
Improving Anytime Prediction

with Parallel Cascaded Networks

and a Temporal-Di�erence Loss

Michael L. Iuzzolino
Google Research, Brain Team

Department of Computer Science, University of Colorado

Michael C. Mozer
Google Research, Brain Team

Samy Bengio
Google Research, Brain Teamú

Abstract

Although deep feedforward neural networks share some characteristics with
the primate visual system, a key distinction is their dynamics. Deep nets
typically operate in serial stages wherein each layer completes its computa-
tion before processing begins in subsequent layers. In contrast, biological
systems have cascaded dynamics: information propagates from neurons at
all layers in parallel but transmission occurs gradually over time, leading
to speed-accuracy trade o�s even in feedforward architectures. We explore
the consequences of biologically inspired parallel hardware by constructing
cascaded ResNets in which each residual block has propagation delays but
all blocks update in parallel in a stateful manner. Because information trans-
mitted through skip connections avoids delays, the functional depth of the
architecture increases over time, yielding anytime predictions that improve
with internal-processing time. We introduce a temporal-di�erence training
loss that achieves a strictly superior speed-accuracy profile over standard
losses and enables the cascaded architecture to outperform state-of-the-art
anytime-prediction methods. The cascaded architecture has intriguing prop-
erties, including: it classifies typical instances more rapidly than atypical
instances; it is more robust to both persistent and transient noise than is a
conventional ResNet; and its time-varying output trace provides a signal
that can be exploited to improve information processing and inference.

Since the earliest investigations of artificial neural nets, their design has been informed by
biological neural nets [37]. Perhaps the most compelling example is the convolutional net for
machine vision, which has adopted properties of primate cortical neuroanatomy including
a hierarchical layered organization, local receptive fields, and spatial equivariance [12]. In
this article, we investigate computational consequences of two fundamental properties of
biological information processing systems that have not been considered in the design of
deep neural nets. First, the brain consists of massively parallel, dedicated hardware with
neurons throughout the cortex updating continuously and simultaneously. Second, information
transmission between neurons introduces time delays [1]. As a result, unrefined and possibly

úCurrently at Apple.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

incomplete neural state in one region is transmitted to the next region even as the state
evolves; and feedforward connectivity yields a speed-accuracy trade o� in which the initial
response to a static input occurs rapidly but can be inaccurate, with the output gradually
improving over internal processing time. Following McClelland [36], we refer to such an
architecture as cascaded.
Cascaded dynamics contrast sharply with the dynamics of standard feedforward nets, which
operate in serial stages, each layer completing its computation before subsequent layers
begin processing. Cascaded dynamics are also quite di�erent than the dynamics of vision
models with recurrent connections [e.g., 23, 25, 38, 47], which, given a static input, may
iteratively update, but layer updates are still computed serially with each layer completing
its computation and then feeding it immediately to the next layer (or back to itself).
Fundamentally, our investigation asks: Supposing we take a step toward biological realism
with massively parallel hardware and relatively slow inter-neuron communication, what are
the computational benefits and consequences?2

We construct cascaded networks by introducing propagation delays in deep feedforward nets
provided with a static input. We treat the net as massively parallel such that all units across
all layers are updated simultaneously and iteratively. We focus on the ResNet architecture
[14] and we introduce a propagation delay into each residual block (Figure 1a). Because the
skip connection permits faster transmission of more primitive perceptual representations,
the functional depth of the resulting architecture increases over internal-processing time,
yielding a trade o� between processing speed and complexity of processing. Consequently,
the architecture o�ers a natural, integral mechanism for making predictions at any point in
processing, known as anytime prediction [58]. Speed-accuracy trade o�s are a fundamental
characteristic of human information processing [22, 42] and human perception has been
modeled with deep learning anytime prediction methods [29].
Although we focus on the ResNet, our approach can be incorporated into any model with
skip connections (e.g., Highway Nets [48], DenseNet [19], U-Net [43], Transformers [52]). The
contrast between a serial, one-layer-at-a-time model and a cascaded, parallel-update model is
illustrated in Figures 1b and 1c, respectively. To step through the operation of the cascaded
model, at time 1, only the first residual block has received meaningful input, and the model
prediction is therefore based only on this block’s computation. At time 2, all higher residual
blocks have received input from block 1, and the output is therefore based on all blocks’
computations, though blocks 2 and above have deficient input. At each subsequent time, all
blocks are receiving meaningful input, but it is not until time t that block t has reached its
asymptotic output because its input does not stabilize until t ≠ 1. In essence, the cascaded
model behaves like a WideResNet [56] on the first steps and then becomes a deep ResNet.
Our work makes the following key contributions.

• We demonstrate the superiority of the cascaded architecture to the serial (Figures 1b,c),
indicating that parallelism can be exploited in a way that has not previously been studied.

• We propose and evaluate a novel training objective aimed at improving the predictions of
anytime models. This temporal-di�erence (TD) loss [49] encourages the most accurate
response as quickly as possible. TD training improves the performance of both cascaded
and serial architectures. Although a rich literature exists aimed at reducing the number
of computational steps required to obtain an accurate answer [2, 3, 4, 5, 11, 15, 16, 17,
18, 20, 24, 31, 31, 38, 40, 45, 51, 54, 57], all of this work uses a degenerate form of TD
for training and our results suggest that these models can be improved using TD.

• The cascaded model trained with TD (CascadedTD) tends to respond most rapidly to pro-
totypical exemplars, whereas training with the standard cross-entropy loss (CascadedCE)
does not (Figure 2). We assess with three quantitative prototypicality measures, and we
further show that CascadedTD rapidly converges on the correct semantic family, whereas
CascadedCE does not. These facts indicate that CascadedTD organizes knowledge
di�erently across layers than does CascadedCE.

2Like much other research in deep learning [25, 8], biology informs our work by providing novel
forms of inductive bias. Our goal is to investigate computational consequences of these biases, not
to model biological phenomena per se.

2

t=1 t=2 t=3 t=4

+ + + +

+ + + +

+ + +

0

0

0
...

...

...

...
0

+

… … … …

t=1 t=2 t=3 t=4

+ + + +

+ + + +

+ + +

0

0

0
...

...

...

...
0

+

… … … …

(a) (b) (c)

+

t=1 t=2 t=3 t=4 t=1 t=2 t=3 t=4

readout readout

Figure 1: (a) ResNet building block, with additional delay component (�, in grey) that convolves
a temporal kernel with the block output. Details in text. (b) A standard serial ResNet is unrolled
in time, with columns depicting time slices. Each rectangle is a ResNet block, which may consist
of two or more convolutional layers. In the serial model, blocks are updated sequentially. Blocks
which have not yet been activated are colored white and blocks which have been activated are shown
in a hue unique to that block. The input is cyan. The narrow bars within each block signify the
activation state of all blocks below that are contributing to the block’s state (via skip connections).
Read out from the model is via the yellow trapezoid at the top, which enables anytime prediction.
The narrow bars inside the trapezoid indicate the block information available at each time for
classification (via skip connections). (c) A cascaded ResNet is unrolled in time. In the cascaded
model, all blocks update in parallel; however, at each step, they may rely on partial updates of
lower blocks. As a result, multiple processing steps are required for a layer’s activation to reach its
asymptotic state. The color intensity (saturation) of a block indicates how close a block’s activation
state is to its asymptotic state.

• We show that CascadedTD obtains a strictly superior speed-accuracy profile compared to
previously proposed anytime prediction models, which are all based on a serial architecture.

• We demonstrate other virtues of CascadedTD: it is more robust to input noise, and its
time-varying output trace provides useful signals for meta-cognitive processes—separately
trained nets that make judgments about the cascaded architecture’s accuracy.

Related Work

Prior research on cascaded models. From a psychological perspective, McClelland [36]
characterizes human mental computation in terms of a hierarchy of leaky integrators that
continually transmit partial information as it becomes available. We are aware of no work
in deep learning on static image processing with cascaded models, but there exist two
investigations focused on video sequence processing, where the model state from the previous
frame is used to e�ciently process the next. Fischer et al. [11] present a streaming rollout
framework for recurrent nets and they very briefly explore the temporal dynamics of cascaded
models, showing benefits to early predictions. They present a general taxonomy that includes
our proposed feedforward cascaded model, but their focus is almost entirely on formal
definitions and a framework that lays out the space of all well-formed roll out patterns
(update orders). In contrast, our focus is almost entirely on training procedures that leverage
the dynamics of cascaded models, on early read-out mechanisms, and on the computational
consequences of these training and read-out mechanisms. Kugele et al. [28] focus on spiking
neural net dynamics, on time-varying inputs, and on reductions in latency that are obtained
as a sequence unfolds due to autocorrelations in the input sequence. Notably, Kugele et al.
explore a variety of heuristic training losses and they settle on TD(1) as their preferred loss,
but they do not explore the rest of the TD(⁄) family. Our work is complementary.
Carreira et al. [5] present a causal video understanding model that performs depth-parallel
computation with the objective of improving video processing e�ciency via maximizing
throughput, minimizing latency, and reducing clock cycles.
Recurrent nets for vision. Recurrent nets have been used in vision [e.g., 20, 23, 27, 25, 32,
47, 46], which adds a dimension of internal processing time for every external input (see also

3

(b
) C

AS
CA

DE
DC

E

(a
) C

AS
CA

DE
DT

D

rapid exemplars slow exemplars rapid exemplars slow exemplars

lions

lobsters

bicycles

stingrays

cans

goldfish

lions

lobsters

bicycles

stingrays

cans

goldfish

Figure 2: (a) CIFAR-100 instances categorized rapidly (left) and slowly (right) by a cascaded
model trained using a TD loss. (b) same as (a) for a standard cross-entropy loss. The cascaded
model with a TD loss stratifies instances by typicality, with rapid processing of prototypical views
on a homogeneous background and slow processing of unusual and cluttered views.

[13]). However, these models perform serial layerwise updates and therefore fundamentally
di�er in their operation from cascaded models.
Anytime prediction. Anytime prediction models [2, 9, 15, 16, 17, 18, 20, 24, 30, 31, 34, 38,
40, 45, 51, 53, 54, 57] assume serial operation of layers, but allow for predictions to be made
from intermediate layers of the architecture. In the simplest case, after t steps, t layers
have been activated, and at each step, a prediction is made from the last activated layer
[e.g., 16, 24]. Figure 1b illustrates a serial model that performs anytime prediction. Some of
these models have intrinsic stopping criteria [e.g., 6]; others rely on selection of a stopping
confidence threshold [e.g., 24, 51, 54].
Temporal-di�erence learning. TD learning has a rich history, mostly in the RL community
for value function estimation. TD can be used for supervised learning as well. In fact,
the two previous works in deep learning using cascaded models [5, 11] perform a boundary
case of supervised TD, TD(1), which we show to have inferior performance. A variety of
non-cascaded models, both recurrent [20, 31, 38, 57] and feedforward [2, 3, 4, 15, 16, 17,
18, 24, 31, 40, 45, 51, 54], aim to reduce the number of computational steps required to
obtain an accurate output. All use TD(1) for training. No previous research has explored
the general formulation of TD for improving anytime prediction.

Deep Cascaded Networks

Many modern deep architectures—including ResNet [14], Highway Nets [48], DenseNet [19],
U-Net [43]—incorporate skip connections that bypass strictly layered feedforward connectivity,
analogous to the architecture of visual cortex [10]. Under the biological assumption that
signals transmitted through a neural layer are delayed relative to signals that bypass the
layer, we construct a cascaded model using ResNets by introducing a novel computational
component that delays the transmission of signals from the output of each computational
layer, denoted � in Figure 1a. Because these delays extend processing in time, the hidden
states require a time index. The input to ResNet block i at time t is denoted zt,i. The block
transforms this input via the residual transform, yielding zÕ

t,i = F(zt,i). We conceive of �
as a tapped delay-line memory of the transform history, Z Õ

t,i = [zÕ
t,i z

Õ
t≠1,i . . . zÕ

1,i], which is
convolved with a temporal kernel to produce the block output

zt,i+1 = ReLU
!
zt,i + Z Õ

t,i
"

. (1)
The kernel = [1 0 0 . . . 0] recovers the standard ResNet in which communication be-
tween layers is instantaneous. We consider two kernels to introduce time delays. With
 = [0 1 0 0 . . . 0], a discrete one-step delay is introduced (OSD for short). With
 = (1 ≠ –)[1 – –

2
–

3
. . .], we obtain exponentially weighted smoothing (EWS for

short), where larger – œ [0, 1) yield slower transmission times. Note that both of these
special kernels have e�cient implementations: the OSD kernel with a one-element queue
and the EWS kernel with a finite (one-step) state vector and the incremental update,

Z Õ
t,i = –Z Õ

t≠1,i + (1 ≠ –)zÕ
t,i.

4

all previous w
ork

all previous w
ork

all previous w
ork

CIFAR-10 CIFAR-100 TinyImageNet

Figure 3: E�ect of TD hyperparameter ⁄ on CascadedTD test accuracy for three data sets. ⁄ = 1
corresponds to the training methodology of all past research on anytime prediction, which is inferior
to any ⁄ < 1 for all data sets. Shaded error bands—hard to see on most curves—indicate ±1 SEM,
corrected to remove performance variance due to weight initialization and unrelated to ⁄ [35].

We use the OSD kernel for training all models. Modifications of batch norm were required to
do time-step-conditional normalization (see Appendix A). All experiments use a ResNet-18,
which has 8 residual blocks and hence 8 time delays. Note, we conducted experiments with
larger ResNets and the additional compute did not a�ect qualitative properties. We also
add a time delay to the output of the model’s first convolutional layer. Consequently, with
the OSD kernel, the cascaded model requires 9 updates for the output to reach asymptote.
The cascaded and serial models with the same weights will necessarily produce identical
asymptotic outputs.
To obtain a finer temporal granularity at evaluation, some simulations switch to the EWS
kernel with – = 0.9. Temporal dynamics are qualitatively similar for OSD and EWS, but
EWS allows us to better distinguish individual examples in terms of their fine-grain timing.
EWS with – = 0.9 requires about 70 steps for the output to asymptote. We note that our
findings are robust to the choice of –, as long as – slows transmission.

Training Cascaded Networks with TD(⁄)

To allow for anytime prediction, we include an output head following each of the T residual
blocks in both the serial and cascaded models (see Figure 1b,c, respectively). The output
heads may share weights or have separate weights. To encourage correct outputs sooner,
we use temporal di�erence (TD) learning [49] over the output sequence. Readers may
associate TD methods with reinforcement learning because TD methods have traditionally
been used to predict future rewards. However, TD methods are fundamentally designed for
supervised learning. We use TD to predict a future outcome—the correct classification of an
image—from a sequence of successively more informative states—the information flowing
through the ResNet at each internal time step.
TD(⁄) specifies a target output yt at each time t œ {1, ...T} based on the model’s actual
output ŷt+i at future times t + i for i > 0, and the eventual outcome or true target, ytrue:

yt = (1 ≠ ⁄)
C

T ≠tÿ

i=1
⁄

i≠1
ŷt+i

D
+ ⁄

T ≠t
ytrue, (2)

where ⁄ œ [0, 1] is a free parameter that essentially specifies the time horizon for prediction3.
TD(1) predicts the eventual outcome at each step; TD(0) predicts the model’s output at the
next step (and the eventual outcome at the final step). Given target yt and actual output ŷt,
we specify a cross-entropy loss, L =

qT
t=0 H(yt, ŷt), where H(p, q) is the cross-entropy. Note

that yt must be treated as a constant, not as a di�erentiable variable, via a stop gradient
(for TensorFlow or Jax) or requires grad=False (for PyTorch). Although Equation 2
requires knowledge of all subsequent network states, the beauty of TD methods is that
this loss can be computed incrementally (see Appendix A.2.1). The edge cases, TD(0) and
TD(1), have trivial implementations. Past research has always used TD(1) for specifying
intermediate targets, but we will show that TD(1) leads to local optima because the model
is penalized for being unable to classify correctly at the earliest steps.

3We define 00 = 1, as is generally agreed upon in the algebra community.

5

Results

TD(⁄) Training

We conducted a sweep over hyperparameter ⁄ to determine its e�ect on asymptotic accuracy
of CascadedTD. Figure 3 shows results from five replications of CascadedTD on CIFAR-100,
CIFAR-10, and TinyImageNet. The hyperparameter has a systematic e�ect, consistent
with classic studies with linear models [50, Chapter 12]. The same e�ect is observed
with high resolution images; see Appendix A.6, where we train a subset of ImageNet.
Importantly, ⁄ = 1, which is the implicit choice of every previous anytime-prediction model
[2, 9, 15, 16, 17, 18, 20, 24, 30, 31, 34, 38, 40, 45, 51, 53, 54, 57], obtains the poorest
performance for all data sets, significantly worse than ⁄ ¥ .5. The essential explanation is
that larger ⁄ penalize the network for behavior it does not have the capability to achieve:
obtaining the asymptotic prediction at the earliest time steps. To paraphrase the classic
illustration of TD from Sutton [49], if the task is predicting the weather on December 31, no
model can predict as accurately on December 1 as on December 30. Selecting ⁄ < 1 shortens
the prediction horizon; ⁄ = 0 corresponds with requiring a prediction only of the weather on
the next day.
In the rest of the article, we report results for CascadedTD with ⁄ = 0, or TD(0). Although
TD(0) is not optimal for all data sets, it is strictly superior to TD(1) and has a trivial
implementation because it does not require eligibility traces. Further, it avoids the need for
a separate validation set to pick ⁄.

Anytime Prediction and Speed-Accuracy Trade O�s

Given a static input, an anytime prediction model attempts to obtain the best classification
possible as quickly as possible. Anytime prediction can be performed by both serial and
cascaded models. Both yield predictions at each time slice, as depicted by the yellow
trapezoids in Figures 1b,c, which denote model readout. Critical to anytime prediction is
deciding when to terminate processing and initiate a response [24, 6, 51]. Following [24] and
[51], we assume that processing terminates when the confidence (probability) for the most
likely class rises above threshold ◊. For any ◊, one can measure the mean stopping time and
the mean accuracy for all instances in a test set. By sweeping ◊ œ [0, 1] and plotting mean
accuracy as a function of mean stopping time, one obtains a speed-accuracy trade o� curve.
Figure 4 shows curves for models we’ll describe next. The horizontal axis indicates number
of simulation time steps, which is linearly related to the matched number of operations
(multiplies, additions, etc.) performed on simulated parallel hardware for all models. (See
Appendix C for further details.)
To evaluate the cascaded model, we compare to a recent state-of-the-art method, the Shallow-
Deep Network (SDN) [24]. The SDN has the serial architecture depicted in Figure 1b.
One critical design decision was whether to have separate read-out heads at each step
(MultiHead) or a shared read-out head (SingleHead), i.e., whether weights are separate or
shared. From the perspective of the cascaded model, which considers the vertical columns of
Figure 1c to be copies of a network unrolled in time, the SingleHead approach is natural.
The SDN, as a serial model, chose the MultiHead approach. We tested all four logical
combinations of {SerialTD, CascadedTD} ◊ {SingleHead, MultiHead}. We use SerialTD
and CascadedTD as shorthand for the SingleHead variants, and append MultiHead to the
model name for that version. Additionally, we consider SerialCE and CascadedCE, which
are SingleHead variants trained with the standard cross entropy loss that penalizes only
asymptotic accuracy and does not explicitly attempt to obtain a speeded response.
The key observations from Figure 4, which shows speed-accuracy trade o�s for the six
models on three data sets, are as follows. First, our canonical cascaded model, CascadedTD,
obtains better anytime prediction than SerialTD-MultiHead (i.e., the architecture of
SDN). CascadedTD also achieves higher asymptotic accuracy; its accuracy matches that
of CascadedCE, a ResNet trained in the standard manner. Thus, cascaded models can
exploit parallelism to obtain computational benefits in speeded perception without costs in

6

CIFAR-10 CIFAR-100 TinyImageNet

SERIALTD

CASCADEDTD

SERIALTD-MULTIHEAD

CASCADEDTD-MULTIHEAD

SERIALCE

CASCADEDCE

Figure 4: Speed accuracy trade o� for three data sets and six models, obtained by varying a
stopping threshold and measuring mean latency and mean accuracy. CascadedTD is our parallel
anytime prediction model; SerialTD-MultiHead is the state-of-the-art method, SDN [24].

accuracy.4 Second, while MultiHead is superior to SingleHead for serial models, the reverse
is true for cascaded models. This finding is consistent with the cascaded architecture’s
perspective on anytime prediction as unrolled iterative estimation, rather than, as cast in
SDN, as distinct read out heads from di�erent layers of the network. Third, models trained
with TD outperform models trained with standard cross-entropy loss. Training for speeded
responses reorganizes knowledge in the network so that earlier layers are more e�ective in
classifying instances. We now turn to better understand what this reorganization entails.

Organization of Knowledge in TD-Trained Cascaded Model

Having examined the response profile of our models over an evaluation set, we now turn to
analyzing the response to individual instances. Specifically, we ask about the time course of
reaching a classification decision. We define the selection latency for an instance to be the
minimum number of steps required to reach a confidence threshold on one class and maintain
that level going forward, i.e., min{t | [÷j | ŷtÕ,j > ◊ ’ t

Õ Ø t]}, where ŷ is the model output,
j is an index over classes, and ◊ is the threshold. The selection latency does not specify
whether or not the chosen class is correct. We picked a threshold ◊ = 0.83 for CascadedTD
such that only ≥ 10% of the test examples failed to reach threshold; results that follow are
robust to this selection.
What determines an instance’s selection latency? Figure 2 presents instances that have
the lowest and highest latency—labeled ‘rapid’ and ‘slow’, respectively. For CascadedTD
(Figure 2a), notice the homogeneity of the rapid images: the objects are viewed from a
canonical perspective and lie against a solid background with no clutter in the image. In
contrast, the slow images are more varied, both in the object’s instantiation in the image
and the background complexity. Turning to CascadedCE (Figure 2b), instances do not
appear to stratify by prototypicality. In the rest of this section, we formalize the notion
of prototypicality with three measures and compute the correlation of each measure with
selection latency for the cascaded model trained with a TD loss (CascadedTD) and with
the standard cross-entropy loss (CascadedCE). Our three measures are as follows.
• Centrality. We compute the cosine distance of an instance’s embedding (the penultimate

layer activation) and the target-class weight vector. The larger this quantity, the better
aligned the two vectors are. Because the weight vector will tend to point near the center
of class instances, the cosine distance is a measure of instance centrality.

• C-score. Jiang et al. [21] describe an instance-based measure of statistical regularity
called the C-score. The C-score is an empirical estimate of the probability that a network
will generalize correctly to an instance if it is held out from the training set. It reflects
statistical regularity in that an instance similar to many other instances in the training
set should have a high C-score.

• Human labeling consistency. Peterson et al. [41] collected human labels on images. Most
images are consistently labeled, but some are ambiguous. The negative entropy of the
response distribution indicates inter-human labeling agreement. Presumably, consistently
labeled instances are more prototypical.
4We used ⁄ = 1 to train SerialTD and SerialTD-MultiHead, as was done for all previously

proposed serial models. Could SDN and other serial models be improved with ⁄ < 1? In Appendix
A.5.2, we show that the serial model with ⁄ = 0 still does not perform as well as CascadedTD.

7

Table 1: Spearman rank correlations between three measures of instance prototypicality and
selection latency for CIFAR-10. Prototypicality measures are formulated such that lower values
correspond to higher prototypicality. Since the Spearman coe�cient measures the degree to which
prototypicality varies with selection latency, large coe�cients indicate a correlation between fast
responses and the prototypicality of an instances, whereas coe�cients close to zero indicate no
correlation. Here, we show that the prototypicality and selection latency of an instance for cascaded
models are correlated, with CascadedTD yielding significantly higher correlations for two out of
three measures as compared to CascadedCE.

Spearman’s fl
Measure CascadedCE CascadedTD
centrality 0.140 0.352
C-score 0.326 0.489

human consistency 0.153 0.142

All three measures are available only for the CIFAR-10 training set. Consequently, we ran
10-fold cross validation on the training set, assessing the correlation based on the held out
images in each fold. To obtain a granular selection latency, we use the EWS kernel.
Table 1 presents the correlation—Spearman’s fl—between the three prototypicality measures
and negative selection latency for CascadedCE and CascadedTD. A positive coe�cient
indicates shorter latency for prototypical instances. The coe�cient is reliably positive
(p < .001) for each of the three typicality measures and both models. However, CascadedTD
obtains reliably higher correlations than CascadedCE on two of the three measures (p < .001);
they are not significantly di�erent on the human consistency measure (p = .29). Thus, by
these quantitative scores, the TD training procedure leads to better stratification of instances
by typicality, in line with the qualitative results presented in Figure 2. Why does TD training
distinguish instances based on prototypicality? Intuitively, a prototypical instance shares
features with many other class instances. Because these features are frequent in the data set,
the TD loss focuses on rapidly classifying instances with those features.
Beyond investigating the time course of fine-grain classification, we also examined coarse-grain
classification. Forming twenty superclasses from the 100 fine-grain classes of CIFAR-100, as
specified in [26], we examined the probability of correct coarse-grain classification conditional
on incorrect fine-grain classification. Zamir et al. [57] refer to this probability as taxonomic
compliance, which reflects information being transmitted about coarse category even when
the specific class cannot be determined. As shown in Figure 5, taxonomic compliance
rises faster for CascadedTD than for CascadedCE. Whereas chance compliance is .05,
CascadedTD achieves a compliance probability of .35 after 2 steps. CascadedCE requires 8
steps to achieve the same performance. TD training pushes instances to the correct semantic
neighborhood sooner, even when not to the correct class label. This result further supports
the reorganization of knowledge for more robust decision making.

Robustness to Input Noise

In previous simulations, we have assumed the input was static while internal processing took
place. Now we consider static inputs with time-varying noise. Figure 6 shows four types
of lossy noise we consider on CIFAR-10 images. The noise types are: (1) Focus: a 16 ◊ 16
foveated patch randomly placed within the image, where regions outside of the patch are
Gaussian blurred; (2) Perlin: gradient noise randomly applied to 40% of image pixels; (3)

CASCADEDCECASCADEDTD

Figure 5: CascadedTD performs coarse-grain
classification on CIFAR-100 before fine-train clas-
sification, as assessed by a measure of conditional
taxonomic compliance [57]. Graphs are based on
5 runs of each model with di�erent random ini-
tializations. Shaded error bands indicate ±1 SEM,
corrected to remove performance variance due to
initial seed [35].

8

Figure 6: Lossy noise types. From left to
right: Focus, Perlin, Occlusion, Resolution.

Occlusion: a 16 ◊ 16 occluding patch randomly placed within the image; (4) Resolution:
random downsampling by factors of 2◊ or 4◊ via average pooling followed by k-nearest
upsampling to recover the original dimensionality of 32 ◊ 32.
For each noise type, CascadedCE and CascadedTD models are trained with the correspond-
ing image transformation type as a data augmentation. Because the external environment
changes more rapidly than any snapshot of the environment can be processed, cascaded
models will necessarily integrate signals from multiple snapshots. To determine whether
signal integration is beneficial for noise suppression, we compared to a serial model that
is allowed to fully process each snapshot, which for the architecture requires 9◊ as many
sequential updates as the cascaded model. We therefore refer to the model as SerialCE◊9;
it has the same weights as CascadedCE.
Two noise variants are applied to test images: persistent, in which a noise sample is drawn
independently at each update step, and transient, which consists of three stages: first, the
model reaches its asymptotic output on a noise-free input; second, the input is corrupted
by noise samples for a variable number of steps; and third, the noise-free input is presented
until the model returns to its previous asymptotic output. For persistent noise, we assess
with asymptotic accuracy; for transient noise, we assess with a measure of drop in integrated
performance over the course of the episode, which indicates how quickly the model recovers
from noise perturbation (smaller is better). Simulation details provided in Appendix A.4.
Table 2 indicates that CascadedTD obtains a degree of robustness to persistent and transient
noise not matched by the alternative models. Although SerialCE◊9 performs a full inference
pass on each noise perturbation, the stateful nature of CascadedTD allows it to smooth
out noise via slow integration. Although CascadedCE shares the same architecture as
CascadedTD, TD training is required to orchestrate the integration of content-specific
perceptual information. This experiment indicates that laggy information processing in the
cascaded model can be advantageous in a noisy environment. In Appendix A.4, we note that
the benefit for CascadedTD applies only to lossy noise, not translations and rotations, as
one would expect from the perspective of noise averaging.

Meta-cognitive Inference

In this section, we consider the hypothesis that temporally intermediate outputs from
cascaded networks can provide additional signals to improve performance. We term this
metacognition, by reference to human abilities to reason about our reasoning processes.
The temporal trace of output from CascadedTD is provided to a separate classifier, MetaCog-
OOD, which is discriminatively trained for out-of-distribution (OOD) detection. MetaCog-
OOD is a fully connected feedforward net with a 256-unit hidden layer and a sigmoidal output
unit for binary prediction: 1 or 0 for in- or out-of-distribution instances, respectively. CIFAR-
10’s validation set serves as the in-distribution training examples, whereas the validation sets
of TinyImageNet, LSUN, and SVHN serve as OOD training examples; see details in Appendix
B.1. The CascadedTD output is represented in one of four ways as input to MetaCog-OOD:
(1) the confidence of the most probable class, known as the max softmax prediction (MSP),

Table 2: Experiments on persistent and transient input noise applied to CIFAR-10. Highlight
indicates the best performance.

Persistent Noise Transient Noise

Asymptotic Accuracy (%) Drop in Integrated Performance

Noise SerialCE◊9 CascadedCE CascadedTD SerialCE◊9 CascadedCE CascadedTD
Focus 84.27 ± 0.06 83.75 ± 0.10 87.31 ± 0.04 0.62 ± 0.04 0.66 ± 0.05 0.00 ± 0.01

Occlusion 86.26 ± 0.08 82.73 ± 0.09 89.76 ± 0.05 7.70 ± 0.55 8.25 ± 0.72 0.93 ± 0.15
Perlin 85.18 ± 0.03 84.56 ± 0.05 87.67 ± 0.08 0.86 ± 0.06 0.87 ± 0.07 0.00 ± 0.01

Resolution 84.53 ± 0.07 85.40 ± 0.07 88.19 ± 0.10 0.81 ± 0.06 0.53 ± 0.05 0.18 ± 0.02

9

Baseline MSP Entropy Soÿtmax LoĀits

MSP Entropy Soÿtmax LoĀitsBaseline

AU
RO

C
FP

R
@

 9
5%

 T
PR

Final Timestep
All Timesteps

Final Timestep
All Timesteps

Figure 7: On CIFAR-10, the output of Cascad-
edTD over time provides a reliable signal for improv-
ing OOD detection over using just its asymptotic
output. Larger AUROC and smaller FPR are better.
All output representations benefit from the temporal
trajectory. Error bars reflect ±1 SEM corrected to
remove comparison-unrelated variance [35]. Baseline
is the final max-softmax prediction.

(2) entropy of the class posterior distribution, (3) the class posterior distribution, and (4)
the logit representation of the posterior. We investigate whether feeding the output of all
time steps to MetaCog-OOD leads to improved prediction relative to feeding only the final
asymptotic output. Only the latter information is available in a standard feedforward net.
Following [33], we assess OOD performance with AUROC, the area under the ROC curve,
and FPR @ 95% TPR, the false positive rate at 95% true positive rate. A baseline metric
is computed directly from the final max softmax predictions of the CascadedTD model,
whereas the other metrics are based on the MetaCog-OOD model output. Figure 7 indicates
that the temporal output trajectory of CascadedTD provides a valuable signal for OOD
detection. Our goal here was not to propose a method for OOD detection, but merely to
demonstrate that in principle, there is information about the input that is conveyed by the
cascaded model’s dynamics but that is not available in a traditional classifier’s output.

Discussion

We investigated a neglected biologically-motivated architecture in which the bottleneck
in neural information processing is transmission delays, not the number of neurons that
can update in parallel. We proposed a temporal-di�erence (TD) loss that yields improved
speed-accuracy trade o�s. We showed that this model beats the state-of-the-art anytime
prediction method, partly because of the TD loss and partly because of the model dynamics.
The cascaded model has many distinctive properties, including: it classifies prototypical
instances more rapidly than outliers; it performs coarse-to-fine semantic processing in which
general semantic categories are rapidly inferred even when specific class labels are not; it is
able to moderate time-varying input noise; and the temporal trace of the model’s output
provides an additional signal that can be exploited to improve information processing beyond
that provided by the asymptotic model output. Of course, these interesting properties
come at a computational cost when parallel hardware is simulated on existing compute
infrastructure. We see three directions in which cascaded nets have particular potential.
• For neuroscientists using deep nets as a model of human vision, cascaded nets are a better

approximation to the dynamics of the neural hardware. The properties we investigate—
neurons operate in parallel, neurons are stateful, and neurons are slow to transmit
information—seem likely to have a critical impact on the nature of cortical computing.
As one simple illustration, cortical feedback processes are often posited to be critical for
explaining di�erences in processing e�ciency of visual stimuli [e.g., 23, 47]. We have
shown that these di�erence might be partly explained by feedforward cascaded dynamics.

• For hardware researchers, cascaded networks are a possible direction for the future design
of AI hardware. It is a direction quite unlike modern GPUs and TPUs, one that exploits
massively parallel albeit slow and possibly noisy information processing. Our success in
showing strong performance from cascaded models, as well as a training procedure to
obtain quick and accurate responses, should encourage research in this direction.

• For AI research in anytime prediction, we’ve shown that existing models can be improved
with a TD(⁄) loss; all past research has adopted ⁄ = 1, which we show to be inferior to
⁄ < 1. For researchers who care little about cascaded models per se, cascaded models
o�er an intriguing method to train serial feedforward models. One can take a serial
feedforward model, turn it into a cascaded model for training with TD methods, and
then run it in serial mode. We’ve shown that TD training can improve asymptotic model
accuracy while still providing anytime predictions due to inductive biases it imposes on
the organization of representations.

10

Acknowledgments

The authors thank Tyler Scott, Anirudh Goyal, Pradeep Shenoy, and particularly our three
anonymous reviewers for thoughtful comments and feedback on earlier drafts of this work.

References

[1] W. Bialek and F. Rieke. Reliability and information transmission in spiking neurons.
Trends in Neurosciences, 15(11):428–434, 1992.

[2] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama. Adaptive neural networks for
e�cient inference. In International Conference on Machine Learning, pages 527–536.
PMLR, 2017.

[3] A. Bulat, J. Kossaifi, G. Tzimiropoulos, and M. Pantic. Toward fast and accurate human
pose estimation via soft-gated skip connections. arXiv preprint arXiv:2002.11098, 2020.

[4] A. Bulat and G. Tzimiropoulos. How far are we from solving the 2D & 3D face alignment
problem? In Proceedings of the IEEE International Conference on Computer Vision,
pages 1021–1030, 2017.

[5] J. Carreira, V. Patraucean, L. Mazare, A. Zisserman, and S. Osindero. Massively
parallel video networks. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 649–666, 2018.

[6] X. Chen, H. Dai, Y. Li, X. Gao, and L. Song. Learning to stop while learning to predict.
In H. D. III and A. Singh, editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
1520–1530. PMLR, 13–18 Jul 2020.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[8] J. J. DiCarlo, D. Zoccolan, and N. C. Rust. How does the brain solve visual object
recognition? Neuron, 73(3):415–434, 2012.

[9] M. Elbayad, J. Gu, E. Grave, and M. Auli. Depth-adaptive transformer. In International
Conference on Learning Representations, 2020.

[10] D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in the primate
cerebral cortex. In Cereb cortex. Citeseer, 1991.

[11] V. Fischer, J. Köhler, and T. Pfeil. The streaming rollout of deep networks-towards
fully model-parallel execution. In Advances in Neural Information Processing Systems,
pages 4039–4050, 2018.

[12] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition una�ected by shift in position. Biological Cybernetics, 36:193–202,
1980.

[13] A. Graves. Adaptive computation time for recurrent neural networks. CoRR,
abs/1603.08983, 2016.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[15] H. Hu, D. Dey, M. Hebert, and J. A. Bagnell. Anytime neural network: a versatile
trade-o� between computation and accuracy, 2018.

[16] H. Hu, D. Dey, M. Hebert, and J. A. Bagnell. Learning anytime predictions in neural
networks via adaptive loss balancing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 3812–3821, 2019.

11

[17] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Weinberger. Multi-scale
dense networks for resource e�cient image classification. In International Conference
on Learning Representations, 2018.

[18] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinberger.
Multi-scale dense networks for resource e�cient image classification. arXiv preprint
arXiv:1703.09844, 2017.

[19] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4700–4708, 2017.

[20] M. Iuzzolino, Y. Singer, and M. C. Mozer. Convolutional bipartite attractor networks.
arXiv preprint arXiv:1906.03504, 2019.

[21] Z. Jiang, C. Zhang, K. Talwar, and M. C. Mozer. Characterizing structural regularities of
labeled data in overparameterized models. In Proceedings of the International Conference
on Machine Learning, 2021.

[22] M. Jones, S. Kinoshita, and M. C. Mozer. Optimal response initiation: Why recent
experience matters. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Advances in Neural Information Processing Systems, volume 21. Curran Associates, Inc.,
2009.

[23] K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, and J. J. DiCarlo. Evidence that recurrent
circuits are critical to the ventral stream’s execution of core object recognition behavior.
Nature Neuroscience, 04/2019 2019.

[24] Y. Kaya, S. Hong, and T. Dumitras. Shallow-deep networks: Understanding and
mitigating network overthinking. In International Conference on Machine Learning,
pages 3301–3310. PMLR, 2019.

[25] N. Kriegeskorte. Deep neural networks: A new framework for modeling biological vision
and brain information processing. Annual Review of Vision Science, 1(1):417–446, 2015.

[26] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
Computer Science, University of Toronto, 2009.

[27] J. Kubilius, M. Schrimpf, A. Nayebi, D. Bear, D. L. K. Yamins, and J. J. DiCarlo.
Cornet: Modeling the neural mechanisms of core object recognition. bioRxiv, 2018.

[28] A. Kugele, T. Pfeil, M. Pfei�er, and E. Chicca. E�cient processing of spatio-temporal
data streams with spiking neural networks. Frontiers in Neuroscience, 14:439, 2020.

[29] O. Kumbhar, E. Sizikova, N. J. Majaj, and D. G. Pelli. Anytime prediction as a model
of human reaction time. CoRR, abs/2011.12859, 2020.

[30] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. In International Conference on Learning Representations, 2017.

[31] H. Lee and J. Shin. Anytime neural prediction via slicing networks vertically. arXiv
preprint arXiv:1807.02609, 2018.

[32] S. Leroux, P. Molchanov, P. Simoens, B. Dhoedt, T. Breuel, and J. Kautz. Iamnn:
Iterative and adaptive mobile neural network for e�cient image classification, 2018.

[33] S. Liang, Y. Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

[34] E. S. Marquez, J. S. Hare, and M. Niranjan. Deep cascade learning. IEEE transactions
on neural networks and learning systems, 29(11):5475–5485, 2018.

[35] M. E. Masson and G. R. Loftus. Using confidence intervals for graphically based data
interpretation. Canadian Journal of Experimental Psychology/Revue canadienne de
psychologie expérimentale, 57(3):203, 2003.

12

[36] J. L. McClelland. On the time relations of mental processes: an examination of systems
of processes in cascade. Psychological review, 86(4):287, 1979.

[37] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[38] L. McIntosh, N. Maheswaranathan, D. Sussillo, and J. Shlens. Recurrent segmentation
for variable computational budgets. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 1648–1657, 2018.

[39] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

[40] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation.
In European conference on computer vision, pages 483–499. Springer, 2016.

[41] J. C. Peterson, R. M. Battleday, T. L. Gri�ths, and O. Russakovsky. Human uncertainty
makes classification more robust. In Proceedings of the IEEE International Conference
on Computer Vision, pages 9617–9626, 2019.

[42] R. Ratcli� and G. McKoon. The di�usion decision model: theory and data for two-choice
decision tasks. Neural Computation, 20(4):873––922, 2008.

[43] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–
252, 2015.

[45] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini. Why should we add early
exits to neural networks? Cognitive Computation, 12(5):954–966, 2020.

[46] C. J. Spoerer, T. C. Kietzmann, J. Mehrer, I. Charest, and N. Kriegeskorte. Recurrent
neural networks can explain flexible trading of speed and accuracy in biological vision.
bioRxiv, 2020.

[47] C. J. Spoerer, P. McClure, and N. Kriegeskorte. Recurrent convolutional neural networks:
A better model of biological object recognition. Frontiers in Psychology, 8:1551, 2017.

[48] R. K. Srivastava, K. Gre�, and J. Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

[49] R. S. Sutton. Learning to predict by the methods of temporal di�erences. Machine
learning, 3(1):9–44, 1988.

[50] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[51] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pages 2464–2469. IEEE, 2016.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[53] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, F. Yu, and J. E. Gonzalez. Idk cascades:
Fast deep learning by learning not to overthink. arXiv preprint arXiv:1706.00885, 2017.

13

[54] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang. Resolution adaptive networks
for e�cient inference. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2369–2378, 2020.

[55] F. Yu, A. Se�, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

[56] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[57] A. R. Zamir, T.-L. Wu, L. Sun, W. B. Shen, B. E. Shi, J. Malik, and S. Savarese.
Feedback networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1308–1317, 2017.

[58] S. Zilberstein. Using anytime algorithms in intelligent systems. AI magazine, 17(3):73–73,
1996.

14

	Experiment Details
	CascadedCE and CascadedTD Experiment Details
	Temporal Difference Loss
	Incremental TD Formulation
	TD(TEXT) Sweep

	Data Augmentation
	Noise Experiments
	Additional Temporal Dynamics Results
	Deadline-based stopping criterion
	Serial models trained with TD
	Qualitative performance of TD trained models on CIFAR-10

	Generalization to High Resolution Images
	Computing Infrastructure
	Average Runtime and Reproducibility

	Meta-cognitive Experiment Details
	OOD Detection Dataset Details
	OOD Detection Training Details
	Response Initiation

	Correspondence Between Model Time Steps and Run Time on Parallel Hardware
	Checklist

