
Appendix

A Proofs of Theoretical Results

A.1 Proof of Lemma 1

Lemma 1. Let La be a α-strongly convex and β-strongly smooth loss function. Given that task b
induces higher inter-task affinity than task c on task a, the following inequality holds:

ga · gc −
β η

2
‖gc‖2 +

αη

2
‖gb‖2 ≤ ga · gb (2)

Proof. Let θ be the initial parameters. Let θ+b := θ − η gb and θ+c := θ − η gc denote the updated
shared parameters using gradient of task b and c, respectively. From inter-task affinity, we have

Zb a = 1− La(θ
+
b )

La(θ)
≥ 1− La(θ

+
c )

La(θ)
= Zc a

Thus, we have
La(θ

+
b ) ≤ La(θ+c )

From the strong convexity and strong smoothness assumptions, we can respectively lower-bound and
upper-bound the first and second terms. Thus, we have

La(θ)− η ga · gb +
αη2

2
‖gb‖2 ≤ La(θ)− η ga · gc +

Lη2

2
‖gc‖2

Rearranging the terms yields the result.

A.2 Proof of Proposition 1

Proposition 1. Let La be a α-strongly convex and β-strongly smooth loss function. Let η ≤ 1
β be

the learning rate. Suppose that in a given step, task b has higher inter-task affinity than task c on
task a. Moreover, suppose that the gradients have equal norm, i.e. ‖ga‖ = ‖gb‖ = ‖gc‖. Then,
taking a gradient step on the parameters using the combined gradient of a and b reduces La more
so than taking a gradient step on the parameters using the combined gradient of a and c, given that
cos(ga, gc) ≤ η

4
αβ
β−α − 1 where cos(u, v) := u·v

‖u‖ ‖v‖ is the cosine similarity between u and v.

Proof. Applying the strong smoothness upper-bound on the updated loss using the combined gradient
ga + gb, we have

La(θ − η (ga + gb)) ≤ La(θ)− η ga · (ga + gb) +
η2 β

2
‖ga + gb‖2

= La(θ) + (η2 β − η) ga · gb + (
η2 β

2
− η) ‖ga‖2 +

η2 β

2
‖gb‖2

We would like to show that the last line is less than or equal to a lower-bound on the loss obtained
using the combined gradient ga + gc

La(a)− η ga (aa + gc) +
η2 α

2
‖ga + gc‖2 ≤ La(θ − η (ga + gc))

Eliminating the common terms, we would like to show the following inequality holds

(ηβ − 1) ga · gb +
η β

2
(‖ga‖2 + ‖gb‖2) ≤ (ηα− 1) ga · gc +

ηα

2
(‖ga‖2 + ‖gc‖2) .

Using η ≤ 1
β , the first term becomes negative. Replacing for ga · gb using Eq. (2), it suffices to show

the following inequality

(ηβ − 1) (ga · gc +
ηα

2
(‖gb‖2)−

ηβ

2
(‖gc‖2)) +

ηβ

2
(‖ga‖2 + ‖gb‖2)

≤ (ηα− 1) ga · gc +
ηα

2
(‖ga‖2 + ‖gc‖2) .

15



1.0

7.0

13.0

13.0

19.0

19.0

−ga

−gb −gc

−4 −2 0 2 4

−2

−1

0

1

2

(a) The gradient gb reduces the loss La more so than gc.

1.0

7.0

13.0

13.0

19.0

19.0

−(ga + gb) −(ga + gc)

−4 −2 0 2 4

−2

−1

0

1

2

(b) The combined gradient ga + gc reduces the loss La more so
than ga + gb.

1.0

7.0

13.0

13.0

19.0

19.0

−ga

−gb −gc

−4 −2 0 2 4

−2

−1

0

1

2

(c) An alternate gc which satisfies the conditions of Proposition 1.

1.0

7.0

13.0

13.0

19.0

19.0

−(ga + gb)
−(ga + gc)

−4 −2 0 2 4

−2

−1

0

1

2

(d) Now the combined gradient ga + gb reduces the loss La more
so than ga + gc.

Figure 5: A counterexample on a quadratic loss function where the task grouping based on inter-task
similarity results in an inferior performance.

Rearranging the terms, it suffices to show

0 ≤ ‖ga‖2(
η

2
(α− β)) + ‖gb‖2(−

η

2
α(ηβ − 1)) + ‖gc‖2(

η

2
(α− β) + η2

2
β2) + η(α− β) ga · gc .

Under the mild assumption that ‖ga‖ = ‖gb‖ = ‖gc‖, we can rearrange the terms to obtain
cos(ga, gc) ≤ η

4

β/α
β/α−1 − 1, where cos(u, v) := u·v

‖u‖ ‖v‖ is the cosine similarity between u and v.

A.3 Quadratic Counterexample

We provide a counterexample in a multi-task setup using a quadratic loss function. The loss function
for the task a is defined as La(x1, x2) = 1/2 (x21 + 10x22). For this loss function, α = 1 and
β = 10. Also, the global minimum of the loss is at (x1, x2) = (0, 0). We set the initial point to
(x1, x2) = (−2,−1) with a loss value of 7. Figure 5(a) shows the level sets of the loss function La,
along with the negative task gradient −ga. We also plot two additional negative gradients, namely
−gb and −gc, belonging to the tasks b and c, respectively. The auxiliary task gradients gb and gc
are chosen to have the same gradient norm as ga, but pointed along the vectors [8,−2] and [−12, 2],
respectively. Using a learning rate of η = 0.09 < 1/β, the gradient of task b at this point reduces the
value of the loss La more so than the gradient of task c. Specifically, the value of the loss after a
gradient step using gb amounts to 6.96 whereas using gc, we obtain a loss value of 6.98. However, this
ordering does not hold when combining the gradients, i.e. using the combined gradient ga+gb results
in a loss value 6.09 of whereas the combined gradient ga + gc yields a loss of 6.07 (Figure 5(b)).

Alternatively, in Figure 5(c) we consider a gradient gc along [−0.2, 15] which also satisfies the second
condition of Proposition 1, namely cos(a, c) ≤ η

4

β/α
β/α−1 (while ‖ga‖ = ‖gc‖). For this choice of gc

and as a result of Proposition 1, the fact that gb reduces the loss La more so than gc (6.96 vs 7.96)
implies ga + gb also reduces the loss more so than ga + gc (6.09 vs 6.98, see Figure 5(d)).

16



Figure 6: (Left) average classification error for 2, 3, and 4-split task groupings for the subset of 9
tasks in CelebA. (Right) total test loss for 2 and 3-split task groupings for the subset of 5 tasks in
Taskonomy. The x-axis is the inference-time memory budget relative to the number of parameters in
the baseline MTL model from Section 5.

B Additional Experimental Results

We provide additional experimental results to supplement our empirical analysis of TAG in Section 5.
In particular, we evaluate task groupings without a fixed inference-time latency constraint, supply
extra information related to the CelebA and Taskonomy analyses, and offer additional discussion on
the ablation studies presented in Section 5.2.

B.1 Task Grouping Evaluation Without Latency Constraint

We analyze the effect of removing the inference-time latency constraint from our problem definition.
Without this limitation, we can scale up the size of our multi-task learning baselines to equal the total
number of parameters used in each task grouping. Similar to [46], we choose to scale capacity by
increasing the number of channels in each convolutional layer. A 2-splits task grouping would then
correspond with a multi-task model with 2 times the number of channels in each conv layer. On the
CelebA dataset, running PCGrad with double the number of channels resulted in an out-of-memory
(OOM) error on a 16 GB TeslaV100 GPU. When implemented with distributed training, we received
a runtime error. As a result, we do not include PCGrad results in this analysis, and this particular
method would also likely surpass typical computational budget constraints due to its high memory
usage.

Our results are summarized in Figure 6. Similar to the findings presented in Figure 3 of Section 5,
the task grouping approaches continue to outperform simply training all tasks together, as well as
optimization augmentations like Uncertainty Weights and GradNorm. For CelebA, increasing the
number of channels in the layers of our ResNet model actually reduces performance, indicating our
model is already at near-optimal capacity for this dataset. This is reasonable given our tuning of the
CelebA model architecture and hyperparameters to maximize MTL performance. For Taskonomy,
and similar to the results presented in [46], we find scaling multi-task model capacity does not
meaningfully improve MTL or GradNorm performance.

B.2 Additional CelebA Task Grouping Results

In this section, we provide further detail into our experimental results for the CelebA dataset. We
present the raw values used to create Figure 3 (left) and Figure 6 (left) as well as underpin the
Section 5.2 ablation studies in Table 4, Table 5, Table 6, Table 7, and Table 8. All quantities are
averaged across three independent runs, and we report mean and standard error. A task within a
group is highlighted in bold when this task is chosen to “serve” from this assigned task grouping.
Duplicate tasks that are not bolded are only used to assist in the training other tasks.

17



CelebA Baseline Methods

Method a1 a2 a3 a4 a5 a6 a7 a8 a9 Total Error

MTL 6.54± 0.026 11.09± 0.009 4.19± 0.017 12.59± 0.085 2.60± 0.0.003 2.73± 0.128 4.81± 0.010 4.74± 0.012 0.70± 0.007 50.00

STL 6.56± 0.003 11.37± 0.009 4.19± 0.025 12.58± 0.102 2.69± 0.017 3.06± 0.010 4.97± 0.006 4.83± 0.010 0.71± 0.007 49.99

UW [28] 6.51± 0.038 11.43± 0.034 4.18± 0.015 11.91± 0.132 2.50± 0.028 2.95± 0.010 4.81± 0.026 4.89± 0.028 0.74± 0.007 49.92

GradNorm [10] 6.44± 0.033 11.09± 0.0.021 4.01± 0.051 12.38± 0.097 2.65± 0.022 2.96± 0.017 4.89± 0.015 4.87± 0.003 0.81± 0.009 50.11

PCGrad [53] 6.57± 0.015 10.95± 0.020 4.04± 0.015 12.73± 0.033 2.67± 0.013 2.87± 0.021 4.76± 0.006 4.76± 0.015 0.64± 0.010 49.99

Table 4: Mean and standard error for benchmark methods run on CelebA.

Inference Time Budget = 2 Splits Task Groupings

Method Splits a1 a2 a3 a4 a5 a6 a7 a8 a9 Total Error

CS group 1 — — — — 2.60± 0.010 3.05± 0.007 — — — 49.86group 2 6.55± 0.009 11.19± 0.020 4.10± 0.012 12.02± 0.029 2.57± 0.007 — 4.78± 0.015 4.85± 0.006 0.73± 0.010

HOA group 1 — — — — 2.59± 0.006 — 4.71± 0.000 — — 49.73group 2 6.49± 0.037 11.34± 0.022 4.25± 0.052 11.76± 0.090 — 3.00± 0.022 — 4.91± 0.059 0.69± 0.009

TAG group 1 6.39± 0.006 — — — — — 4.79± 0.006 — — 49.66group 2 — 11.10± 0.065 4.16± 0.003 12.29± 0.202 2.55± 0.025 2.94± 0.015 — 4.69± 0.026 0.74± 0.013

Optimal group 1 6.60± 0.009 11.21± 0.017 4.40± 0.007 11.91± 0.051 2.60± 0.009 2.87± 0.003 4.81± 0.015 4.58± 0.009 —
49.37group 2 — 11.14± 0.044 4.03± 0.012 11.90± 0.020 — — — — 0.75± 0.018

Table 5: Two-split task groupings in CelebA. We report mean and standard error.

Inference Time Budget = 3 Splits Task Groupings

Method Splits a1 a2 a3 a4 a5 a6 a7 a8 a9 Total Error

CS
group 1 — — — — 2.60± 0.010 3.05± 0.007 — — —

50.63group 2 6.39± 0.006 — — — — — 4.79± 0.006 — —
group 3 — 11.20± 0.031 4.09± 0.010 12.97± 0.015 — — — 4.82± 0.018 0.73± 0.003

HOA
group 1 — — — — 2.59± 0.006 — 4.71± 0.000 — —

49.73group 2 — 11.08± 0.017 — 12.20± 0.067 — — — — —
group 3 6.55± 0.012 — 4.15± 0.013 — 2.70± 0.012 2.84± 0.003 4.90± 0.015 4.76± 0.015 0.75± 0.013

TAG
group 1 6.39± 0.006 — — — — — 4.79± 0.006 — —

49.52group 2 — 11.08± 0.017 — 12.20± 0.067 — — — — —
group 3 — 11.11± 0.127 4.08± 0.006 — 2.52± 0.025 2.96± 0.050 4.98± 0.058 4.73± 0.015 0.78± 0.009

Optimal
group 1 6.34± 0.067 — — — 2.57± 0.012 2.91± 0.019 4.74± 0.031 4.70± 0.017 0.78± 0.012

48.92group 2 — 11.14± 0.044 4.03± 0.012 11.90± 0.020 — — — — 0.75± 0.018
group 3 6.25± 0.045 — — — — — 4.67± 0.009 — 0.71± 0.006

Table 6: Three-split task groupings in CelebA. We report mean and standard error.

Inference Time Budget = 4 Splits Task Groupings

Method Splits a1 a2 a3 a4 a5 a6 a7 a8 a9 Total Error

CS

group 1 — — — — 2.60± 0.010 3.05± 0.007 — — —

49.51group 2 6.39± 0.006 — — — — — 4.79± 0.006 — —
group 3 — 11.08± 0.017 — 12.20± 0.067 — — — — —
group 4 — 11.00± 0.013 4.07± 0.012 12.40± 0.045 — — 4.96± 0.031 4.62± 0.009 0.72± 0.007

HOA

group 1 — — — — 2.59± 0.006 — 4.71± 0.000 — —

49.73group 2 — 11.08± 0.017 — 12.20± 0.067 — — — — —
group 3 6.63± 0.024 — — — 2.70± 0.006 — — — —
group 4 — 11.25± 0.049 4.15± 0.024 — 2.58± 0.023 2.88± 0.045 4.90± 0.065 4.74± 0.026 0.76± 0.012

TAG

group 1 6.39± 0.006 — — — — — 4.79± 0.006 — —

49.49group 2 — 11.08± 0.017 — 12.20± 0.067 — — — — —
group 3 — — — — 2.63± 0.003 2.99± 0.015 4.75± 0.012 — —
group 4 — 11.00± 0.013 4.07± 0.012 12.40± 0.045 — — 4.96± 0.031 4.62± 0.009 0.72± 0.007

Optimal

group 1 — 11.20± 0.049 4.09± 0.022 11.77± 0.197 — — — — —

48.57
group 2 — — 4.00± 0.023 — — 2.90± 0.020 4.85± 0.041 — 0.75± 0.010
group 3 6.25± 0.045 — — — — — 4.67± 0.009 — 0.71± 0.006
group 4 — 10.96± 0.045 — 12.74± 0.136 2.56± 0.031 — — 4.75± 0.072 0.77± 0.022

Table 7: Four-split task groupings in CelebA. We report mean and standard error.

CelebA High Capacity Performance

Method Capacity a1 a2 a3 a4 a5 a6 a7 a8 a9 Total Error

MTL
2x 6.42± 0.007 10.76± 0.070 4.35± 0.010 13.01± 0.152 2.66± 0.0.015 3.05± 0.009 4.76± 0.038 5.20± 0.047 0.80± 0.007 51.02
3x 6.43± 0.032 11.65± 0.128 4.21± 0.060 12.69± 0.918 2.61± 0.029 2.94± 0.009 4.87± 0.067 4.86± 0.064 0.80± 0.034 51.05
4x 6.91± 0.055 11.23± 0.060 4.31± 0.032 12.51± 0.104 2.57± 0.021 3.01± 0.009 4.59± 0.036 4.81± 0.018 0.64± 0.012 50.57

UW
2x 6.40± 0.006 11.01± 0.023 4.36± 0.015 12.54± 0.022 2.63± 0.0.013 3.03± 0.003 4.68± 0.007 5.00± 0.015 0.71± 0.012 50.36
3x 6.36± 0.050 11.32± 0.063 4.27± 0.020 12.12± 0.019 2.51± 0.012 2.94± 0.037 4.93± 0.045 4.76± 0.037 0.79± 0.006 50.00
4x 6.70± 0.146 11.49± 0.107 4.37± 0.009 12.35± 0.120 2.63± 0.021 3.07± 0.057 4.61± 0.023 4.83± 0.013 0.64± 0.018 50.71

GN
2x 6.38± 0.038 10.98± 0.031 4.13± 0.029 12.57± 0.095 2.71± 0.0.000 3.00± 0.043 4.73± 0.009 5.21± 0.146 0.86± 0.019 50.57
3x 6.38± 0.021 11.67± 0.217 4.35± 0.075 12.35± 0.248 2.61± 0.020 3.00± 0.089 4.93± 0.056 4.86± 0.006 0.85± 0.037 51.00
4x 6.56± 0.063 11.49± 0.261 4.33± 0.030 13.29± 0.646 2.57± 0.052 3.07± 0.067 4.82± 0.087 4.82± 0.057 0.78± 0.003 51.74

Table 8: Mean and standard error for CelebA high capacity experiments.

B.3 Additional Taskonomy Task Grouping Results

We also report the raw scores used in our empirical analysis of Taskonomy to create Figure 3 (right)
and Figure 6 (right) in Table 9, Table 10, Table 11, and Table 12. Given the size of the Taskonomy
dataset, and computational cost associated with running a single model (approximately 146 Tesla
V100 GPU hours for the MTL baseline), we evaluate only a single run.

18



Baseline Methods on Taskonomy

Method s d n t k Total Test Loss

MTL 0.0586 0.2879 0.1076 0.0428 0.1079 0.5940

STL 0.0509 0.2616 0.0975 0.0337 0.0910 0.5347

GN 0.0542 0.2818 0.1011 0.0305 0.1032 0.5708

Table 9: Baseline methods in Taskonomy.

Inference Time Budget = 2 Splits Task Groupings

Method Splits s d n t k Total Test Loss

CS group 1 0.532 0.2527 0.1064 — — 0.5288group 2 — — — 0.0232 0.0933

HOA group 1 0.0603 0.2725 0.1075 0.0429 — 0.5400group 2 — — 0.1110 — 0.0568

TAG group 1 0.532 0.2527 0.1064 — — 0.5288group 2 — — — 0.0232 0.0933

Optimal group 1 0.0532 0.2527 0.1064 — —
0.5176group 2 — — 0.1096 0.0271 0.0750

Table 10: Two-split task groupings in Taskonomy.

Inference Time Budget = 3 Splits Task Groupings

Method Splits s d n t k Total Test Loss

CS
group 1 0.528 0.2636 — — —

0.5246group 2 — — — 0.0232 0.0933
group 3 — 0.2551 0.1002 — —

HOA
group 1 0.0532 0.2527 0.1064 — —

0.4923group 2 — — 0.1110 — 0.0568
group 3 — — — 0.0232 0.0933

TAG
group 1 0.528 0.2636 — — —

0.5246group 2 — — — 0.0232 0.0933
group 3 — 0.2551 0.1002 — —

Optimal
group 1 0.0532 0.2527 0.1064 — —

0.4862group 2 0.0500 — 0.1025 0.0242 —
group 3 — — 0.1110 — 0.0568

Table 11: Three-split task groupings in Taskonomy.

Taskonomy High Capacity Performance

Method s d n t k Total Test Loss

MTL (2x) 0.00536 0.2664 0.1078 0.0441 0.11.73 0.5892

MTL (3x) 0.0538 0.2891 0.1090 0.0363 0.0984 0.5866

GN (2x) 0.0552 0.2977 0.1013 0.0289 0.1060 0.5891

GN (3x) 0.0570 0.2806 0.1044 0.0401 0.1006 0.5827

Table 12: Performance of high capacity models on Taskonomy.

B.4 Supplementary Information on Ablation Studies

In this section, we expand on our analysis into whether inter-task affinity correlates with optimal task
groupings. Notably, we offer additional insight into the failure case of TAG as well as a limitation
that arises from computing the change in loss on the training dataset rather than the validation dataset.
Finally, we provide an additional dimension of analysis into the robustness of inter-task affinity
measurements. In particular, is the inter-task affinity between two tasks maintained even in the
presence of a different set of tasks?

Are inter-task affinities maintained across different sets of tasks? For example, if one model
trains with tasks {A, B, C, D} and another with tasks {B, C, E, F}, would the inter-task affinity
between B and C be similar in both cases? Our empirical findings indicate inter-task affinity scores

19



a1 a2 a3 a4 a7
a1

Inter-Task Affinity Vector onto a1

a1 a2 a3 a4 a7

a7

Inter-Task Affinity Vector onto a7

a1 a5 a7 a8 a9

a1
Inter-Task Affinity Vector onto a1

a1 a5 a7 a8 a9

a7

Inter-Task Affinity Vector onto a7

Figure 7: (Left) inter-task affinity onto task a1 when trained with (top) {a1, a2, a3, a4, a7} and
(bottom) {a1, a5, a7, a8, a9}. Note, the inter-task affinity of a7 onto a1 is maintained across both
groups. (Right) inter-task affinity onto task a7 when trained with (top) {a1, a2, a3, a4, a7} and
(bottom) {a1, a5, a7, a8, a9}. Note, the inter-task affinity of a1 onto a7 is maintained across both
groups. Lighter coloring signify higher inter-task affinities.

between two tasks are largely maintained even in the presence of entirely different task sets on the
CelebA dataset. We visualize this effect for two such cases in Figure 7. This analysis presented in
Figure 7(left) indicates that the inter-task affinity from a7 onto a1 is consistent across two different
sets of tasks. Similarly, the inter-task affinity from a1 onto a7 is largely preserved as shown in
Figure 7(right).

a1 a2 a3 a4 a5 a6 a7 a8 a9

a1
a2

a3
a4

a5
a6

a7
a8

a9
Inter-Task Affinity Matrix for CelebA

seg depth norm keyp edge

se
g

de
pt

h
no

rm
ke

yp
ed

ge

Inter-Task Affinity Matrix for Taskonomy

Figure 8: (Top) inter-task affinity on CelebA. (Bot-
tom) inter-task affinity on Taskonomy. Lighter
colors signify higher inter-task affinities.

However, there is no guarantee our empirical
observations will extend to all cases. The second
task set may contain a task that significantly
decreases model performance, or even causes
divergence. In this event, it is likely that the
inter-task affinity exhibited between two tasks
in the first set will significantly differ from the
second set.

Does our measure of inter-task affinity corre-
late with optimal task groupings? Expanding
on our analysis in Section 5.2, we present the
pairwise training-level inter-task affinity scores
for the CelebA and Taskonomy datasets in Fig-
ure 8. Our analysis indicates three “groups” nat-
urally appear in CelebA composed of {a1, a7},
{a2,a3,a4}, and {a5, a6, a7}. Meanwhile on
Taskonomy, two “groups” composed of {seg-
mentation, depth, normals} and {edges, key-
points} naturally form. The Network Selection
Algorithm operates on this information to assign
tasks to networks.

Expanding our analysis into the failure case of
TAG to select the best auxiliary task for a8 as
presented in Table 1, Figure 8 indicates no other
task in our CelebA task set exhibits especially
high (or low) inter-task affinity onto a8. We fur-
ther analyze this characteristic in Table 13 which
presents the difference in normalized inter-task
affinity values for each attribute in our CelebA analysis. Note the affinity onto a8 is significantly less
than the affinity onto any other task and 4 times smaller than the next smallest difference. We posit
the reason TAG fails to select a positive group for a8 is due to the fact that no other task significantly
decreases (or increases) the loss of a8 throughout the course of training. Tasks which exhibit similar
characteristics are also likely to be difficult cases for TAG when finding a task’s best training partner.

Is change in train loss comparable to change in validation loss?
From Section 5.2, we show Zti j computed on the training set is approximately equal to Zti j
computed on the validation set when i 6= j:

20



Eval[Etr[Lj(Xt
val, θ

t+1
s|i , θ

t
j)]] ≈ Eval[Lj(Xt

val,Etr[θ
t+1
s|i ], θtj)] = Etr[Lj(Xt

tr,Etr[θ
t+1
s|i ], θtj)] .

Task max - min

a1 0.35
a2 0.39
a3 0.16
a4 0.31
a5 0.47
a6 0.31
a7 0.43
a8 0.04
a9 0.17

Table 13: Difference in normalized
inter-task affinity onto each task. No-
tice the affinity onto a8 is significantly
less than the affinity onto any other task.

A corollary to this result is the above approximation does not
hold when j = i: comparing task i’s capacity to decrease
it’s own train loss is not comparable with task j’s capacity to
decrease the train loss of task i. As a result, TAG acting on the
training dataset will never group a task by itself. While we find
a single-task group is never optimal in any of our experiments,
one can tradeoff a small decrease in efficiency from loading
the validation dataset during training with the capacity of TAG
to select single-task groupings.

B.5 Experimental Design

In this section, we aim to accurately and precisely describe
our experimental design to facilitate reproducibility. We
also release our code at github.com/google-research/google-
research/tree/master/tag to supplement this written explana-
tion.

B.6 CelebA

We accessed the CelebA dataset publicly available on TensorFlow datasets under an Apache 2.0
license at https://tensorflow.org/datasets/catalog/celeb_a and filtered the 40 annotated attributes down
to a set of 9 attributes for our analysis. Our experiments were run on a combination of Keras [12] and
TensorFlow [1].

The encoder architecture is based loosely on ResNet 18 [20] with task-specific decoders be-
ing composed of a single projection layer. A coarse architecture search revealed adding addi-
tional layers to the encoder and decoder did not meaningfully improve model performance. A
learning rate of 0.0005 is used for 100 epochs, with the learning rate being halved every 15
epochs. The learning rate was tuned on the validation split of the CelebA dataset over the set
of {0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01}. GradNorm [10] alpha was determined by search-
ing over the set of {0.01, 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 5.0}, and choosing the alpha with the highest
total accuracy on the validation set.

We train until the validation increases for 10 consecutive epochs, load the parameters from the best
validation checkpoint, and evaluate on the test set. We use the splits default to TensorFlow datasets
of (162,770, 19,867, 19,962) for (Train, Valid, Test). As each model trains for a varying number of
epochs, we report the worst-case runtime in Figure 3(left) which approximates the time required to
train each method when the model is trained for the full 100 epochs. This is similar to the method
in [46] which trains to completion, loads the best weights, and then evaluates on the test set. We
choose 100 epochs as our setup mirrors that of [45] on CelebA with the exception of adding an early
stopping condition.

B.7 Taskonomy

Our experiments mirror the settings and hyperparameters of “Setting 2” in [46] by directly imple-
menting TAG and its approximation in the framework provided by the author’s official code release
(https://github.com/tstandley/taskgrouping at hash dc6c89c269021597d222860406fa0fb81b02a231).
The encoder is a modified Xception Network and each task-specific decoder consists of four trans-
posed convolutional layers and four convolutional layers. Further information regarding network
specifications and training details can be found in [46].

To mitigate computational requirements and increase accessibility, we replace the 12 TB full+ Taskon-
omy split used by [46] with an augmented version of the medium Tasknomy split by filtering out build-
ings with corrupted images and adding additional buildings to replace the corrupted ones. We down-
load the Taskonomy dataset from the official repository (https://github.com/StanfordVL/taskonomy)
created by [54] which is released under an MIT license. The final size of our medium+ taskonomy

21



split is approximately 2.4 TB. The list of buildings used in our analysis is encapsulated within
our released code. We reuse the implementation of GradNorm in [46] and follow their settings of
α = 1.5.

While [46] load the parameters with the lowest validation loss into the model before evaluating on
the test set, their early-stopping window size is equal to the total number of epochs. Therefore, each
model trains for a full 100 epochs, irrespective of whether the lowest validation loss occurred early
or late into training. Accordingly, the runtimes in Figure 3 (right) is the time taken by each cloud
instance to completely train the model to 100 epochs.

22


