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Abstract

We propose new width-based planning and learning algorithms inspired from a
careful analysis of the design decisions made by previous width-based planners.
The algorithms are applied over the Atari-2600 games and our best performing
algorithm, Novelty guided Critical Path Learning (N-CPL), outperforms the
previously introduced width-based planning and learning algorithms 𝜋-IW(1),
𝜋-IW(1)+ and 𝜋-HIW(n, 1). Furthermore, we present a taxonomy of the Atari-2600
games according to some of their defining characteristics. This analysis of the
games provides further insight into the behaviour and performance of the algorithms
introduced. Namely, for games with large branching factors, and games with sparse
meaningful rewards, N-CPL outperforms 𝜋-IW, 𝜋-IW(1)+ and 𝜋-HIW(n, 1).

1 Introduction

The Atari-2600 games provide useful environments for benchmarking autonomous agents due to the
diversity of behaviour required across the different games. The Atari-2600 games can be accessed
through the Arcade Learning Environment (ALE) [1] which provides a typical Reinforcement Learning
(RL) environment interface where given a state, the agent selects an action and receives a resulting
state and reward. The two main approaches that have been used by autonomous agents applied to the
Atari-2600 games have been RL methods [2, 3, 4] and Planning methods [5, 6]. The RL approaches
have had great success surpassing the performance of human players for many of the Atari-2600
games. However, RL approaches require long training times in order to train the Neural Networks
(NN) used for policy and value functions. Planning agents do not require training time and instead use
a bounded, fixed computational budget to decide which action to take at each time step of the game.
The budget allowed for planning for each action is set as part of the experimental setting and can be set
in such a way that the agent can play a game in real-time. Through the ALE interface, the agent is not
provided a description of the transition or reward functions as is the case of models described through
languages such as the Planning Domain Description Language (PDDL) [7]. Instead, planning agents
applied to the Atari-2600 games are required to work with a simulator, treating the environment’s
transition and reward functions as a black-box [5].
Width-based planning agents have been shown to be particularly successful on the Atari-2600 games
when compared to other planning agents [5, 6]. Width-based planners prioritise search effort on states
deemed to be novel. The novelty of a state can be defined in a number of ways. Previously, novelty
tests have been obtained from the RAM of the game [5], handcrafted features computed from screen
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pixels [6] and learnt features extracted from the screen pixels through a NN [8, 9, 10]. In this paper
we consider planners with a novelty measure that does not require extensive feature engineering, or
the internal state of the simulator, but is instead defined directly over the values of screen pixels.
Recent approaches have combined the RL and planning methods into single agents that are applied to
the Atari-2600 games [8, 11, 10]. Junyent et al. [8] combined a width-based planner with a learnt
policy defined over a NN in order to guide the planner to promising areas of the search space. The
learnt NN was also used to extract features from which the novelty of states were defined over. In this
paper we introduce new width-based planning and learning methods that learn both policy and value
networks using a methodical learning schedule.
Through analysing previous width-based methods we construct and benchmark new width-based
approaches for the Atari-2600 games. We also classify the Atari-2600 games according to their
particular characteristics. The resulting game taxonomy helps us to gain insight into the performance of
the algorithms we propose and benchmark. The paper contributions are: (1) an analysis of the previous
width-based planning methods that have been applied to the Atari-2600 games, (2) introducing new
width-based planning and learning approaches for playing the Atari-2600 games, (3) defining a
methodical learning schedule for planning and learning methods, and (4) identifying characteristics
of the Atari-2600 games that influence the performance of different planning approaches.

2 Background

2.1 MDPs

We model the Atari games as Markov Decision Processes (MDPs). We formalise MDPs, as described
by Geffner and Bonet [12], as the tuple of 𝑀 = (S, 𝑠0, 𝐴, 𝑇, 𝑅), where S ⊆ R𝑑 , 𝑠0 ∈ S is the initial
state, 𝐴 provides the sets of applicable actions such that 𝐴(𝑠) is a set of actions applicable in 𝑠 ∈ S, 𝑇
is a set of distributions such that 𝑇 (𝑠, 𝑎, 𝑠′) gives the probability of the transition from state 𝑠 ∈ S to
state 𝑠′ ∈ S given action 𝑎 ∈ 𝐴(𝑠), and 𝑅 is the reward function such that 𝑅(𝑠, 𝑎) returns the reward
for performing action 𝑎 ∈ 𝐴(𝑠) from state 𝑠 ∈ S. In this work we will be considering a special case,
finite-horizon MDPs, where accumulated rewards need to be maximised over a given number of
stages 𝑘 = 1, . . . , 𝐻, starting at a fixed initial state, 𝑠0. Terminal states in finite-horizon MDPs are
absorbing states. That is, if 𝑠 is a terminal state and we are at time step 𝑘 , every action 𝑎 will map (𝑠,
𝑘) into (𝑠, 𝑘 + 1) and will be reward-free i.e. 𝑅(𝑠, 𝑎) = 0. Our goal is to produce a policy, 𝜋, that
maps any given state into an action, such that it maximises the expected accumulated reward received
for an episode of the MDP,

argmax𝜋𝐸

{ 𝐻−1∑︁
𝑘=0

𝑅(𝑠𝑘 , 𝜋(𝑠𝑘))
}

(1)

where the expectation is over 𝑠𝑘+1 ∼ 𝑇 (𝑠𝑘 , 𝜋(𝑠𝑘), 𝑠𝑘+1).
We assume that we have access to a simulator of the environment that given any state-action pair
(𝑠, 𝑎), where 𝑠 ∈ S and 𝑎 ∈ 𝐴(𝑠), the simulator returns the reward 𝑅(𝑠, 𝑎), a resulting state 𝑠′
following the probability distribution 𝑇 (𝑠, 𝑎, 𝑠′) and whether 𝑠′ is a terminal state. In line with
previous work [6, 8, 10], we consider only discrete action sets and states that represent the internal
state of the Atari environment such that action transitions are deterministic, that is 𝑇 (𝑠, 𝑎, 𝑠′) can
only equal 1 for one state 𝑠′ and 0 for any other state 𝑠′′, 𝑠, 𝑠′, 𝑠′′ ∈ S, 𝑠′ ≠ 𝑠′′ and 𝑎 ∈ 𝐴(𝑠). Note
that while the agent can use the internal Atari game state to set the state of the simulator, it can only
directly observe the Atari screen’s pixel value for any given state.

2.2 Online Planning over simulators

In this paper we explore online planning over simulators by considering width-based lookahead
algorithms for the Atari-2600 games. Lookaheads use a simulator of the environment to consider
rewards from different action trajectories from the current state into the future. An example of this is
shown in Figure 1 where a lookahead is illustrated. We define the notion of lookahead as,
Definition 1 (Lookahead). A lookahead is defined as L = (𝑁 , 𝐶, 𝑠𝑟 ) where 𝑁 is a set of nodes defined
as state-action paths starting at the root state of the lookahead 𝑠𝑟 , and 𝐶 is a function that given a
node 𝑛 ∈ 𝑁 and an action 𝑎 ∈ 𝐴(𝑠) returns the children of 𝑛, that is 𝑛𝑐 ∈ 𝐶 (𝑛, 𝑎) and 𝑛𝑐 ∈ 𝑁 .
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Figure 1: Example lookahead showing the action selection process for the root node 𝑠0 following
Definition 2. On the left, we have a fully built lookahead. From left to right, we show the recursive
process to determine what is the action to be executed. The transition with action 𝑎1 from 𝑠0 shown
in green in the last diagram on the right is the transition added to the lookahead’s critical path
(Definition 3). The 𝑉 , 𝑄, and 𝑉𝑇 functions are as defined in Definition 2.

Through backing up the rewards for each node in the lookahead, as shown in Figure 1, an expected
value can be found for each action applicable at the current state. That is, where 𝑛𝑠 is the last state
along the state-action path of node 𝑛, the operation of backing up the rewards and selecting which
action to execute is,
Definition 2 (Action selection of lookahead). Given a lookahead L= (𝑁 ,𝐶, 𝑠𝑟 ) (Definition 1) the action
to execute 𝑎 is selected at the root 𝑛𝑟 , where 𝑛𝑠𝑟 = 𝑠𝑟 , by argmax𝑎∈𝐴(𝑛𝑠𝑟 ) {𝑄(𝑛𝑟 , 𝑎)}, where𝑄(𝑛𝑟 , 𝑎) =
𝑅(𝑛𝑠𝑟 , 𝑎) +

∑
𝑛∈𝐶 (𝑛𝑟 ,𝑎) 𝑇 (𝑛𝑠𝑟 , 𝑎, 𝑛𝑠)𝑉 (𝑛), and 𝑉 (𝑛) = 𝑉𝑇 (𝑛), with 𝑉𝑇 (𝑛) being a termination cost,

when
⋃

𝑎∈𝐴(𝑛𝑠) 𝐶 (𝑛, 𝑎) = ∅, otherwise 𝑉 (𝑛) = max𝑎{𝑅(𝑛𝑠 , 𝑎) +
∑

𝑛′∈𝐶 (𝑛,𝑎) 𝑇 (𝑛𝑠 , 𝑎, 𝑛′𝑠)𝑉 (𝑛′)}.

Once an action is selected for execution, the lookahead is updated to have its root at the selected
action’s resulting node and the lookahead continues being constructed from the new root node. We
define the action selected by the agent as a part of its critical path. That is,
Definition 3 (Critical Path). Given the action selected 𝑎𝑡 at each time step 𝑡 = 0, 1, . . . , 𝑚 following
Definition 2, the critical path 𝜌 is the sequence of states and actions 𝜌 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑎𝑚−1, 𝑠𝑚),
such that 𝑠𝑖+1 ∼ 𝑇 (𝑠𝑖 , 𝑎𝑖 , ·) for 𝑖 = 0, . . . , 𝑚 − 1.

3 Related Work

3.1 MuZero

Schrittwieser et al. [11] followed up on the AlphaGo [13] and AlphaZero [14] algorithms with
MuZero. AlphaZero is a planning and learning agent that achieved state-of-the-art performance
on the games of Go, Chess and Shogi [15]. AlphaZero learns a policy and value network that are
used within a Monte Carlo Tree Search (MCTS) lookahead through sampling actions according to
the policy network and evaluating the states within the lookahead with the value function. Unlike
AlphaZero, MuZero does not require a simulator or model of the game environment but instead learns
a model of the environment through interaction. MuZero achieved state-of-the-art performance in
the Atari-2600 games when compared to existing model-free RL algorithm performances. We also
explore using learnt value and policy networks within a lookahead but consider width-based methods
as opposed to MCTS. MuZero’s experimental setting is different to the one considered in this paper
as we require access to a simulator in the planning phase and use significantly less computing power.

3.2 Width-based Planners on Atari

Here we will provide an overview of the different width-based planners which have been applied to
the Atari-2600 problems. In the next Section we go into the design and implementation details that
each of the following planners use.
Width-based planners [16] prioritise adding states to the lookahead with novel valuations of features
that are defined over the states. IW(1) is a width-based breadth-first search that is guaranteed to run in
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linear time and space as it only expands novel states. IW(1) considers a state in the lookahead as
novel if it is the first state within the lookahead to make a particular feature within the feature set true.
Width-based planners were first applied to the Atari-2600 games by Lipovetzky et al. [5], where they
applied IW(1) over the RAM values of the game state as features. Lipovetzky et al., and subsequent
works that use IW(1) [17, 18], show that it outperforms breadth-first search and UCT [19] planners.

Algorithm 1: Overview of the RIW(1) Algorithm
Input :A lookahead 𝐿 = (𝑁,𝐶, 𝑠𝑟 ), and a base policy 𝜋𝑏
Output
:

Updated lookahead 𝐿

1 while ¬ has_solved_label(𝑠𝑟 ) do
2 𝑠← 𝑠𝑟 // complete depth-first rollout from the root node’s state
3 while is_novel(s) ∧¬ is_terminal(s) do
4 𝑠′, 𝑎 ←sample_unsolved_child(𝑠, 𝜋𝑏)
5 𝐿 ← update_lookahead(𝐿, 𝑠, 𝑎, 𝑠′), 𝑠← 𝑠′

6 end
7 update_solved_labels(𝑠)
8 end

Bandres et al. [6] introduced a depth-first version of the IW(1) planner, named Rollout-IW(1) (RIW).
RIW(1) aims to contain the same nodes that are expanded by the IW(1) planner. As RIW(1) performs
depth-first search it was argued by Bandres et al. that it has better any-time performance than IW(1).
The hypothesis for the better any-time performance of RIW(1) is that its search visits states that
are further away from the initial state earlier in the search than its breadth-first search counter-part
IW(1). Algorithm 1 provides an overview of RIW(1) using the base policy 𝜋𝑏. RIW(1) was originally
defined to use a random uniform base policy 𝜋𝑏, however any given policy can be used instead. The
function sample_unsolved_child, samples an action 𝑎 ∼ 𝜋𝑏 (𝑠) and a transition 𝑠′ ∼ 𝑇 (𝑠, 𝑎, ·)
provided that 𝑠′ has not been marked as solved. If the selected transition does not already exist in the
lookahead update_lookahead adds it. The update_solved_labels function adds a solved label
to the given state and back-propagates the solved label to its parents if the parent’s children have all
been marked as solved. Bandres et al. results showed that RIW(1) outperformed IW(1) greatly when
almost real-time budgets for planning were applied.
Junyent et al. [8] follow up on Bandres et al.’s [6] use of a random policy for the base policy (𝜋𝑏)
of RIW with 𝜋-IW(1), an algorithm that replaces 𝜋𝑏 with a trained policy defined over a NN. The
intended effect is to orient the lookahead to promising areas of the state space. The NN from the
trained policy is also used to extract features from the screen pixels for the computation of state
novelty. Recently Junyent et al. [10] introduced 𝜋-IW(1)+ and 𝜋-HIW(n, 1) as follow ups of 𝜋-IW(1).
𝜋-IW(1)+ modifies 𝜋-IW(1)’s random breaking of ties for the action selection (Definition 2) to select
the action with the branch of the lookahead that contains the most nodes. 𝜋-IW(1)+ also adds a
learnt value function, �̃� , which is used in the action selection (Definition 2) by modifying 𝑉 (𝑠) to be
max{�̃� (𝑠), 𝑉∗ (𝑠)}, where 𝑉∗ (𝑠) is 𝑉 (𝑠) as described in Definition 2. 𝜋-HIW(n, 1) is a hierarchical
algorithm that has a high-level planner which uses a coarse down-sampling of the screen pixels as
a feature set and a low-level planner which uses 𝜋-IW(1)+ with the feature set defined through the
policy network as previously described. The high-level planner uses a modified stochastic exploration
policy, that selects actions with probability inversely proportional to state visitation counts.

4 Width-based Planning and Learning for the Atari Games

In this Section we step through different design considerations when constructing a width-based
planning and learning algorithm. We compare the design decisions made by previous works and
propose new algorithms to test over the Atari-2600 games.

4.1 Novelty Definitions: Classic and Depth-based

The novelty definition of a width-based lookahead dictates which states to prune. In Algorithm 1
the novelty definition determines the output of the is_novel function. We refer to IW(1)’s novelty
definition as the "Classic" definition and define it as,
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Definition 4 ("Classic" Novelty). Given a feature set 𝐹 = { 𝑓1, . . . , 𝑓𝑖 , . . . , 𝑓𝑘} s.t. 𝑓𝑖 : 𝑆 → {⊤,⊥},
and a lookahead L= (𝑁 , 𝐶, 𝑠𝑟 ), a node 𝑛 is novel, if 𝑛 contains the first state generated s.t. 𝑓 (𝑛𝑠) = ⊤
for some 𝑓 ∈ 𝐹, that is, ∀𝑛′ ∈ 𝑁 , 𝑓 (𝑛′𝑠) = ⊥ and 𝑛′ ≠ 𝑛.

The "Depth" novelty definition introduced for RIW(1) by Bandres et al. [6] is,
Definition 5 ("Depth" Novelty). Given a lookahead L= (𝑁 , 𝐶, 𝑠𝑟 ), a newly generated node, 𝑛 ∉ 𝑁 ,
reached after doing 𝑑 (𝑛) actions from 𝑠𝑟 , is novel, if 𝑓 (𝑛𝑠) = ⊤ for some 𝑓 ∈ 𝐹, and ∀𝑛′ ∈ 𝑁 , such
that 𝑑 (𝑛′) ≤ 𝑑 (𝑛), 𝑓 (𝑛′𝑠) = ⊥.

Later we show that in a width-based planning and learning algorithm based upon the RIW(1) algorithm
the original "Classic" novelty is competitive and can sometimes outperform the depth-based one over
the Atari-2600 games. In what follows, we refer to Bandres et al.’s original configuration of RIW(1)
as RIW𝐷 and refer to RIW(1) where one replaces the "Depth" novelty definition with the "Classic"
one as RIW𝐶 .

4.2 Features for Novelty from Graphical Game Outputs

Width-based methods require a feature set 𝐹 to be defined over the observable state-space 𝑆. There
are two types of observations that can be used for the Atari-2600 games, the internal states of the
Atari-2600 machine (the RAM), and the colours of screen pixels. Either of these enable features
to be defined, as arbitrary Boolean functions over the observable variables. For the internal state
observables we have b × x variables, where b is the size of the Atari memory word (8 bits) and x is the
size of the physical RAM given by the number of distinct memory addresses (128 addresses). There
are c × w × h screen observable variables, where c is 128, w is 160, and h is 210, corresponding to
the colour depth, and the number of screen pixels along the horizontal and vertical directions.
When RIW(1) was introduced [6], Bandres et al. stated that features capturing "meaningful structure"
would yield better results than using raw features. Hence, Bandres et al. mapped the observable
screen variables into the feature set B-PROST, first proposed by Liang et al. [3]. The B-PROST feature
set attempts to capture temporal and spatial relationships between the past and present screen pixel
values. In order to compute the set of B-PROST features there are a number of steps required. First a
set of basic features needs to be computed through dividing the screen into 16 × 14 tiles comprised
of 10 × 15 pixels. For each tile, (𝑤, ℎ), where 𝑤 ∈ {1, . . . , 16} and ℎ ∈ {1, . . . , 14}, there are 𝐾
features where 𝐾 is equal to the colour depth of the Atari-2600 pixels (128). The basic feature in the
B-PROST set is 𝑓𝑤,ℎ,𝑐, where 𝑐 ∈ {1, . . . , 𝐾} is true if the tile (𝑤, ℎ) contains at least one pixel with
the colour value 𝑐. A second tier of features, the Basic Pairwise Relative Offsets in Space (B-PROS)
set, is computed from the basic ones. A B-PROS feature 𝑓𝑐1 ,𝑐2 ,𝑖, 𝑗 , is true if 𝑓𝑤,ℎ,𝑐1 ∧ 𝑓𝑤+𝑖,ℎ+ 𝑗 ,𝑐2
for any 𝑤, ℎ. Finally, a third tier of features, the Basic Pairwise Relative Offsets in Time (B-PROT)
set, are computed. A B-PROT feature considers the current screen’s tiles (𝑤, ℎ) and the previous
game screen’s tile (𝑤′, ℎ′) so that a feature 𝑓 𝑡

𝑐1 ,𝑐2 ,𝑖, 𝑗
is true if 𝑓𝑤,ℎ,𝑐1 ∧ 𝑓𝑤′+𝑖,ℎ′+ 𝑗 ,𝑐2 for any 𝑤, ℎ where

𝑤′ = 𝑤 and ℎ′ = ℎ. The B-PROST set is the union of basic, B-PROS, and B-PROT feature sets.
The feature set can also be defined dynamically through a NN [8]. 𝜋-IW, 𝜋-IW(1)+ and the lower
level planner of 𝜋-HIW(n, 1) use a feature set that is defined as the output values of the rectified
linear units from the last hidden layer of the policy NN treating zero values as ⊥ and positive as
⊤. The policy NN input are the last four screens, processed to map colours to a suitably defined
grayscale, and down sampled to a size of 84 × 84. While the policy network is being trained the
features extracted through it will also change. This is similar to Dittadi et al. [9], who use Variational
Autoencoders (VAE) to learn a set of features from the Atari game screen using a training set of game
screens created from a RIW(1) execution using B-PROST. RIW(1) using the VAE features was shown
to outperform RIW(1) using the B-PROST features.
While width-based planning methods using both the BPROST and NN extracted feature sets have
been shown to perform well over the Atari games, previous width-based methods have not tested
simpler feature sets defined directly over the screen pixel values. With the motivation of presenting
a simpler width-based algorithm, we define our feature set directly over the values of the current
down sampled 84 × 84, 8-bit grayscaled, observable screen variables. Each feature is defined as 𝑓𝑖, 𝑗 ,𝑐
and is true if the downsampled pixel (𝑖, 𝑗) has the grayscaled colour c, where 𝑖, 𝑗 ∈ {1, . . . , 84} and
𝑐 ∈ {1, . . . , 256}. Despite using a simpler feature set than previous work, in the next Section we show
that our algorithm outperforms the methods that use dynamically defined NN based features.
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Algorithm 2: Novelty guided Critical Path Learning (N-CPL)
// Perform 𝐾 training iterations

1 for i = 0, . . . , K do
2 T 𝑖 ← ∅, 𝐸 𝑖 ← ∅ // Iteration’s critical path transitions and episode rewards
3 while ¬ train_interval_exhausted() do
4 𝑠← 𝑠0, 𝑅 ← 0, 𝐿 ← initialise_lookahead(𝑠0)
5 while ¬ is_terminal(s) do
6 𝐿 ←RIW(𝐿, 𝜋𝑏) // Algorithm 1
7 𝑎, 𝑟, 𝑠′, 𝐿 ← select_next_transition(𝐿,𝑉 𝑡 ) // Selected using Def.2
8 T 𝑖 ← T 𝑖 ∪ (𝑠, 𝑎, 𝑟, 𝑠′), 𝑠← 𝑠′, 𝑅 ← 𝑅 + 𝑟
9 end

10 𝐸 𝑖 ← 𝐸 𝑖 ∪ 𝑅 // Episode rewards from current iteration
11 end

// Train and update network parameters according to learning schedule

12 𝜋𝑏, 𝑉
𝑡 ← update_network_parameters(T 𝑖 , 𝐸 𝑖)

13 end

4.3 Learning Base Policies and Termination Costs

AlphaGo [13] and 𝜋-IW [8] showed the power of using a learnt base policy defined through a NN in
order to guide a lookahead search. Similarly, AlphaGo and 𝜋-IW(1)+ [10] also use a learnt value
function defined through a NN. 𝜋-IW(1)+ used its learnt value function to modify the definition of
𝑉 (𝑛) (Definition 2) allowing the rewards received from the transitions in the lookahead to sometimes
be ignored in preference of the value network’s valuation.
We propose a new algorithm based on Algorithm 1, Novelty guided Critical Path Learning or N-CPL
for short, that incorporates both a learnt policy and value function network. An outline of N-CPL is
shown in Algorithm 2. Like 𝜋-IW does, N-CPL defines the base policy used by Algorithm 1 to be a
policy network. Besides that, N-CPL uses a cost-to-go approximation which we implement with a
NN as a value function, which is evaluated at the non-terminal leaf nodes of the lookahead. Using
cost-go-approximations has been shown to significantly improve the performance of width-based
lookaheads over stochastic shortest paths [20], but rather than using simulations to obtain the cost-to-go
estimates, we rely on a learnt heuristic function. That is, instead of assigning termination costs, 𝑉𝑇 ,
of 0 as done by previous width-based methods, if the state is not terminal the valuation of the learnt
value function network is used. We note that unlike 𝜋-IW(1)+ we do not use the learnt value function
to modify the 𝑉 (𝑠) definition as defined in Definition 2.

4.4 Learning from Critical Paths

The policy network of N-CPL uses the state action pairs, (𝑠 𝑗 , 𝑎 𝑗 ) for 𝑗 = 0, . . . , 𝐻 − 1, of previous
episodes performed by N-CPL with NN parameters, <𝜃 𝜋

𝑖
, 𝜃𝑉

𝑖
>, in order to train new NN parameters

𝜃 𝜋
𝑖+1. This is similar to how 𝜋-IW(1) trains its policy function, except for the fact that 𝜋-IW(1) uses the

Q values within the lookahead tree. If multiple actions in 𝜋-IW’s lookahead have the same Q value
for a given state, instead of the training vector assigning a probability of one to the executed action,
𝜋-IW uniformly distributes the probability across the actions with the same Q values. We have taken
the simpler approach of just using 1-hot encodings for the single selected action along the critical
path (Definition 3) of the N-CPL algorithm. Curating the training dataset in this way also means
N-CPL does not need access to the internal data structures of the planning agent itself but instead can
externally observe any agent interacting with the environment in order to acquire the training data.
Influential deep RL algorithms such as DQN [2] which have been applied to the Atari-2600 games
rely on evaluating an 𝜖-greedy policy defined over the parameters of its network in order to sample
transitions and use Q-learning updates on the parameters of the network. We follow this strategy
and perform Temporal Differential (TD) [21] learning to train the value network. The selection of
the transitions that are used for the TD learning determines what the value function is estimating.
That is, TD’s task is to estimate the expected accumulated rewards from the given state following
the policy which underlies the transitions that it is trained on. In N-CPL the transitions within the
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N1 2 ... M1 2 ...

N-CPL N-CPL
Episodes executed with Episodes executed with

Figure 2: Illustration of the schedule for the network parameter updates, <𝜃 𝜋 , 𝜃𝑉>, of N-CPL. The 𝐸
arrays contain episodes executed by N-CPL and each episode in the array is represented by a square in
the diagram. The t_test function returns the p-value for Welch’s t-test [22] of the episode rewards
executed with the old 𝑖 − 1 parameters being better than the new ones. 𝛿𝜋

𝑖
and 𝛿𝑉

𝑖
are real vectors of

the same dimensions as 𝜃 𝜋
𝑖

and 𝜃𝑉
𝑖

respectively. 𝛿𝜋
𝑖

and 𝛿𝑉
𝑖

are functions over 𝐸𝑖 .

lookahead follow the base policy, 𝜋𝑏 which is being learnt by aiming to mimic the policy induced
from the N-CPL lookahead, 𝜋N-CPL. The N-CPL lookahead through selecting actions according
to Definition 2 can be seen as a policy improvement operator over 𝜋𝑏 and hence the execution of
𝜋N-CPL is not necessarily equivalent to the 𝜋𝑏. Therefore it does not make sense to approximate the
expected accumulated reward of the lookahead with the expected accumulated reward of 𝜋𝑏. Instead,
as shown in Line 8 of Algorithm 2, N-CPL trains only the transitions on the critical path of the
lookahead (Definition 3), that is, the transitions selected by 𝜋N-CPL. This results in the value function
approximating the expected accumulated reward of executing 𝜋N-CPL from a given state.

4.5 Adding a Learning schedule

The previous width-based planning and learning methods continuously learn and update their policy
and value networks, while a key mechanism of the Alpha-Zero algorithm [14] is the use of a learning
schedule. Alpha-Zero evaluates each new set of network parameters 𝜃 ′ that are trained against
the current set of network parameters 𝜃 to ensure 𝜃 ′ improves AlphaZero’s performance. Here we
introduce a general learning schedule mechanism that is applicable to sequentially executed and
trained planning and learning methods applied to single-player domains, that N-CPL uses for updating
its network parameters for its policy network, 𝜃 𝜋 and value function network, 𝜃𝑉 . As illustrated
in Figure 2, the learning schedule determines whether network parameter updates <𝜃 𝜋

𝑖
, 𝜃𝑉

𝑖
> can

be accepted or if the <𝜃 𝜋
𝑖−1, 𝜃

𝑉
𝑖−1> parameters are kept, by evaluating their performance when used

within N-CPL. This test is implemented in the update_network_parameters function shown in
Algorithm 2. For the test N-CPL performs a Welch’s t-test [22] on its performance with the new 𝑖
parameters vs. the old 𝑖 − 1 parameters. The update is rejected if the t-test suggests, with a 𝑝-value of
less than 0.1, that performance could deteriorate if the new parameters were accepted. This training
and parameter update schedule allows learning steps to be completed at each time step like done by
𝜋-IW [8], except that the updated parameters are not used for data generation by N-CPL until they
have been accepted by the proposed learning schedule.

5 Experimental Study

We benchmark width-based planning and learning methods with variations of the design decisions
explained in the previous section. Here we explain our experimental methodology and provide results
across the different algorithms over the Atari-2600 games.

5.1 Methodology

Given vast compute resources it would be preferable to conduct a full ablation study over the
Atari-2600 benchmark on each element of a width-based planning and learning algorithm discussed
in the previous Section. However, due to computational constraints we instead select five planners
which will provide the most insight. Two of the planners we evaluate are based on RIW(1) without
learnt policy or value function networks. One of the planners uses the "Depth" definition of novelty
(Definition 5) and the other uses the "Classic" definition (Definition 4), we name these version RIW𝐷
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and RIW𝐶 respectively. Note that RIW𝐷 is as described in Bandres et al.[6], except that the features
are defined directly over the screen’s pixel values as discussed in the previous Section. The other
2 width-based planners we benchmark are two versions of N-CPL, as previously described. Again
we test both the "Classic" and "Depth" novelty definitions (Definitions 4, 5), and refer to them as
N-CPL and N-CPL𝐷 respectively. For the policy networks of N-CPL and N-CPL𝐷 we use the
same architecture used by Mnih et al. [2]. The value network uses the same architecture as the
policy network except that instead of the output layer being a dense softmax layer with an output for
each action, the output layer of the value network is a dense linear layer with a single output value.
Additionally we test a version of N-CPL that does not prune for novelty, we refer to as CPL, i.e. for
CPL the is_novel function in Algorithm 1 always returns true.
We compare RIW𝐷 , RIW𝐶 , CPL, N-CPL, and N-CPL𝐷 to the 𝜋-IW, 𝜋-IW(1)+ and 𝜋-HIW(n, 1)
planners with the results as given by Junyent et al. [10]. We do not directly compare our results
to those given in the original RIW(1) planner as Bandres et al. [6] use a different experimental
design. That is, Bandres et al. and previous works such as Lipovetzky et al. [5] benchmarked their
width-based planners over the Atari-2600 games all using the full action set of 18 actions per state.
We found in the code provided for the 𝜋-IW(1) work that it was benchmarked against the games using
the minimal action set for each game. Using the minimal action set results in many games having
much smaller branching factors, for example, instead of Breakout having a branching factor of 18, it
has a branching factor of just 4. Additionally it is worth noting that the true average branching factor
of each game is often much smaller than the minimal action set [23] and learning the minimal action
set can help avoid unnecessary simulator interactions [18]. Due to computational constraints we
could not benchmark our algorithms over the games with full, minimal and learnt minimal actions
sets. Instead, we decided to benchmark using the minimal action set as Junyent et al. [10] do.
The results are also not directly compared with those from MuZero due to discrepancies in the
evaluation protocols and computing resource requirements. For example, MuZero uses a smaller
frameskip for the environment time steps and uses a longer allowed episode length of 108,000 frames
compared to the 18,000 frame maximum episode length we impose. While our experiments run on
a single vCPU for each trial for both training and evaluation, MuZero required 40 third generation
Google Cloud TPUs for each run, 8 for training and 32 for its self-play. Furthermore the results for
MuZero on each domain were only made available for a 20 billion frame training budget. We do
however provide comparisons with the RL algorithms DQN [2] and Rainbow [4], along with all the
necessary caveats about differences in evaluation protocols, in the Supplementary Material.
For the evaluation of each algorithm on each game we run 5 independent trials. Once training
has completed we evaluate each trial over 10 episodes. Following previous width-based planning
papers [6, 8, 10] we use a frameskip of 15. We keep our experimental settings the same as Junyent
et al. [10] including a training budget of 2 × 107 simulator interactions and allowing 100 simulator
interactions at each planning time step, which allows almost real-time planning. Note that previous
width-based algorithms have varied in how they apply planning budgets, Lipovetzky et al. enforce
a budget of 30,000 simulator interactions with a frameskip of 5, while Bandres et al. enforce time
budgets of 0.5 and 32 seconds with a frameskip of 15. We ran 80 independent trials at once over 80
Intel Xeon 2.10GHz processors with 720GB of shared RAM, limiting each trial to run on a single
vCPU. The average vCPU run-time per time step needed across both the planning and learning steps
were 1.28 and 1.11 seconds for N-CPL, and N-CPL𝐷 respectively, resulting in each trial taking just
under 3 days to complete. For RIW𝐶 and RIW𝐷 , which do not require any learning steps or evaluation
of NNs, the average run-times per step were 0.55 and 0.54 seconds respectively. Note that given Atari
operates at 60 frames per second and we use a frameskip of 15 a real-time planner would be required
to execute with a run-time of 0.25 seconds per time step.
The transitions within the lookahead are cached inline with previous width-based planners [5, 6, 8, 10].
That is, when the search revisits a transition between two nodes of the lookahead within the same
episode, the simulator does not need to be recalled and hence does not affect the simulator budget.
Also following previous work, transitions that are cached from previous time steps are not considered
by the novelty Definitions 4, and 5, and hence will never be pruned.

5.2 Results

Table 1 summarises the results of N-CPL, N-CPL𝐷 , CPL, RIW𝐶 , RIW𝐷 , 𝜋-IW(1), 𝜋-IW(1)+ and
𝜋-HIW(n, 1). Using the pairwise comparison of the different algorithms across the 53 games it is
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Table 1: A pairwise comparison of the width-based planning algorithms over the full benchmark
set made up of 53 Atari Games. Numbers represent the number of games an algorithm had a higher
average evaluation score over the 5 learning trials than the algorithm it is being compared to.

Number of games with higher average score than
N-CPL N-CPL𝐷 CPL RIW𝐶 RIW𝐷 𝜋-IW 𝜋-IW+ 𝜋-HIW Total (ave. win %)

N-CPL 26 35 49 47 32 39 32 260 (70.1%)
N-CPL𝐷 26 29 48 46 32 38 30 249 (67.1%)
CPL 18 24 43 45 31 39 27 227 (61.2%)
RIW𝐶 3 4 10 23 19 18 17 94 (25.3%)
RIW𝐷 5 6 8 29 20 18 17 103 (27.8%)
𝜋-IW 20 20 22 33 32 30 25 182 (49.1%)
𝜋-IW+ 14 15 14 35 35 23 23 159 (42.9%)
𝜋-HIW 21 23 26 36 36 28 30 200 (53.9%)

Table 2: Same as Table 1 but for games with a Branching Factor ≥ 10 (33 Games).
Number of games with higher average score than

N-CPL N-CPL𝐷 CPL RIW𝐶 RIW𝐷 𝜋-IW 𝜋-IW+ 𝜋-HIW Total (ave. win %)
N-CPL 14 22 30 29 23 28 22 168 (72.7%)
N-CPL𝐷 18 18 31 29 23 27 21 167 (72.3%)
CPL 11 15 26 28 23 28 21 152 (65.8%)
RIW𝐶 2 1 7 16 15 16 13 70 (30.3%)
RIW𝐷 3 3 5 16 16 16 13 72 (31.2%)
𝜋-IW 9 9 10 17 16 19 14 94 (40.7%)
𝜋-IW+ 5 6 5 17 17 14 11 75 (32.5%)
𝜋-HIW 11 12 12 20 20 19 22 116 (50.2%)

clear that N-CPL𝐷 and N-CPL are the most performant. Comparing the "Depth" vs. "Classic" novelty
definition methods as RIW𝐷 vs. RIW𝐶 , the former performs better than the latter. The superiority of
the "Depth" over the "Classic" definition of novelty does not follow when using our CPL method. The
"Classic" method of N-CPL slightly outperforms the "Depth" method N-CPL𝐷 , with Table 1 indeed
showing that N-CPL is the best performing algorithm overall. Interestingly our CPL method that does
not use novelty pruning, still outperforms all previous methods which shows the large contribution
learning and using the policy and value function networks, as described in the previous Section, has
on performance.
To better understand the performance of the algorithms we segment the benchmark set according to a
couple of different characteristics. The game characteristics we examine are the branching factor,
and the sparseness of meaningful reward feedback (SMRF). We consider rewards as meaningful
when they provide information to a player about how to maximise the accumulated reward of an
episode. For a given game, SMRF is determined by executing a random policy and a Real-Time
Dynamic Planner (RTDP) [24] over each of the games. RTDP is an online planner that uses a one step
lookahead (Definition 1) and an approximation for the termination cost 𝑉 𝑡 at each of the leaf nodes.
For the approximation of 𝑉 𝑡 (𝑠′) we use the accumulated reward from a random policy executed from
𝑠′ for 10 time steps. We run both the random policy and RTDP for 50 time steps (750 frames). If the
results from the RTDP planner are not better than the random policy according to Welch’s t-test [22]
with p < 0.1, the game is classified as having SMRFs. The results of the random policy vs. RTDP can
be found in the Supplementary Material. For example, in the game of Pong, RTDP will be able to
discover states through its 10 step approximation of 𝑉 𝑡 (𝑠′) where either player has scored. Using
information from𝑉 𝑡 (𝑠′) about which players have scored, RTDP will be able to have a better informed
policy than the random policy, so Pong would not be considered a SMRF game. In a game like Skiing,
where a skier is required to ski down a mountain and pass through gates on its path down, RTDP
will not discover any meaningful rewards in its 10 step rollouts. This is because in Skiing, despite a
constant negative reward at each time step, there is no meaningful reward feedback until the skier
reaches the bottom of the mountain where a negative reward is applied for each gate the skier missed.
Table 2 groups the games according to their branching factor. Comparing Table 2 and 1 we can see
that for games with larger branching factors, the relative performance gap between our N-CPL𝐷 and
N-CPL planners and Junyent et al.’s 𝜋-IW(1), 𝜋-IW(1)+ and 𝜋-HIW(n, 1) increases as the branching
factor increases. For example N-CPL and N-CPL𝐷 perform better than 𝜋-IW(1)+ in 28/33 (84.8%)
games and 27/33 (81.8%) games respectively for the games with a branching factor greater or equal
to 10. However, for games with a branching factor less than 10, N-CPL and N-CPL𝐷 only perform
better than 𝜋-IW(1)+ in 11/20 (55%) and 11/21 (55%) games respectively.
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Table 3: Same as Table 1 but for SMRF games (12 Games).
Number of games with higher average score than

N-CPL N-CPL𝐷 CPL RIW𝐶 RIW𝐷 𝜋-IW 𝜋-IW+ 𝜋-HIW Total (ave. win %)
N-CPL 7 5 10 10 7 9 7 55 (65.5%)
N-CPL𝐷 4 3 9 9 7 9 6 47 (56%)
CPL 7 9 11 11 8 9 7 62 (73.8%)
RIW𝐶 1 2 1 6 6 3 4 23 (27.4%)
RIW𝐷 1 2 1 5 6 3 4 22 (26.2%)
𝜋-IW 4 4 4 5 5 4 3 29 (34.5%)
𝜋-IW+ 3 3 3 9 9 8 5 40 (47.6%)
𝜋-HIW 5 6 5 8 8 9 7 48 (57.1%)

Table 3 compares the pairwise performance for games classified as SMRF games. Table 3 clearly
shows that the dominant method for the SMRF games is CPL, that is, the algorithm without novelty
pruning. Table 3 also shows that the "Classic" novelty (Definition 4) methods outperform "Depth"
novelty (Definition 5). These observations, that contradict previous claims in the literature, required
careful analysis. We observed that the "Classic" method prunes states more aggressively, meaning it
is more likely to reach states that are further away from the root node compared with the "Depth"
definition. Similarly, as the CPL method does not prune any states due to novelty, CPL’s depth-first
lookahead trajectories will always reach the lookahead search horizon of 100 time steps at least once,
given that the lookahead simulator budget is 100 time steps. This results in CPL on average searching
for states that are further away from the root node than any of the novelty pruning methods. By
definition, high rewards for SMRF games have a higher probability of being further away than games
with dense rewards. Therefore, CPL and the "Classic" novelty methods are more likely to discover
the meaningful rewards by searching deeper in the lookahead. Interestingly CPL and N-CPL still
outperform, yet are close to 𝜋-IW(1)+ and 𝜋-HIW(n, 1) on the SMRF games, despite 𝜋-IW(1)+ and
𝜋-HIW(n, 1) being motivated by such domains.

6 Discussion

We have found significant discrepancies in the experimental settings used in the previous width-based
planning papers for evaluating their algorithms over the Atari-2600 games. We believe a clear
and consistent evaluation protocol should be set out for planning based algorithms applied to the
Atari-2600 games to facilitate the direct comparison of their results. This could be similar to the
evaluation protocol for the Atari-2600 games set out by Machado et al. [25], which was mainly focused
towards RL agents and included recommendations on episode termination, setting of hyper-parameters,
measuring training data, summarising learning performance and injecting stochasticity. However
Machado et al. do not discuss evaluation settings that are vital to the deterministic planning setting we
have explored in this paper, such as planning budgets, and caching of transitions within lookaheads.
We hope that by having identified some of the discrepancies in the experimental settings of previous
width-based algorithms, such as the size of the action set and the planning budget used, future research
in planning agents for the Atari-2600 games can be more easily assessed. We were able to observe
interesting patterns in the relative performance of algorithms through segmenting the Atari-2600
games by their different game characteristics. We are not aware of other works that analyse the
performance of agents in regards to the characteristics of specific Atari-2600 games. We believe this
taxonomy will provide useful insights into the behaviour of agents on the Atari-2600 games.
In this paper we have focused on width-based planning methods that have been applied over the
Atari-2600 games. It is important to note though that these algorithms are defined in a general way to
operate over MDPs. We proposed new width-based planning and learning algorithms through the
examination of different design decisions made by previous implementations of width-based planners.
These new algorithms, particularly N-CPL, are simpler implementations than the previously introduced
width-based planning and learning algorithms 𝜋-IW(1)+ and 𝜋-HIW(n, 1). N-CPL defines its features
directly over the grayscaled pixel colours of the game screen and uses a simplified novelty definition.
Furthermore, N-CPL learns a value function which is only used for cost-to-go approximations at the
leafs of the lookahead search tree. N-CPL also uses a methodical learning schedule we introduced
for training both its policy and value networks. We found N-CPL to outperform 𝜋-IW(1), 𝜋-IW(1)+
and 𝜋-HIW(n, 1) not only across the Atari-2600 benchmark, but also over subsets of games with
large branching factors and games with sparse meaningful rewards. These results show that N-CPL’s
integration of planning and learning pays off for almost real-time planning over hard problems.
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