
is worse. To set an example, we consider the linear regression setup. For L2 attack, the gradient
of adversarial loss is not Lipschitz only when θ approaches zero or θ>x is closed to y. Under L∞
attack, the adversarial loss becomes

(x>θ − y)2 + ε2‖θ‖21 + 2ε‖θ‖1|x>θ − y|,

indicating there is a much larger set where the L∞ adversarial loss is not smooth.

Noise injection is still helpful to remedy the non-smooth issue for L∞ adversarial training and
leads to results similar to Theorems 2 and 3. However, one will derive a worse upper bound for the
stability and optimization error. Refer to Appendix E for more detailed arguments.

4.3 Numerical illustration

We use simulation to illustrate how noise-injected adversarial training affects performance. In
short, the quality of the updating gradient is better after injecting noise. The Lipschitz constant
of Oθl(fθ(x+A), y) in Lemma 2 is smaller.

We consider linear regression problem in this experiment. The data is generated using y = x>θ∗+δ
with x ∼ N(0, Id) with d = 10 and δ ∼ N(0, σ2). The coefficient θ0 is taken as θ∗i = 1/

√
d for

i = 1, ..., d. The variance of noise is taken as σ2 = 4 and attack strength is ε = 2. We randomly
generated n = 1000 samples.

To train the regression model, we train T = 500 epochs with learning rate η = 0.01 and initializa-
tion θ(0) = 0. In each iteration, we calculate ‖Oft(θ(t)) − Oft−1(θ(t−1))‖/‖θ(t) − θ(t−1)‖ as an
approximation for the Lipschitz constant of the gradient, where Oft(θ) is the averaged gradient of
adversairal loss for the tth batch of data St. Based on Lemma 2, a larger Lipschitz constant (B∗/ζ)
indicates a worse stability, which is the right tail of the histogram. The results are summarized the
histograms in Figure 1.

From the left three histograms in Figure 1, one can see that injecting noise on parameters and data
(where we set ξx = ξθ = ξ) leads to a smaller distribution of Lipschitz constant for Oft(θ(t)), in
terms of right tail percentile. For the right two histograms in Figure 1, a smaller batch size implies
a heavier tail in the distribution of Lipschitz constant due to larger stochastic noise in estimating
Oft(θ(t)).

Besides the experiment showing how noise injection affects the training process, we also conduct a
simulation to illustrate the effect of attack error on the generalization. Due to the space limit, the
simulation is postponed to the Appendix B. To briefly summarize the observations, for all scenarios
we consider, when there is an error when calculating the attack, the generalization gap becomes
larger.
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Figure 1: Density of ‖Oft(θ(t)) − Oft−1(θ(t−1))‖/‖θ(t) − θ(t−1)‖. θ0,i = 1/
√
d for i = 1, ..., d

with d = 10. n = 1000, σ = 2, ε = 2. η = 0.01, T = 500. Vanishing initialization. A larger
ξ implies a smaller Lipschitz gradient of Oft(θ(t)). The (mean, sd, 99.9%-quantile) are (178.90,
22.34, 323.36), (167.72, 19.20, 234.43), (174.95, 20.71, 247.93), (163.05, 34.89, 337.07) for the
above four histograms.

5 Exploration in Neural Networks

While our main contributions are for statistical models, we also provide some theoretical results and
numerical experiments associated with neural networks.

It is still an open question how to connect existing algorithmic stability tools to neural networks.
Since the number of parameters in neural networks is much larger than simple models, a simple
bound on ‖θ(T )

1 − θ(T )
2 ‖ is not useful. Instead, we consider a two-layer neural network with lazy

training and vanishing initialization in regression and provide a stability bound directly on the loss.
In order to track the neural network parameters, we track both the convergence and the stability
together. This is more restrictive than simple models.

The following (informal) statement presents the stability of two-layer nonlinear networks with lazy-
ing training in adversarial training setup. The formal statement of the theorem is postponed to
Appendix C.1. Based on the following theorem, under proper configurations, the noise-injected
training in neural networks improve the stability:
Theorem 4 (Informal Statement). For two-layer nonlinear (including ReLU) networks, with proper
initialization and training configurations, training only on the hidden layer with proper noise injec-
tion, it satisfies that

ES1∼S2

∣∣∣l(fθ(T )
1

[x+Aε(fθ(T )
1
, xi, yi)], yi)− l(fθ(T )

2
[x+Aε(fθ(T )

2
, xi, yi)], yi)

∣∣∣
= O

([
L
√
P (Ec) +

√
L2

n

]
η
√
T +

[
L

n
+ LP (Ec)

]
ηT

)
+ rem,

where rem = o(1) and is not the dominant term.

There are two differences between Theorem 4 and the results in simple models. First, it is not useful
to directly assume the weights of the neural network parameters within a large ball and put this large
number into the bound, thus we simultaneously study the convergence and stability of the neural
network to tighten the stability bound. Second, instead of bounding the stability of the parameters,
we turn to bound the stability of the loss, which is more meaningful to this over-parameterized
method.

Besides the results in two-layer networks, we also numerically study the generalization gap using
deep neural networks with CIFAR10 dataset. Due to space limit, we postpone the experiments to
Appendix C.2. The observations from numerical experiments are (1) injecting noise can reduce
the generalization gap between training and testing performance, and (2) improving the accuracy of
attack also improves the quality of the adversarial training. Both of the observations are similar to
those in simulations.

6 Conclusion

In this paper, we evaluate the algorithmic stability of the adversarial training method. Based on the
lower bound and upper bound of UAS, we reveal that the naive adversarial training is not as stable
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as its natural counterpart. To improve the stability, we argue that it is helpful to inject noise into
model parameters and input data. Our theory verifies the effectiveness of noise injection in some
simple models. Besides, our theory also considers the effect of attack error and indicates that the
upper bound of UAS is smaller when the attack error is smaller.

The above theoretical investigations emphasize the usage of noise injection and controlling numer-
ical attack error during the adversarial training. These theoretical insights are well validated by our
simulations under simple regression models.

There are two future research directions motivated by this study. Although we observe a similar
phenomenon in deep neural networks as our theory in simple models, there is a gap between the
exact algorithmic stability of deep neural networks and the UAS bounds in simple models. Our
analysis in the two-layer neural networks is a trail in this area, but a more comprehensive study
study on algorithmic stability of the deep neural network is wanted. Second, as we mentioned in
the numerical experiments, a wider neural network has a poor attack. Corresponding theoretical
explanation is also an interesting topic.
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The appendix is arranged as follows: Section A presents the analysis on non-convex loss. Some
additional simulation results are presented in Section B. Section C.1 presents some theoretical results
in neural networks, and Section C.2 is a numerical study using CIFAR10. Section D is a collection
of proofs for theorems. Section E displays some theoretical results w.r.t L∞ attack in regression
task.

A General loss

The following theorem provides a more general upper bound for the algorithm stability beyond
convex l(fθ(x, y)).

Theorem 5. Assume ‖θ‖, ‖x‖ are both bounded, and we choose ηt ≤ c/t for some c > 0. If , If
l(fθ(x, y)) is L-Lipschitz w.r.t. θ, (Oθl(fθ(x), y),Oxl(fθ(x), y)) is κ-Lipschitz in (θ, x), and the
attack error is smaller than ∆ε, then the UAS upper bound for SGD becomes

sup
S1∼S2

E‖θ(T )
1 − θ(T )

2 ‖ = O

(
(κ∆ε+ L)

(
T

n

) cκ
cκ+1

)
,

and the one for GD is

sup
S1∼S2

‖θ(T )
1 − θ(T )

2 ‖ = O ((κ∆ε+ L)T cκ) .

By Theorem 5, to obtain better stability, it suffices to control the number of iterations and the attack
error. To ensure a diminishing UAS upper bound, the choice of T should be much smaller than n.
Note that SGD only has a small probability of encountering the exact different data points between
the two datasets at the very first iteration, leading to a smaller UAS upper bound than GD due to the
diminishing learning rate.

Remark 5. Compared with the UAS bound O(T
cκ
cκ+1 /n) for standard training (Hardt et al., 2016),

Theorem 5 also suggests that adversarial training prefers a smaller number of steps to reduce the
corresponding UAS upper bound. This echos the observations in Rice et al. (2020) that early stop-
ping is necessary in adversarial training.

Remark 6. The class of functions considered in Proposition 1 (smooth convex function) is not a
special case of those in Theorem 5, so results of Proposition 1 and Theorem 5 are not directly
comparable.

B Additional Experimental Results

Below is the simulation study mentioned in Section 4.3 on the effect of attack error.

In this experiment, we follow the data generating model as for Figure 1 and take ε = 0.2. Unlike
noise injection which changes the Lipschitz constant B∗/ζ, from Lemma 2 and Theorem 2, attack
error has little effect on the Lipschitz constant, and directly deteriorates the stability. Consequently,
instead of showing the Lipschitz constant (Figure 1), we present the generalization error.

To create error in the attack, for each data, after we obtain the true attack using analytical solution,
denoting as ẑi, we create random noise δzi ∼ N(0, (σ2

ε /d)Id), and finally project δzi + ẑi onto
B2(xi, ε) to obtain the corrupted attack. There is no noise injection for parameters and xi in this
experiment, i.e. δξ = δx = 0.

We take (ε, δε) as (0.2,0), (0.2,0.1), (0.4,0), (0.4,0.2). For each setup, the experiment repeats 100
times to obtain a mean and variance. The results are summarized in Figure 2 for the whole training
process and Table 1 for the detailed values at the 500th iteration. Compared with δε = 0, when δε >
0, both adversarial testing loss and generalization error increases. For the increase in adversarial
training loss, our conjecture is that the attack error perturbs the training process, so the trained
model is slight away from its optimum.
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Figure 2: Mean and standard deviation of adversarial testing loss (left), adversarial training loss
(middle), generalization error (right) for four groups of (ε, σε). After injecting error into attack
(2nd and 4th row), all the adversarial testing loss, adversarial training loss, and generalization error
increase (compared with 1st and 3rd row).

ε σε Test adv loss Train adv loss Gen err
0.2 0.0 4.5914 (0.0134) 4.5061 (0.1836) 0.0854 (0.1838)
0.2 0.1 4.5950 (0.0157) 4.5073 (0.1837) 0.0877 (0.1833)
0.4 0.0 4.9294 (0.0096) 4.8664 (0.2003) 0.0631 (0.1998)
0.4 0.2 4.9399 (0.0175) 4.8718 (0.2005) 0.0681 (0.1977)

Table 1: Mean and standard deviation of adversarial testing loss, adversarial training loss, gener-
alization error for the 500th iteration. After injecting error into attack, the adversarial testing loss,
adversarial training loss, and generalization error increase.

15



C Results in Neural Networks

C.1 Two-Layer Neural Network

This section provides some results w.r.t two-layer neural network with lazy training, i.e. training the
first hidden layer, and vanishing initialization.

Denote h as the number of hidden nodes, θ = [θ1 | θ2 | ... | θh] are weights for each node. The
neural network outputs value as follows

f(x, θ) =
1√
h

h∑
j=1

ajφ(θ>j x),

where φ is a smooth activation function which is either (1) twice differentiable and φ(0) = 0, or (2)
ReLU activation function. The value of aj’s are unchanged after the initialization, and we randomly
generate them from {±1}. The initial value of θj (θ(0)

j ) is generated from N(0, Id/(dh
δ+1)), i.e.

vanishing initialization. The adversarial training will update θ(t)
j throughout training.

We consider regression task, and to simplify the analysis, we use the following data generation
model:

y = θ>0 x+ ω,

where x follows N(0, Id), ‖θ0‖ is a constant, and ω is a Gaussian noise with zero mean and finite
variance.

Also denote adversarial risk minimizor and the minimal adversarial risk for linear model as follows:

θ∗ = argmin
θ

E(y − θ>(x+Aε(fθ, x, y)))2, R∗ = min
θ

E(y − θ>(x+Aε(fθ, x, y)))2.

We have the following theorem:
Theorem 6. Assume ∆ε = 0. Under the model setup of neural network and data generating model
in this section, assume log n

√
d2/n → 0, (d log n)/

√
h → 0 and

√
d log n(1 + D)T /hδ/2 →

0 for some large constant D. Take L = Θ(
√
d log n). If η = ζ/B∗, T = (log log n)/η, and√

d log n log(hT )ξ → 0, then using GD, taking (x, y) as a random testing data,

ES1∼S2

∣∣∣l(fθ(T )
1

[x+Aε(fθ(T )
1
, xi, yi)], yi)− l(fθ(T )

2
[x+Aε(fθ(T )

2
, xi, yi)], yi)

∣∣∣
= O

([
L
√
P (Ec) +

√
L2

n

]
η
√
T +

[
L

n
+ LP (Ec)

]
ηT

)
+ rem, (5)

where rem = o(1) and is not the dominant term when h and δ are large enough. The value B∗ is
defined similarly as in Lemma 5 for linear regression.

Theorem 6 illustrates how the hypothesis stability changes throughout the training. This stability
result can be trivially used to bound the third term on the RHS of generalization inequality 4 in
Proposition 2.

To prove Theorem 6, it is harder than simple models since ‖θ(T )
1 − θ(T )

2 ‖ is not so meaningful in
neural networks. Starting from the vanishing initialization, we track the change in each node one by
one. We only consider GD because GD ensures the convergence of neural network.

For the two terms in (5), the first term is obtained when bounding the difference between θ(T )
1 and

θ
(T )
2 ; the second term counts for (1) the rare events on S1, S2 (we mention “with probability tending

to 1 over S1 ∼ S2” in Lemma 2) ;(2) the difference when we use linear network to approximate
nonlinear network.

Proof. We provide the proof for the first term in (5) for smooth activation function. The idea is
similar to the arguments in Xing et al. (2021a). We first consider how linear network with zero
initialization could act, compared to a linear model with zero initialization under noise injection.

16



Then we bound the difference between noise-injected linear network with zero initialization and
noise-injected nonlinear network with vanishing initialization.

First, we consider a linear network

fL(x, θ) =
1√
h

h∑
j=1

φ′(0)ajθ
>
j x =

 1√
h

h∑
j=1

φ′(0)ajθj

> x.
When injecting noise δj into θj , it becomes

fL(x, θ + δ) =
1√
h

h∑
j=1

φ′(0)aj(θj + δj)
>x =

 1√
h

h∑
j=1

φ′(0)ajθj

> x+

 1√
h

h∑
j=1

φ′(0)ajδj

> x,
where 1√

h

∑k
j=1 φ

′(0)ajδj is a random vector with zero mean and covariance N(0, φ′(0)2ξ2Id/d).

Denote the parameters trained from linear model with zero initialization as follows: for dataset Sk,

θOP1
j,k (0) = 0,

θOP1
j,k (t+ 1) = θOP1

j,k (t)− η

 2

n

∑
(x,y)∈Sk

ajφ
′(0)√
h

(x+Aε(f, x, y))

(
φ′(0)√
h

h∑
m=1

aj(θ
OP1
m,k (t) + δm)>x− y

) .

As a result, injecting noise δj ∼ N(0, ξ2Id/d) into a linear network is equivalent to injecting noise
N(0, φ′(0)2ξ2Id/d) into a linear model. So one may use arguments in Lemma 2 and Theorem 2 to
study ∥∥∥∥∥∥ 1√

h

h∑
j=1

φ′(0)aj(θ
OP1
j,1 (t)− θOP1

j,2 (t))

∥∥∥∥∥∥
given

∥∥∥ 1√
h

∑h
j=1 φ

′(0)aj(θ
OP1
j,1 (t− 1)− θOP1

j,2 (t− 1))
∥∥∥.

On the other hand, from the updating rule of θOP1
j,k (t), one can also see that θOP1

j,k (t) ≡ θOP1
l,k (t) if

aj = al. Therefore, besides 1√
h

∑h
j=1 φ

′(0)ajθ
OP1
j,k (T )→ θ∗ (since we are using GD and n→∞),

one can also solve θOP1
j,k (T ) for each j.

Denote the parameters trained from nonlinear model with vanishing initialization as follows: for
dataset Sk,

θOP2
j,k (t+ 1)

= θOP2
j,k (t)− η

 2

n

∑
(x,y)∈Sk

ajφ
′((θOP2

m,k (t) + δm)>x)
√
h

(x+Aε(f, x, y))

(
1√
h

h∑
m=1

ajφ((θOP2
m,k (t) + δm)>x)− y

) .

When we do not inject noise to network parameters, the difference between θOP2
j,k (t) and θOP1

j,k (t)

can be neglected when (d log n)/
√
h → 0 and

√
d log n(1 + D)T /hδ/2 → 0 (Theorem 3 of Xing

et al. (2021a)).

When injecting noise to network parameters, we further want maxi,k |δ>k xi| → 0 in probability
so that φ((θj + δj)

>x) = φ(0) + φ′(0)(θj + δj)
>x + O(((θj + δj)

>x)2) and the second order
term is a remainder. Note that since δk and xi are generated from Gaussian, we have ‖δk‖/ξ is in
O(
√

log(hT )) (among the T iterations and h nodes in each iteration) and ‖xi‖ is in O(
√
d log n).

As a result, maxi,k |δ>k xi| = O(ξ
√
d log n log(hT )), which by assumption is a vanishing term.

Further injecting noise in data has little impact on the difference between θOP2
j,k (t) and θOP1

j,k (t)
since ξ0 → 0, and we skip this part.

The proofs for ReLU networks follows similar arguments with assistance of Theorem 4 of Xing
et al. (2021a).
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C.2 Exploration in deep learning

Section 4.2 and 3.3 suggest that (1) the noise injection in model parameters and input data, and (2)
better accuracy on the approximation of attack Aε, both lead to a better stability of the algorithm.
Although these theoretical insights are derived under certain simple statistical models, we conjecture
that they apply to modern complex models. Hence, in this section, we assess their effects on the
stability of DNNs. Inspired by Proposition 3, we use the difference between adversarial training
accuracy and adversarial testing accuracy to measure algorithm stability.

We use SGD with batch size 128 and weight decay 0.0002 as the optimizer. The learning rate
is taken as 0.1 at the beginning and multiplies 0.1 at the 75th and 90th epoch. The total number
of epochs is 100. To overcome the non-smoothness from ReLU activation, if not specified, we
use WideResNet34-1 as the network structure with replacing backward update of ReLU into Soft-
max(10) using the BPDA in AdverTorch2 (Ding et al. 2019).

C.2.1 Noise injection

Theorem 2 indicates that injecting noise in adversarial training improves algorithmic stability. This
section examines the effect of noise injection in adversarial training under a deep learning setup.

In this experiment, we use CIFAR10 and compare the adversarial testing accuracy before/after in-
jecting noise using the implementation of TRADES3 in Zhang et al. (2019). For the model param-
eters, the noise for each element is generated from a zero-mean normal distribution with a standard
deviation equal to αh,tσh,t, where σ2

h,t is the variance of the parameters in h-th layer at t-th iteration
and αh,t is a trainable parameter initialized as 0.1. The implementation follows the one in He et al.
(2019)4. We consider data augmentation (Shorten and Khoshgoftaar, 2019) as a form of noise in-
jection to the data, and compare generalization performance with/without data augmentation during
the training. For data augmentation method, we follow Zhang et al. (2019); Wang et al. (2019b);
He et al. (2019) to include Randomop(32, padding=4) and RandomHorizontalFlip().
Each setup is repeated for five time to obtain a mean and variance. The results are summarized in
Table 2. AT represents the vanilla adversarial training.

# Method Noise Aug ε Adv Train Acc Adv Test Acc Gen Gap Std(Gen Gap)
1 AT No No L2 0.5 97.1775 55.4525 41.725 0.3414
2 AT No Yes L2 0.5 72.542 52.698 19.844 1.302
3 AT Yes Yes L2 0.5 69.27 54.72 14.56 1.412
4 AT No No L∞ 8/255 75.525 37.055 38.47 0.2493
5 AT No Yes L∞ 8/255 50.486 36.162 14.324 0.5118
6 AT Yes Yes L∞ 8/255 47.94 37.64 10.30 1.252
7 TRADES No No L2 0.5 91.42 51.555 39.865 0.781
8 TRADES No Yes L2 0.5 67.632 57.0 10.632 0.7764
9 TRADES Yes Yes L2 0.5 65.904 61.508 4.396 0.4583

Table 2: Effect of different methods on generalization gap under L2/L∞ attack.

In Table 2, when training using adversarial training for (#1, #2, #3), both data augmentation and
noise injection in model parameters reduce the accuracy difference a lot. The vanilla adversarial
training/testing gap is around 42%. After introducing data augmentation, the gap reduces to 20%.
Finally, after further injecting noise into model parameters, the gap gets sown to only 15%. We also
compare the adversarial testing accuracy before/after injecting noise for L∞ attack. The observa-
tions are similar. The observation from TRADES are similar to AT. It still suffers from the stability
issue, and injecting noise can reduce the generalization gap.

It is worth emphasizing that the aim of injection noise is not to improve the final testing perfor-
mance, but to reduce the generalization gap (without sacrificing the testing performance). It has
been shown in Rice et al. (2020) that, the adversarial training tends to overfit, i.e., the high training

2https://github.com/BorealisAI/advertorch
3https://github.com/yaodongyu/TRADES
4https://github.com/elliothe/CVPR_2019_PNI/blob/master/code/models/

noise_layer.py
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acc is deceptive and not reliable. Therefore, the training loss shall decrease if a stable algorithm is
implemented.
Remark 7. Although our main target of this experiment is to examine the reduction of generalization
gap after noise injection, one may also find some other observations from the experiment results. For
example, with noise injection, TRADES gets a better adversarial testing accuracy, while AT does not
have significant change in this, which implies some potential differences between AT and TRADES
to help people better understand why AT does not perform well.

C.2.2 Improving the attack error

From Corollary 1, an accurate attack leads to better algorithmic stability. To explore this in neural
networks, since PGD-5 is more accurate than FGM, we use L2 adversarial training under different
choices of ε, and compare the adversarial training accuracy against the generalization gap for these
two choices of attack method (i.e., FGM vs. PGD-5). To ensure the comparison is fair, we use FGM
in testing data if the training uses FGM and use PGD-5 in testing data if the training uses PGD-5.
The value of ε ranges from 0.25 to 4.0 to achieve different levels of adversarial training accuracy.

As shown in Figure 3, when the same level of adversarial training accuracy (70%∼80%) is achieved,
the generalization gap of FGM, in a worse-case scenario, can be much larger than PGD.

Figure 3: Comparison between FGM (i.e., PGD-1) and PGD-5 in adversarial training accuracy
against generalization gap. The generalization gap using FGM is poor. Different values are obtained
under different attack strength.

D Proofs

D.1 Adversarial Training without Noise Injection

Proof of Theorem 1. The proof mainly follows Bassily et al. (2020) and we will transfer their worst-
case scenario into the format of adversarial training.

Let D = min{t, 1/η2} ≤ d, and ν > 0, K ≥
√
D. Take linear loss functions and y ≡ 0. Denote

h as a smooth activation function to approximate ReLU, with h = 0 when z < −ζ, and h(z) = z
when z > ζ. Define f as

fθ(x, z) =


‖h(θ − x)‖H z < 0.5− λ
r>θ/K z ≥ 0.5 + λ
z−0.5+λ

2λ ‖h(θ − x)‖H + 0.5+λ−z
2λ r>θ/K otherwise

,

where ‖h(θ − x)‖H is a smooth approximation of max{0, θ − x}, and r is a vector with first D
elements as -1 and others as 0. The tuple (x, z) represents the independent variables in the data.

Consider attack strength ε < 0.5, then taking z ∈ {0, 1}, this attack strength is not strong enough to
change whether z is greater than 0.5 or not, and the attack will only change x.

In the first dataset S1, (x1, z1) = (ν, ..., ν, 1), and the others are (xi, zi) = (ν, ..., ν, 0). In the
second dataset S2, all the samples are (xi, zi) = (ν, ..., ν, 0).

Take initialization θ(0)
1 = θ

(0)
2 = 0. If attack strength is small enough such that ε < ν, then θ(t)

2 is
always 0.
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To analyze θ(t)
1 , for SGD, denote it as the sample index at tth iteration. The value of θ(t)

1 keeps 0
before the first (x1, z1) appears. For the first t (denote as t0) such that it = 1, since the function fθ
is not related to x when z = 1, we have θ(t0)

1 = −ηr/K. Taking ν < η/K, for the next step t0 + 1,
if it0+1 is not 1, then the attack will randomly select an element of x to result in

max
x′∈B2(xit0+1

,ε)
f
θ
(t0)
1

(x′, zit0+1) = η/K − ν + ε+ o,

where we chose h andH properly so that its gradient has only minor difference with max{0, θ−x},
which is represented as o. The update of θ1 will be in the corresponding dimension chosen by attack,
which has the same outcome as the nonsmooth function considered in Bassily et al. (2020) for clean
training. Then the remaining proof follows the one in Bassily et al. (2020) directly.

The proof of GD is similar as SGD, as we take sufficiently large K such that ν < η‖r‖/K.

Proof of Theorem 5. In the proof, we slightly change the assumption on κ to

‖Oθl(fθ1(x1), y)− Oθl(fθ2(x2), y)‖2 + ‖Oxl(fθ1(x1), y)− Oxl(fθ2(x2), y)‖2 ≤ κ2(‖θ1 − θ2‖2 + ‖x1 − x2‖2).

Define z1
i and z2

i as the correct attack of sample (xi, yi) given the models θ(t)
1 and θ(t)

2 . For SGD,
we have

∆t+1 ≤
∥∥∥θ(t)

1 − θ
(t)
2 − ηt

(
Oθl(fθ(t)1

(ẑ1
it), y

1
it)− Oθl(fθ(t)2

(ẑ2
it), y

2
it)
)∥∥∥

≤ ∆t + ηt

∥∥∥Oθl(fθ(t)1
(ẑ1
it), y

1
it)− Oθl(fθ(t)2

(ẑ2
it), y

2
it)
∥∥∥

= ∆t + ηt

∥∥∥Oθl(fθ(t)1
(ẑ1
it − z

1
it + z1

it − x
1
it + x1

it), y
1
it)− Oθl(fθ(t)2

(ẑ2
it − z

2
it + z2

it − x
2
it + x2

it), y
2
it)
∥∥∥

≤ ∆t + 2ηtl∆ε+ 2ηtL+ ηt

∥∥∥Oθl(fθ(t)1
(x1
it), y

1
it)− Oθl(fθ(t)2

(x2
it), y

2
it)
∥∥∥ .

Therefore, given ∆t,

E[∆t+1|∆t] ≤ ∆t + 2ηt(κ∆ε+ L) + ηtE
[∥∥∥Oθl(fθ(t)1

(x1
it), y

1
it)− Oθl(fθ(t)2

(x2
it), y

2
it)
∥∥∥ 1{(x1

it , y
1
it) = (x2

it , y
2
it)}
]

+ηtE
[∥∥∥Oθl(fθ(t)1

(x1
it), y

1
it)− Oθl(fθ(t)2

(x2
it), y

2
it)
∥∥∥ 1{(x1

it , y
1
it) 6= (x2

it , y
2
it)}
]

≤ ∆t + 2ηt(κ∆ε+ L) + ηtκ∆t
n− 1

n
+
ηtL

n
.

Since ηt ≤ c/t, denoting t0 as the known first time that the itth sample in the two datasets are
difference, we have

E[∆t|t0] ≤
(

1 +
cκ

t

)
E[∆t|t0] +

c

t

(
2κ∆ε+ 2L+

L

n

)
≤

t∑
τ=t0+1

t∏
k=τ+1

(
1 +

cκ

k

) c
τ

(
2κ∆ε+ 2L+

L

n

)

≤
t∑

τ=t0+1

t∏
k=τ+1

exp
(cκ
k

) c
τ

(
2κ∆ε+ 2L+

L

n

)

=

t∑
τ=t0+1

exp

(
t∑

k=τ+1

cκ

k

)
c

τ

(
2κ∆ε+ 2L+

L

n

)

≤
t∑

τ=t0+1

exp (cκ log(t/τ))
c

τ

(
2κ∆ε+ 2L+

L

n

)

= ctcκ
(

2κ∆ε+ 2L+
L

n

) t∑
τ=t0+1

τ−cκ−1

≤ c

(
2κ∆ε+ 2L+

L

n

)(
t

t0

)cκ
.
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As a result, taking expectation w.r.t t0, we have

E[∆t] ≤ c

(
2κ∆ε+ 2L+

L

n

)
E
[(

t

t0

)cκ
1{t0 ≥ t1}

]
+ 2rP (t0 < t1)

≤ c

(
2κ∆ε+ 2L+

L

n

)(
t

t1

)cκ
P (t0 ≥ t1) + 2rP (t0 < t1) .

Taking t1 = Θ((ntcκ)
1

1+cκ ), it becomes

E[∆t] = O

((
2κ∆ε+ 2L+

L

n

)(
t

n

) cκ
1+cκ

)
.

For GD, since the different sample appears in the first iteration, we directly take t0 = 1 in (6) and
obtain the result.

D.2 Adversarial Training with Noise Injection

We first present the formal statement of Lemma 1 as follows:

Lemma 3. Assume Assumption 1 holds. Denote L as the Lipschitz constant of l(fθ(x), yj) w.r.t. θ
for any x ∈ B2(xj , 2ε) and all 1 ≤ j ≤ n, and κ as the Lipschitz constant of Oθl(fθ(x), y) w.r.t. x.
Take B as some function (specified later) of (L, n, d, κ). Then, (B,L, κ) is bounded by some finite
(B∗, L∗, κ∗) with probability tending 1, where the probability refers to the generation measure of
S = {xj , yj}nj=1.

Assume the noise injected in data is zero-mean Gaussian with variance (ξ2
0/d)Id, and the noise

injected in parameters is zero-mean Gaussian with variance (ξ2/d)Id with ξ = ξ0L
∗ and

ξ(d log n)→ 0. Denote E(θ + δ, x̃, y) as the event that Oθl(fθ+δ(x̃+Aε(fθ+δ, x̃, y)), y) is B∗/ζ-
Lipschitz. Then for the regression and classification tasks, there exists some ζ � ξ → 0 in n such
that, with probability tending to one over the generation of S, uniformly for all θ ∈ B2(0, r),

P (Ec(θ + δ, x̃, y)|(x, y) ∈ S) = o(1).

Let P (Ec|S) := supθ∈B2(0,r),(x,y) P (Ec(θ + δ, x̃, y)|(x, y) ∈ S) in what follows, for notation
simplicity.

Remark 8. The terms r, L, κ are generic representations. For different loss functions and data
dimension d, their values may change. In addition, the exact rate of P (Ec|S) is affected by the
value of r, L, κ as well as ξ0, ζ0. We postpone the details to the proof.

In the following proofs regarding to Theorem 2 and 3, we use linear regression as an example. To
be more specific, the three lemmas to be used in the main proof, Lemma 4, Lemma 5 and 6, provide
some results w.r.t E and Eg for linear regression model. The proof for Theorem 2 and 3 directly
utilize the results on E and Eg instead of any specific model. We provide the results of E and Eg
for other models in the next section. Theorem 2 and 3 also hold after replacing Lemma 5 and 6 by
these lemmas.

In terms of Lemma 3, it is a summary of results of L and P (Ec|S) over different models.

Lemma 4. For linear regression, there exists some (L∗, κ∗) such that, with probability tending to
one over the choice of S, L ≤ L∗ and κ ≤ κ∗.

Proof of Lemma 4. The gradient can be written as

1

2
Oθl(fθ(x), y) = x(x>θ − y).

Then from the definition of the Lipschitz constant L, when taking δx such that δx ∈ B2(0, 2ε),

1

2
L = max

θ∈B2(0,r),i∈[n],δx
‖xi + δx‖|(xi + δx)>θ − yi| ≤ (max

i
‖xi‖+ 2ε)2r + (max

i
‖xi‖|yi|+ 2ε|yi|).

21



In addition,

1

2
‖Oθl(fθ(x), y)− Oθl(fθ(x+ δx), y)‖

=
1

2

∥∥x(x>θ − y)− x((x+ δx)>θ − y)− δx((x+ δx)>θ − y)
∥∥

=
1

2

∥∥xδ>x θ − δx((x+ δx)>θ − y)
∥∥

=
1

2

∥∥xδ>x θ − δx(x>θ − y)− δxδ>x θ
∥∥

≤ 1

2

(
‖x‖‖θ‖‖δx‖+ ‖δx‖|x>θ − y|+ ‖δx‖2‖θ‖

)
≤ 1

2

(
‖x‖‖θ‖‖δx‖+ ‖δx‖|x>θ − y|+ ‖δx‖2ε‖θ‖

)
.

Thus for a given set of data S,

1

2
κ = max

θ∈B2(0,r),i∈[n]

[
(‖xi‖+ 2ε)‖θ‖+ |x>i θ − yi|

]
≤ 2(max

i
‖xi‖+ ε)r + max

i
|yi|.

From the distribution of x, we know that maxi ‖xi‖ = O(
√
d log n) almost surely. In addition,

E‖x‖|y| and E|y| are finite, thus maxi ‖xi‖|yi| and maxi |yi| are some functions of n as well.

Lemma 5. For linear regression, denote ζ = Lζ0 for some ζ0/ξ0 → 0. Denote E(θ, δ, x̃, y) =
1{‖θ + δ‖ ≥ ζ, |x̃>(θ + δ) − y| ≥ ζ0r(d log n)}, then E = 1 implies that Oθl(fθ+δ(x̃), y) is
B/ζ0-Lipschitz. Uniformly for all θ, with probability tending to one over the n random samples, we
have

P (Ec(θ, δ, x̃, y)|S) = o(1).

Proof of Lemma 5. We show that E = 1 implies that Oθl(fθ+δ(x̃), y) is B/ζ0-Lipschitz. The gra-
dient of adversarial loss is

1

2
g(x̃, y, θ) = x̃(x̃>(θ + δ)− y) + ε2(θ + δ) + ε

(θ + δ)

‖θ + δ‖
|y − x̃>(θ + δ)| − εx̃‖(θ + δ)‖sgn(y − x̃>(θ + δ)).

When ‖θ + δ‖ ≥ ζ, we have for any θ′,

1

‖θ + δ − θ′‖2

∥∥∥∥ θ′

‖θ′‖
− θ + δ

‖θ + δ‖

∥∥∥∥2

=
2

‖θ + δ − θ′‖2
− 2

‖θ + δ − θ′‖2
(θ + δ)>θ′

‖θ′‖‖θ + δ‖
.

Taking θ′ ∝ −(θ + δ), the above quantity is maximized. Therefore, taking θ′ = −α(θ + δ) for
α > 0,

1

‖θ + δ − θ′‖2

∥∥∥∥ θ′

‖θ′‖
− θ + δ

‖θ + δ‖

∥∥∥∥2

≤ 4

‖θ + δ + α(θ + δ)‖2

≤ lim
α→0+

4

‖θ + δ + α(θ + δ)‖2

≤ 4

ζ2
.
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When |y− x̃>(θ+ δ)| ≥ γ for some γ, this implies that the nearest θ′ such that sgn(y− x̃>(θ+ δ))
gets changed satisfies ‖θ′ − (θ + δ)‖ = γ/‖x̃‖. As a result,

1

‖θ + δ − θ′‖

∥∥∥∥x̃‖θ + δ‖sgn(y − x̃>(θ + δ))− x̃‖θ′‖sgn(y − x̃>θ′)
∥∥∥∥

≤ 1

‖θ + δ − θ′‖

∥∥∥∥x̃‖θ + δ‖sgn(y − x̃>θ′)− x̃‖θ′‖sgn(y − x̃>θ′)
∥∥∥∥

+
1

‖θ + δ − θ′‖

∥∥∥∥x̃‖θ + δ‖sgn(y − x̃>(θ + δ))− x̃‖θ + δ‖sgn(y − x̃>θ′)
∥∥∥∥

≤ ‖x̃‖‖θ + δ − θ′‖
‖θ + δ − θ′‖

+
‖x̃‖‖θ + δ‖
‖θ + δ − θ′‖

∣∣∣∣sgn(y − x̃>(θ + δ))− sgn(y − x̃>θ′)
∣∣∣∣

≤ ‖x̃‖+
2‖x̃‖2r
γ

.

Take γ = ζ0r‖x̃‖2 in the above inequality to obtain
√
d log n+ 2/ζ0-Lipschitz.

Therefore the overall gradient is Lipschitz with

κ+ 2ε2 + 8ε/ζ0 + 2ε
√
d log n (6)

which can be rewritten as B/ζ0 for some B.

Now we turn to bound the probability of Ec.

P (Ec(θ, δ, x̃, y)|S) ≤ P (‖θ + δ‖ < ζ) + P (|x̃>(θ + δ)− y| < ζ0r(d log n)|S).

For any θ, based on the distribution of δ, we have

P (‖θ + δ‖ < ζ|θ) = O

((
ζ

ξ

)d)
.

On the other hand,

P (|x̃>(θ + δ)− y| < ζ0r(d log n)|S) = P (|(x̃− x)>θ + (x̃− x)>δ + (x>θ − y) + x>δ| < ζ0r(d log n)|S).

When ‖θ‖ > Cr, from the distribution of x>δ, (x̃− x)>δ, (x>θ − y), and (x̃− x)>θ, we have for
any (x, y, θ),

P

(
|(x̃− x)>θ + (x̃− x)>δ + (x>θ − y) + x>δ| < ζ0r(d log n)

∣∣∣∣x, y, θ)
= O

(
P

(
|x>δ + (x̃− x)>θ| < ζ0r(d log n)

∣∣∣∣x))
= O

(
min

(
ζ0r(d log n)

‖x‖ξ/
√
d
,
ζ0r(d log n)

ξ0r
, 1

))
.

From the distribution of x, with probability tending to one over the choice of S,

E
[
min

(
ζ0r(d log n)

‖x‖ξ/
√
d
,
ζ0r(d log n)

ξ0r
, 1

) ∣∣∣∣S]
≤ E

[
ζ0r(d log n)

ξ0r
1{‖x‖ ≤ ζ ′0}

∣∣∣∣S]+ E
[
ζ0r(d log n)1{‖x‖ > ζ ′0}

‖x‖ξ/
√
d

∣∣∣∣S]
= O

(
ζ0r(d log n)

ξ0r
(ζ ′0)

d
+
ζ0r(d log n)

ζ ′0ξ/
√
d

)
,

and take ζ ′0 = (ξ0r
√
d/ξ)1/(d+1) to reach the minimized upper bound as

O(ζ0r(d log n)(ξ0r
√
d/ξ)d/(d+1)).
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When ‖θ‖ ≤ Cr, we first assume that P (|x>θ−y| ≤ zr|S) = O(z) ∀z is correct to finish the main
proof, and finally provide the proof of itself. From Assumption 1, we have P (|x>θ − y| ≤ zr) =
O(z). Since max ‖xi‖ = O(

√
d log n) almost surely,

P

(
|(x̃− x)>θ + (x̃− x)>δ + (x>θ − y) + x>δ| < ζ0r(d log n)

∣∣∣∣S)
≤ P

(
|x>θ − y| < ζ0r(d log n) + |(x̃− x)>θ + (x̃− x)>δ + x>δ|

∣∣∣∣S)
= O

(
ζ0r(d log n) + Lξ0 +

√
d log nξ

r

)
= O

(
ζ0(d log n) + ξ0

L

r
+

√
d log nξ0L

r

)
.

To conclude, with probability tending to one over the generation of S, we have

P (Ec|S) = O

(ζ0
ξ0

)d
+ ζ0(d log n)

(
r
√
d

L

) d
d+1

+ ξ0
L

r
+

√
d log nξ0L

r

 .

The last thing is to verify P (|x>θ − y| ≤ ζ0r|S) = O(ζ0) for any ‖θ‖ ≤ r. Using Bernstein
inequality, we know that for any fixed θ,

P

(
n∑
i=1

1{|x>i θ − yi| ≤ ζ0r} − nP (|x>θ − y| ≤ ζ0r) ≥ t

)
≤ e−

t2

n+t . (7)

We construct some intervals and design a series of points in B2(0, r). For the interval [−r, r], we
equally divide it into nm sub-intervals and repeat this procedure on all the d dimensions. Through
this construction, there are Θ(nmd) points inB2(0, r). Denote these points as αi for i = 1, ...,K. A
consequence of this construction is that, for any θ ∈ B2(0, r), the nearest αj to θ has distance less
than D = 2

√
dr/nm.

Taking {αj}j=1,...,K into (7), we obtain

P

(
sup
j∈[K]

n∑
i=1

1{|x>i αj − yi| ≤ ζ0r} − nP (|x>αj − y| ≤ ζ0r) ≥ t

)
≤ Ke−

t2

n+t .

For any θ, denote αk as the one in {αj}j=1,...,K such that ‖θ−αk‖ is minimized, then for a sample
(xi, yi),

|1{|x>i θ − yi| ≤ ζ0r} − 1{|x>i αk − yi| ≤ ζ0r}|
= 1{|x>i θ − yi| ≤ ζ0r, |x>i αk − yi| > ζ0r}+ 1{|x>i θ − yi| > ζ0r, |x>i αk − yi| ≤ ζ0r}
≤ 1{|x>i αk − yi| − ‖xi‖‖θ − αk‖ ≤ ζ0r, |x>i αk − yi| > ζ0r}

+1{|x>i αk − yi|+ ‖xi‖‖θ − αk‖ > ζ0r, |x>i αk − yi| ≤ ζ0r}
≤ 1{|x>i αk − yi| − ‖xi‖D ≤ ζ0r, |x>i αk − yi| > ζ0r}

+1{|x>i αk − yi|+ ‖xi‖D > ζ0r, |x>i αk − yi| ≤ ζ0r}
≤ 1{ζ0r − ‖xi‖D ≤ |x>i αk − yi| ≤ ζ0r + ‖xi‖D}.

Since maxi ‖xi‖ = O(
√
d log n) almost surely, we can further expand the above formula into

1{ζ0r − ‖xi‖D ≤ |x>i αk − yi| ≤ ζ0r + ‖xi‖D}
≤ 1{ζ0r −Dc

√
d log n ≤ |x>i αk − yi| ≤ ζ0r +Dc

√
d log n, ‖xi‖ ≤ c

√
d log n}+ 1{‖xi‖ > c

√
d log n}

≤ 1{ζ0r −Dc
√
d log n ≤ |x>i αk − yi| ≤ ζ0r +Dc

√
d log n}+ 1{‖xi‖ > c

√
d log n}.

As a result,∣∣∣∣∣
n∑
i=1

1{|x>i θ − yi| ≤ ζ0r} −
n∑
i=1

1{|x>i αk − yi| ≤ ζ0r}

∣∣∣∣∣
≤

n∑
i=1

1{ζ0r −Dc
√
d log n ≤ |x>i αk − yi| ≤ ζ0r +Dc

√
d log n}+ n1{max

i
‖xi‖ > c

√
d log n},
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where n1{maxi ‖xi‖ > c
√
d log n} = 0 almost surely, and

P

(
sup
j

n∑
i=1

1{|x>i αj − yi| ∈ ζ0r ±Dc
√
d log n} − nP{|x>αj − y| ∈ ζ0r ±Dc

√
d log n} ≥ t

)
≤ Ke−

t2

n+t .

Consequently, rewrite k as k(θ), we have

P

(
sup
θ

n∑
i=1

1{|x>i θ − yi| ≤ ζ0r} − nP (|x>θ − y| ≤ ζ0r) ≥ t

)

≤ P

(
sup
θ

[ n∑
i=1

1{|x>i αk(θ) − yi| ≤ ζ0r} − nP (|x>αk(θ) − y| ≤ ζ0r)
]

+

[ n∑
i=1

1{|x>i αk(θ) − yi| ∈ ζ0r ±Dc
√
d log n} − nP{|x>αj − y| ∈ ζ0r ±Dc

√
d log n}

]
+nP{|x>αk(θ) − y| ∈ ζ0r ±Dc

√
d log n}

+nP (|x>αk(θ) − y| ≤ ζ0r)− nP (|x>θ − y| ≤ ζ0r) ≥ t
)

≤ P

(
sup
j

[ n∑
i=1

1{|x>i αj − yi| ≤ ζ0r} − nP (|x>αj − y| ≤ ζ0r)
]

+

[ n∑
i=1

1{|x>i αj − yi| ∈ ζ0r ±Dc
√
d log n} − nP{|x>αj − y| ∈ ζ0r ±Dc

√
d log n}

]
+nP{|x>αj − y| ∈ ζ0r ±Dc

√
d log n}+ nP (|x>αj − y| ≤ ζ0r) ≥ t

)
≤ P

(
sup
j

[ n∑
i=1

1{|x>i αj − yi| ≤ ζ0r} − nP (|x>αj − y| ≤ ζ0r)
]

+nP{|x>αj − y| ∈ ζ0r ±Dc
√
d log n}+ nP (|x>αj − y| ≤ ζ0r) ≥

t

2

)
+P

(
sup
j

[ n∑
i=1

1{|x>i αj − yi| ∈ ζ0r ±Dc
√
d log n} − nP{|x>αj − y| ∈ ζ0r ±Dc

√
d log n}

]
+nP{|x>αj − y| ∈ ζ0r ±Dc

√
d log n}+ nP (|x>αj − y| ≤ ζ0r) ≥

t

2

)
.

Denote γ = supj P{|x>αj − y| ∈ ζ0r ±Dc
√
d log n}+ P (|x>αj − y| ≤ ζ0r), then

P

(
sup

θ∈B2(0,r)

1

n

n∑
i=1

1{|x>i θ − yi| ≤ ζ0r} − P (|x>θ − y| ≤ ζ0r) ≥ t

)
≤ 2K exp

{
−n[(t/2− γ)

+
]2

1 + (t/2− γ)+

}
.

Recall thatK = Θ(nmd) andD = 2
√
dr/nm, thus γ = O

(√
d/nm + ζ0

)
. Takingm as a constant

such that ζ0 �
√
d/nm, and nζ0 grows polynomially in n, we have with probability tending to one

over the generation of S, for any θ ∈ B2(0, r)

1

n

n∑
i=1

1{|x>i θ − yi| ≤ ζ0r} = O(ζ0).

Lemma 6. Under the same conditions as Lemma 5, with probability tending to one over the choice
of S,

E[g(x̃, y, θ + δ)>(θ − θ̄)|S] ≥ RS(θ)−RS(θ̄) +O(ξL∗).

25



Proof of Lemma 6. Since the adversarial loss is a convex function in both θ and x, and is smooth in
x, we have

E[g(x̃, y, θ + δ)>(θ − θ̄)|S] ≥ E[l(fθ+δ(x̃+Aε(f, x̃, y)), y)|S]− E[l(fθ̄(x̃+Aε(f, x̃, y)), y)|S].

To quantify the error introduced by x̃, we have

E[l(fθ+δ(x̃+Aε(f, x̃, y)), y)|δ, S]

= E
[
(y − x̃>(θ + δ))2 + ε2‖θ + δ‖2 + 2ε‖θ + δ‖|y − x̃>(θ + δ)|

∣∣∣∣δ, S]
≥ E

[
(y − x>(θ + δ))2 + ((x̃− x)(θ + δ))2 + ε2‖θ + δ‖2 + 2ε‖θ + δ‖|y − x>(θ + δ)| − 2ε‖θ + δ‖|(x̃− x)>(θ + δ)|

∣∣∣∣δ, S]
= E[l(fθ+δ(x+Aε(f, x, y)), y)|δ, S] +O(ξ2

0r
2) +O(ξ0r

2).

Similarly we can obtain a bound for E[l(fθ̄(x̃+Aε(f, x̃, y)), y)|S].

Finally, from the distribution of δ, we have

E[l(fθ+δ(x+Aε(f, x, y)), y)|S] = E[l(fθ(x+Aε(f, x, y)), y)|S] +O(ξL).

From the definition of L∗, we know that r = O(L∗) and L = O(L∗).

Consequently, aggregating all the above results, we have

E[g(x̃, y, θ + δ)>(θ − θ̄)|S] ≥ E[l(fθ+δ(x̃+Aε(f, x̃, y)), y)|S]− E[l(fθ̄(x̃+Aε(f, x̃, y)), y)|S]

= E[l(fθ+δ(x+Aε(f, x, y)), y)|δ, S]− E[l(fθ̄(x+Aε(f, x, y)), y)|δ, S] +O(ξL∗)

= E[l(fθ(x+Aε(f, x, y)), y)|S]− E[l(fθ̄(x+Aε(f, x, y)), y)|δ, S] +O(ξL∗)

= RS(θ)−RS(θ̄) +O(ξL∗).

Proof of Lemma 2 and Theorem 2. We use (L,B, l) rather than (L∗, B∗, l∗). The latter can is just
an simple upper bound after obtain results regarding to the former one.

To show the stability of SGD, denoting ∆t = θ
(t)
1 − θ

(t)
2 , we have

‖∆t‖2 ≤
∥∥∥θ(t−1)

1 − θ(t−1)
2 − ηt

(
Oθl(fθ(t−1)

1 +δ
(ẑ1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(ẑ2
it), y

2
it)
)∥∥∥2

= ‖∆t−1‖2 + η2
t

∥∥∥Oθl(fθ(t−1)
1 +δ

(ẑ1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(ẑ2
it), y

2
it)
∥∥∥2

−2ηt∆
>
t−1

(
Oθl(fθ(t−1)

1 +δ
(ẑ1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(ẑ2
it), y

2
it)
)
.

Further,

η2
t

∥∥∥Oθl(fθ(t−1)
1 +δ

(ẑ1
it − z

1
it + z1

it , y
1
it)− Oθl(fθ(t−1)

2 +δ
(ẑ2
it − z

2
it + z2

it , y
2
it)
∥∥∥2

≤ η2
t

(
2κ∆ε+

∥∥∥Oθl(fθ(t−1)
1 +δ

(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)
∥∥∥)2

,

≤ 2η2
t

(
4κ2∆ε2 +

∥∥∥Oθl(fθ(t−1)
1 +δ

(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)
∥∥∥2
)

and

−2ηt∆
>
t−1

(
Oθl(fθ(t−1)

1 +δ
(ẑ1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(ẑ2
it), y

2
it)
)

≤ 4ηt‖∆t−1‖κ∆ε− 2ηt∆
>
t−1

(
Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)
)
.
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Therefore, taking conditional expectation, we obtain

E
[
η2
t

∥∥∥Oθl(fθ(t−1)
1 +δ

(ẑ1
it − z

1
it + z1

it , y
1
it)− Oθl(fθ(t−1)

2 +δ
(ẑ2
it − z

2
it + z2

it , y
2
it)
∥∥∥2
∣∣∣∣∆t−1

]
−E

[
2ηt∆

>
t−1

(
Oθl(fθ(t−1)

1 +δ
(ẑ1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(ẑ2
it), y

2
it)
) ∣∣∣∣∆t−1

]
≤ 8η2

t κ
2∆ε2 + 4ηt‖∆t−1‖κ∆ε+ 2η2

tE
[∥∥∥Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)
∥∥∥2
∣∣∣∣∆t−1

]
−2ηt∆

>
t−1E

[
Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)

∣∣∣∣∆t−1

]
≤ 8η2

t κ
2∆ε2 + 4ηt‖∆t−1‖κ∆ε+ 2η2

t (2L)2 1

n

+2η2
tE
[∥∥∥Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)
∥∥∥2
∣∣∣∣∆t−1, (x

1
it , y

1
it) = (x2

it , y
2
it)

]
+2ηt‖∆t−1‖(2L)

1

n

−2ηt∆
>
t−1E

[
Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)

∣∣∣∣∆t−1, (x
1
it , y

1
it) = (x2

it , y
2
it)

]
≤ 8η2

t κ
2∆ε2 + 4ηt‖∆t−1‖κ∆ε+ 2η2

t (2L)2 1

n
+ 2η2

t (2L)2P (Ec|S)

+2η2
tE
[∥∥∥Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)
∥∥∥2
∣∣∣∣∆t−1, (x

1
it , y

1
it) = (x2

it , y
2
it), E

]
+2ηt‖∆t−1‖(2L)

1

n
+ 2ηt‖∆t−1‖(2L)P (Ec|S)

−2ηt∆
>
t−1E

[
Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)

∣∣∣∣∆t−1, (x
1
it , y

1
it) = (x2

it , y
2
it), E

]
.

Under E, since l(f
θ
(t−1)+δ
1

(z1
it

), y1
it

) is convex, following (A.1) of Hardt et al. (2016), we have

−2ηt∆
>
t−1E

[
Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)

∣∣∣∣∆t−1, (x
1
it , y

1
it) = (x2

it , y
2
it), E

]
≤ −2ηt

ζ

B
E
[∥∥∥Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)
∥∥∥2
∣∣∣∣∆t−1, (x

1
it , y

1
it) = (x2

it , y
2
it), E

]
,

thus we obtain Lemma 2 for general choices of ηt.

E[‖θ(t)
1 − θ

(t)
1 ‖2|S]

≤
(

1 + 2η2
t

B2

ζ2
1{ηt ≥

ζ

B
}
)
‖θ(t−1)

1 − θ(t−1)
2 ‖2 + 8η2

t κ
2∆ε2 + 2η2

t (2L)2 1

n
+ 2η2

t (2L)2P (Ec|S)(8)

+4ηt‖∆t−1‖κ∆ε+ 2ηt‖∆t−1‖(2L)
1

n
+ 2ηt‖∆t−1‖(2L)P (Ec|S).

When taking ηt ≤ ζ/B, we have

2η2
tE
[∥∥∥Oθl(fθ(t−1)

1 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)
∥∥∥2
∣∣∣∣∆t−1, (x

1
it , y

1
it) = (x2

it , y
2
it), E

]
−2ηt∆

>
t−1E

[
Oθl(fθ(t−1)

2 +δ
(z1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(z2
it), y

2
it)

∣∣∣∣∆t−1, (x
1
it , y

1
it) = (x2

it , y
2
it), E

]
≤ 0.
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Therefore,

E
[
η2
t

∥∥∥Oθl(fθ(t−1)
1 +δ

(ẑ1
it − z

1
it + z1

it , y
1
it)− Oθl(fθ(t−1)

2 +δ
(ẑ2
it − z

2
it + z2

it , y
2
it)
∥∥∥2
∣∣∣∣∆t−1

]
−E

[
2ηt∆

>
t−1

(
Oθl(fθ(t−1)

1 +δ
(ẑ1
it), y

1
it)− Oθl(fθ(t−1)

2 +δ
(ẑ2
it), y

2
it)
) ∣∣∣∣∆t−1

]
≤ 8η2

t κ
2∆ε2 + 2η2

t (2L)2 1

n
+ 2η2

t (2L)2P (Ec)

+4ηt‖∆t−1‖κ∆ε+ 2ηt‖∆t−1‖(2L)
1

n
+ 2ηt‖∆t−1‖(2L)P (Ec),

and

E[‖∆t‖2|∆t−1] ≤ ‖∆t−1‖2 + 8η2
t κ

2∆ε2 + 2η2
t (2L)2 1

n
+ 2η2

t (2L)2P (Ec)

+4ηt‖∆t−1‖κ∆ε+ 2ηt‖∆t−1‖(2L)
1

n
+ 2ηt‖∆t−1‖(2L)P (Ec),

which leads to

E2‖∆T ‖ ≤ E‖∆T ‖
T∑
t=t0

[
4ηtκ∆ε+

4Lηt
n

+ 4ηtLP (Ec)

]
+

T∑
t=t0

8η2
t κ

2∆ε2 + 8
L2η2

t

n
+ 8η2

tL
2P (Ec).

Reordering some terms in the above inequality, we get(
E‖∆T ‖ −

T∑
t=t0

[
4ηtκ∆ε+

4Lηt
n

+ 4ηtLP (Ec)

])2

≤
T∑
t=t0

8η2
t κ

2∆ε2 + 8
L2η2

t

n
+ 8η2

tL
2P (Ec),

so finally we obtain

E‖∆T ‖ = O

[∆ε+
√
P (Ec) +

√
1

n

]√√√√ T∑
t=t0

η2
t

+O

([
∆ε+

1

n
+ P (Ec)

] T∑
t=t0

ηt

)

= O

[√P (Ec) +

√
1

n

]√√√√ T∑
t=t0

η2
t

+O

([
∆ε+

1

n
+ P (Ec)

] T∑
t=t0

ηt

)
.

The proof for GD is similar.

Proof of Theorem 3. We first assume the analytical solution of attack exists and there is no attack
error in linear regression problem, then discussing how to consider the attack error and for the other
loss functions.

The updating rule of SGD leads to

‖θ(t) − θ̄‖2 ≤ ‖θ(t−1) − θ̄ − ηtgt‖2 ≤ ‖θ(t−1) − θ̄‖2 − 2ηtg
>
t (θ(t−1) − θ̄) + η2

tL
2.

Taking expectation and move some terms, it becomes

Eg>t (θ(t−1) − θ̄) ≤ 1

2ηt
E‖θ(t−1) − θ̄‖2 − 1

2ηt
E‖θ(t) − θ̄‖2 +

1

2
ηtL

2.

Taking average over t = 1 to T , we have

1

T
E

[
T∑
t=1

g>t (θ(t−1) − θ̄)

]
≤ 1

2T
E

[
T∑
t=1

1

ηt
‖θ(t−1) − θ̄‖2 − 1

ηt
‖θ(t) − θ̄‖2

]
+
L2

2T

T∑
t=1

ηt

=
E‖θ(0) − θ̄‖2

2η1T
− E‖θ(T ) − θ̄‖2

2ηTT

+
1

2T
E

[
T−1∑
t=1

(
1

θt+1
− 1

θt

)
‖θ(t) − θ̄‖2

]
+
L2

2T

T∑
t=1

ηt.
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Finally, since RS is a convex function, based on Lemma 6, we have

1

T
E

[
T∑
t=1

g>t (θ(t−1) − θ̄)

]
≥ 1

T
E

T∑
t=1

RS(θ(t))−RS(θ̄) +O(ξL∗) ≥ E
[

min
t=1,...,T

RS(θ(t))−RS(θ̄)

]
+O(ξL∗).

The above proof assumes that attack has no error. To count for the attack error, since ORS is
Lipschitz in x, denoting ĝt as the gradient approximated, then ĝt = gt +O(κ∆ε). So an additional
O(κr∆ε) is introduced.

Since fixing the n samples, taking expectation in SGD is reduced to GD, the above result also
holds.

D.3 Lemmas for Other Loss

Lemma 7 (Smoothed Hinge Loss). For smoothed hinge loss,H(x) is defined as a strictly monotone
function in x with H(x) = 1 when x ≥ 1 and H(x) = 0 when x ≤ −1, and xH(x) is convex. The
derivative H ′ satisfies H ′(−1) = H ′(1) = 0, and H ′′ is finite. define E(θ, δ, x̃, y) = 1{‖θ + δ‖ ≥
ζ}, then E = 1 implies that gt is Lipschitz with B/max(h, ζ). Assume h is a fixed constant. In
addition, when r/(

√
d log n)→ 0, with probability tending to one over the choice of S,

E[g(x̃, y, θ + δ)>(θ − θ̄)|S] ≥ RS(θ)−RS(θ̄) +O(ξL∗).

Proof of Lemma 7. Given (θ, x, y), we have

l(fθ(x), y) = (1− y(x>θ))H

(
1− yx>θ

h

)
,

for y ∈ {±1}. Thus the attack is

A =

{
−yε θ

‖θ‖ if 1− y(x>θ) > −ε
any z ∈ B2(x, ε) otherwise

.

The adversarial risk becomes

l(fθ(x+A), y) = (1− y((x+A)>θ))H

(
1− y(x+A)>θ

h

)
,

and the gradient becomes

g(x, y, θ) = −y(x+A)

[
H
(
1− y(x>θ) + ε‖θ‖

)
+

(1− y(x>θ) + ε‖θ‖)
h

H ′
(

1− y(x>θ) + ε‖θ‖
h

)]
Since H and H ′ are differentiable, for any g, when ‖θ‖ ≥ ζ, for any other θ′ 6= 0.

‖g(x, y, θ)− g(x, y, θ′)‖ ≤ B

ζ
‖θ − θ′‖.

In terms of the expectation of g(x̃, y, θ + δ), since l(fθ+δ(x̃+Aε(f, x̃, y)), y) is convex, we have

Eg(x̃, y, θ + δ)>(θ − θ̄) ≥ El(fθ+δ(x̃+Aε(f, x̃, y)), y)− El(fθ̄(x̃+Aε(f, x̃, y)), y).

Further, for any (x, y, θ),
El(fθ+δ(x̃+Aε(f, x̃, y)), y)

= E
[
(1− y(x̃>(θ + δ)) + ε‖θ + δ‖)H

(
(1− y(x̃>(θ + δ)) + ε‖θ + δ‖)

h

)]
= (1− y(x>θ) + ε‖θ‖)H

(
(1− y(x>(θ + δ)) + ε‖θ‖)

h

)
+E

[
(1− y(x̃>(θ + δ)) + ε‖θ + δ‖)

(
H

(
(1− y(x̃>(θ + δ)) + ε‖θ + δ‖)

h

)
−H

(
(1− y(x>θ) + ε‖θ‖)

h

))]
= l(fθ(x+Aε(f, x, y)), y)

+E
[
(1− y(x̃>(θ + δ)) + ε‖θ + δ‖)

(
H

(
(1− y(x̃>(θ + δ)) + ε‖θ + δ‖)

h

)
−H

(
(1− y(x>θ) + ε‖θ‖)

h

))]
.
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Furthermore,∣∣(1− y(x̃>(θ + δ)) + ε‖θ + δ‖)
∣∣ ≤ ∣∣(1− y(x>(θ)) + ε‖θ‖)

∣∣+ ε‖δ‖+
∣∣y((x̃− x)>(θ + δ))

∣∣+
∣∣y(x>δ)

∣∣
≤ L∗ + ε‖δ‖+

∣∣(x̃− x)>(θ + δ)
∣∣+
∣∣x>δ∣∣

= L∗(1 + op(1)).

From the definition of H , we have

H

(
(1− y(x̃>(θ + δ)) + ε‖θ + δ‖)

h

)
−H

(
(1− y(x>θ) + ε‖θ‖)

h

)
=

[
−yx̃>(θ + δ) + yx>θ + ε‖θ + δ‖ − ε‖θ‖

h

]
H ′
(

(1− y(x>θ) + ε‖θ‖)
h

)
+

{
H

(
(1− y(x̃>(θ + δ)) + ε‖θ + δ‖)

h

)
−H

(
(1− y(x>θ) + ε‖θ‖)

h

)
−
[
−yx̃>(θ + δ) + yx>θ + ε‖θ + δ‖ − ε‖θ‖

h

]
H ′
(

(1− y(x>θ) + ε‖θ‖)
h

)}
= Op(ξ + rξ0).

Consequently, when r/maxi ‖xi‖ → 0, rξ0 = O(ξL∗), and

El(fθ+δ(x̃+Aε(f, x̃, y)), y) = l(fθ(x+Aε(f, x, y)), y) +O(ξL∗). (9)

Lemma 8. For Logistic regression, denote E(θ, δ, x̃, y) = 1{‖θ + δ‖ ≥ ζ}. Then E = 1 implies
that Oθ+δl(fθ+δ(x̃+A), y) is 1/ζ0-Lipschitz.

In addition,

Eg(x̃, y, θ + δ)>(θ − θ̄) ≥ RS(θ)−RS(θ̄) +O(ξL∗).

Proof of Lemma 8. For each data (x, y), l(f(x, θ), y) = −1{y = 1} log(p(x>θ)) − 1{y =
−1} log(1− p(x>θ)), where

p(x>θ) =
1

1 + e−x>θ
.

Taking gradient w.r.t θ, we obtain

Oθl(fθ(x), y) = −1{y = 1}xp
′(x>θ)

p(x>θ)
+ 1{y = −1} xp

′(x>θ)

1− p(x>θ)
,

where

p′(x>θ) =
e−x

>θ

(1 + e−x>θ)2
.

When θ 6= 0, the attack is

A =

{
−ε θ
‖θ‖ y = 1

ε θ
‖θ‖ y = −1

, (10)

thus

Oθl(fθ(x+A), y) = −1{y = 1}
(x− εθ

‖θ‖ )p
′(x>θ − ε‖θ‖)

p(x>θ − ε‖θ‖)
+ 1{y = −1}

(x+ εθ
‖θ‖ )p

′(x>θ + ε‖θ‖)
1− p(x>θ + ε‖θ‖)

.

The above representation indicates that ‖θ‖ ≥ ζ implies Oθl(fθ(x+A), y) is B/ζ-Lipschitz.

In terms of Eg(x̃, y, θ + δ)>(θ − θ̄), since l(fθ+δ(x̃+Aε(f, x̃, y)), y) is convex, we have

Eg(x̃, y, θ + δ)>(θ − θ̄) ≥ El(fθ+δ(x̃+Aε(f, x̃, y)), y)− El(fθ̄(x̃+Aε(f, x̃, y)), y).

The remaining proof is similar as in Lemma 6 and Lemma 7.
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E L∞ Attack in Adversarial Training

As mentioned in the proof of Theorem 2 and 3, it only requires some conditions w.r.t Lipschitz
continuous of the gradient as well as Eg>(θ − θ̃). Therefore, we provide results of L∞ adversarial
training for linear regression setup.

In addition, based on the following lemmas, the value of (L,L∗, κ, κ∗) is different from those in
L2 adversarial training. Furthermore, the value of B and B∗ are also enlarged for L∞ adversarial
training.
Lemma 9. For linear regression, there exists some (L∗, κ∗) such that, with probability tending to
one over the choice of S, L ≤ L∗ and κ ≤ κ∗.

Proof of Lemma 9.
1

2
Oθl(fθ(x), y) = x(x>θ − y).

Then from the definition of L, when ‖δx‖∞ ≤ 2ε, ‖δx‖ ≤ 2
√
dε.

1

2
L = max

θ∈B2(0,r),i∈[n],δx
‖xi + δx‖|(xi + δx)>θ − yi| ≤ (max

i
‖xi‖+ 2

√
dε)2r + (max

i
‖xi‖|yi|+ 2

√
dε|yi|).

In addition,
1

2
‖Oθl(fθ(x), y)− Oθl(fθ(x+ δx), y)‖

=
1

2

∥∥x(x>θ − y)− x((x+ δx)>θ − y)− δx((x+ δx)>θ − y)
∥∥

=
1

2

∥∥xδ>x θ − δx((x+ δx)>θ − y)
∥∥

=
1

2

∥∥xδ>x θ − δx(x>θ − y)− δxδ>x θ
∥∥

≤ 1

2

(
‖x‖‖θ‖‖δx‖+ ‖δx‖|x>θ − y|+ ‖δx‖2‖θ‖

)
≤ 1

2

(
‖x‖‖θ‖‖δx‖+ ‖δx‖|x>θ − y|+ ‖δx‖2

√
dε‖θ‖

)
.

Thus for a given set of data S,
1

2
κ = max

θ∈B2(0,r),i∈[n]

[
(‖xi‖+ 2

√
dε)‖θ‖+ |x>i θ − yi|

]
≤ 2(max

i
‖xi‖+

√
dε)r + max

i
|yi|.

From the distribution of x, we know that maxi ‖xi‖ = O(
√
d log n) almost surely. In addition,

E‖x‖|y| and E|y| are finite, thus maxi ‖xi‖|yi| and maxi |yi| are some functions of n as well.

Lemma 10. For linear regression, denote ζ = Lζ0 for some ζ0/ξ0 → 0. Denote E(θ, δ, x̃, y) =

1{minj |θ+δ|j ≥ ζ/
√
d, |x̃>(θ+δ)−y| ≥ ζ0r(d log n)}, thenE = 1 implies that Oθl(fθ+δ(x̃), y)

is
√
d/ζ0-Lipschitz. Then uniformly for all θ, with probability tending to one over the n random

samples, we have

P (Ec(θ, δ, x̃, y)|S) = o(1).

Proof of Lemma 10. We show that E = 1 implies that Oθl(fθ+δ(x̃), y) is 1/ζ0-Lipschitz. The
gradient of adversarial loss is

1

2
g(x̃, y, θ) = x̃(x̃>(θ + δ)− y) + ε2‖θ + δ‖1sgn(θ + δ) + εsgn(θ + δ)|y − x̃>(θ + δ)|

−εx̃‖(θ + δ)‖1sgn(y − x̃>(θ + δ)).

When minj |θ + δ|j ≥ ζ/
√
d, we have for any θ′,

1

‖θ + δ − θ′‖2
‖sgn(θ + δ)− sgn(θ′)‖2 ≤ lim

α→0+

d

‖θ + δ + α(θ + δ)‖2
≤ d

ζ2
.
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When |y− x̃>(θ+ δ)| ≥ γ for some γ, this implies that the nearest θ′ such that sgn(y− x̃>(θ+ δ))
gets changed satisfies ‖θ′ − (θ + δ)‖ = γ/‖x̃‖. As a result,

1

‖θ + δ − θ′‖

∥∥∥∥x̃‖θ + δ‖sgn(y − x̃>(θ + δ))− x̃‖θ′‖sgn(y − x̃>θ′)
∥∥∥∥

≤ 1

‖θ + δ − θ′‖

∥∥∥∥x̃‖θ + δ‖1sgn(y − x̃>θ′)− x̃‖θ′‖1sgn(y − x̃>θ′)
∥∥∥∥

+
1

‖θ + δ − θ′‖

∥∥∥∥x̃‖θ + δ‖1sgn(y − x̃>(θ + δ))− x̃‖θ + δ‖1sgn(y − x̃>θ′)
∥∥∥∥

≤ ‖x̃‖
√
d‖θ + δ − θ′‖
‖θ + δ − θ′‖

+
‖x̃‖‖θ + δ‖1
‖θ + δ − θ′‖

∣∣∣∣sgn(y − x̃>(θ + δ))− sgn(y − x̃>θ′)
∣∣∣∣

≤ ‖x̃‖+
2‖x̃‖2

√
d

γ
.

Take γ = ζ0r‖x̃‖2 in the above inequality to obtain ‖x̃‖+ 2
√
d/ζ0-Lipschitz.

Now we turn to bound the probability of Ec.

P (Ec(θ, δ, x̃, y)|S) ≤ P (min
j
|θ + δ|j < ζ/

√
d) + P (|x̃>(θ + δ)− y| < ζ0r(d log n)|S)

For any θ, we have

P (min
j
|θ + δ|j < ζ/

√
d|θ) = O

(
1−

(
1− ζ

ξ

)d)
= O

(
dζ

ξ

)
.

The remaining steps follows the same as in Lemma 5.

Lemma 11. Under the same conditions as Lemma 5, with probability tending to one over the set of
n random samples,

Eg(x̃, y, θ + δ)>(θ − θ̄) ≥ RS(θ)−RS(θ̄) +O(ξL∗).

Proof of Lemma 11. Since the adversarial loss is a convex function in both θ and x, and is smooth
in x, we have

Eg(x̃, y, θ + δ)>(θ − θ̄) ≥ El(fθ+δ(x̃+Aε(f, x̃, y)), y)− El(fθ̄(x̃+Aε(f, x̃, y)), y).

To quantify the error introduced by x̃, we have

E[l(fθ+δ(x̃+Aε(f, x̃, y)), y)|δ]

= E
[
(y − x̃>(θ + δ))2 + ε2‖θ + δ‖21 + 2ε‖θ + δ‖1|y − x̃>(θ + δ)|

∣∣∣∣δ]
≥ E

[
(y − x>(θ + δ))2 + ((x̃− x)(θ + δ))2 + ε2‖θ + δ‖21 + 2ε‖θ + δ‖1|y − x>(θ + δ)| − 2ε‖θ + δ‖1|(x̃− x)>(θ + δ)|

∣∣∣∣δ]
= E[l(fθ+δ(x+Aε(f, x, y)), y)|δ] +O(ξ2

0r
2) +O(ξ0r

2
√
d).

Since l is square loss and fθ is the linear model, we have r = O(L∗/
√
d), thus

E[l(fθ+δ(x̃+Aε(f, x̃, y)), y)|δ] = E[l(fθ+δ(x+Aε(f, x, y)), y)|δ] +O(ξ0(L∗)2/
√
d).

Finally, from the definition of L, we have

El(fθ+δ(x+Aε(f, x, y)), y) = El(fθ(x+Aε(f, x, y)), y) +O(ξL∗).
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