
A Additional Definitions
Definition A.1 (zCDP [5]). A randomized algorithm A is β-zCDP if for any pair of data sets D and
D′ that different in one record, we have Dα (A(D)||A(D′)) ≤ βα for all α > 1, where Dα is the
Rényi divergence of order α.

It is easy to see that β-zCDP is equivalent to (α, βα)-RDP for all order α.

B Missing Proofs from Section 4
B.1 Proof of Lemma 4.3
Proof. We will show that W priv and bpriv in Algorithm 2 guarantee differential privacy. As the
arg min can be computed given the two quantities, it will guarantee differential privacy by sequential
composition.

For any j, denote Aj =
∑
i∈[m/4+1,m/2] W ijW

>
ij and bj =

∑
i∈[m/4+1,m/2] ỹijW ij . For any

iteration t, let A =
∑
j∈St Aj and b =

∑
j∈St bj . Considering neighboring datasets D and D′ such

that user j’s data in D is replaced by user j∗’s. If j /∈ St in iteration t, A and b will be the same.
Otherwise, A would change by ∆A = Aj∗ −Aj and b by ∆b = bj∗ − bj . We will bound the two
quantities.

• For ∆A: According to the definitions, we have ‖W ij‖2 ≤ η. Consider the Frobenius

norm of matrix W ijW
>
ij . For any vector x, we have

∥∥xx>∥∥
F

=
√∑

p,q x
2
px

2
q =√∑

p x
2
p

∑
q x

2
q = ‖x‖22. Therefore, we have

∥∥∥W ijW
>
ij

∥∥∥
F

= ‖W ij‖22 ≤ η2, and thus

‖Aj‖F ≤ mη
2/4, and ‖∆A‖F ≤ ‖Aj‖F + ‖Aj∗‖F ≤ mη

2/2.

• For ∆b: Again according to definition, we have |ỹij | ≤ ζ for any j. Thus ‖bj‖2 ≤ mηζ/4
for any j, and ‖∆b‖2 ≤ mηζ/2.

Applying Gaussian mechanism, adding noise N (0,m2η2ζ2∆2
(ε,δ)/4)dk to b guarantees

(α, α/(2∆2
(ε,δ)))-RDP. As for A, adding N (0,m2η4∆2

(ε,δ)/4)dk×dk to the vectorized version of
A guarantees (α, α/(2∆2

(ε,δ)))-RDP. We can reshape the vectorized A to get the matrix version,
which is a postprocessing step and does not affect the privacy guarantee. Notice that A is a symmetric
matrix. We can thus copy its upper triangle to the lower, which is equivalent to adding a symmetric
Gaussian matrix to A as stated in the algorithm.

By sequential composition, one run of Algorithm 2 guarantees (α, α/∆2
(ε,δ))-RDP. Notice that Algo-

rithm 1 calls Algorithm 2 for T times on disjoint sets of users. So by parallel composition, Algorithm 1

guarantees (α, α/∆2
(ε,δ))-RDP, which translates to

(
α

∆2
(ε,δ)

+ log(1/δ)
α−1 , δ

)
-DP for any ε, δ by stan-

dard conversion from RDP to approximate DP. Optimizing over α, we get
(

1
∆2

(ε,δ)

+
2
√

log(1/δ)

∆(ε,δ)
, δ

)
-

DP. Solving ∆(ε,δ) from 1
∆2

(ε,δ)

+
2
√

log(1/δ)

∆(ε,δ)
≤ ε, we have ∆(ε,δ) ≥

√
log(1/δ)+

√
log(1/δ)+ε

ε . There-

fore, if ε ≤ log(1/δ), it suffices to guarantee (ε, δ)-DP by setting ∆(ε,δ) =

√
8 log(1/δ)

ε .

B.2 Proof of Lemma 4.5
Proof. We will show that publishing MNoisy guarantees differential privacy. As W ij’s and MNoisy

are all symmetric, for privacy analysis, it suffices to consider the upper triangles of them. Let up (X)
denote the upper triangle of matrix X flatten into a vector. Let wij = up (W ij), w =

∑
i,j wij ,

and w̃ =
∑
i,j wij + up

(
Nsym

(
0,∆2

(ε,δ)ζ
4m2

)d2)
. It is easy to see that MNoisy can be formed

by postprocessing w̃. We will thus prove the privacy property of w̃, which directly translate to the
privacy guarantee of MNoisy.

Consider neighboring datasets D and D′ such that user j’s data in D is replaced by user j∗’s data in
D′. Then the corresponding w would differ by

∑
iwij∗ −

∑
iwij . We will analyze its `2 norm. For
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any i and j, we have∥∥∥∥∥ x(2i)jx
>
(2i+1)j∥∥x(2i)j

∥∥
2
·
∥∥x(2i+1)j

∥∥
2

· clip
(
y(2i)j ; ζ

)
· clip

(
y(2i+1)j ; ζ

)∥∥∥∥∥
F

≤ζ2

∥∥∥x(2i)jx
>
(2i+1)j

∥∥∥
F∥∥x(2i)j

∥∥
2
·
∥∥x(2i+1)j

∥∥
2

= ζ2. (3)

where ‖·‖F denotes the Frobenius norm. The inequality follows from the definition of the clipping
operation, and the equality follows because for two vectors a, b, we have

∥∥ab>∥∥2

F
=
∑
p,q(apbq)

2 =∑
p a

2
p ·
∑
q b

2
q = ‖a‖22 ‖b‖

2
2. Therefore, we have ‖wij‖2 ≤ ζ2 for any i, j, which implies

‖
∑
iwij∗ −

∑
iwij‖2 ≤

∑
i ‖wij∗‖2 +

∑
i ‖wij‖2 ≤ mζ2 for any j, i.e., the `2 sensitivity

of w is mζ2.

Using Gaussian mechanism, adding noise N (0,m2ζ4∆2
(ε,δ)I) to w guarantees (α, α/(2∆2

(ε,δ)))-

RDP for any order α ≥ 1, which translates to
(

α
2∆2

(ε,δ)

+ log(1/δ)
α−1 , δ

)
-DP for any ε, δ > 0. Optimiz-

ing over α, it translates to
(

1
2∆2

(ε,δ)

+

√
2 log(1/δ)

∆(ε,δ)
, δ

)
-DP. Solving 1

2∆2
(ε,δ)

+

√
2 log(1/δ)

∆(ε,δ)
≤ ε, we get

∆(ε,δ) ≥
√

log(1/δ)+
√

log(1/δ)+ε√
2ε

. Therefore, if ε ≤ log(1/δ), it suffices to guarantee (ε, δ)-DP by

setting ∆(ε,δ) =

√
8 log(1/δ)

ε .

B.3 Proof of Lemma 4.6
Proof. Let M = 2

nm

∑
i∈[m/2],j∈[n]

W ij and Unon-priv be the matrix with the top-k eigenvec-

tors of M as columns. Let Πpriv = Upriv
(
Upriv

)>
and Π∗ = U∗ (U∗)

>. Notice that∥∥Π∗ −Πpriv
∥∥

2
≤
∥∥Π∗ −Πnon-priv

∥∥
2

+
∥∥Πnon-priv −Πpriv

∥∥
2
. We bound the first term via

Lemma B.1 below. In order to bound the second term, first notice that the k-th eigenvalue of M
(in Algorithm 3) (denoted by λ̂k) is lower bounded as follows. This follows with high probability
from (18) by choosing appropriate β in Lemma B.1, polynomial in n−1.

λ̂k ≥
λk
d
−O

(√
µ4k2λk log(dn)

dnm

)
= Ω

(
λk
d

)
(4)

Now, we can use [17, Theorem 7] to directly bound
∥∥Πnon-priv −Πpriv

∥∥
F

=

O

(
∆(ε,δ)d

√
dk log(dn)

n·λk

)
, and correspondingly

∥∥Πnon-priv −Πpriv
∥∥

2
= O

(
ζ2∆(ε,δ)d

√
d log(dn)

n·λk

)
.

Setting ζ as in the lemma statement, and observing rotation invariant property of the norms, completes
the proof.

Lemma B.1 (Non-private subspace closeness). Let Πnon-priv = Unon-priv
(
Unon-priv

)>
, and

Π∗ = U∗ (U∗)
>. Following the assumption in Lemma 4.6, we have the following for Algorithm 3

(Algorithm APriv-init) w.p. at least 1− β (over the randomness of data generation and the algorithm):

∥∥Π∗ −Πnon-priv
∥∥

2
= Õ

(√
dζ4 log(d/β)

λ2
knm

)
.

Proof. By Gaussian concentration we have w.p. at least 1−β/2, ∀i ∈ [m], j ∈ [n], |〈xij ,U∗ ·v∗j 〉| ≤
µ
√
kλk ·

√
2 ln(4nm/β) and |zij | ≤ σF

√
2 ln(4nm/β). Hence, if we set the clipping threshold for

the response yij to be ζ =
(
µ
√
kλk + σF

)√
2 ln(4nm/β), then w.p. at least 1− β/2, clipping will

not have any impact on the analysis. Call this event A. We will perform the linear-algebra analysis
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below without conditioning on this event, but our application of matrix Bernstein [50, Theorem 1.4]
will rely on this bound.

We first note that for a Gaussian random vector x, we have

E
[

x

‖x‖2
x>
]

= E
[
xx>

x>x
‖x‖2

]
=

I
d
· E [‖x‖2] =

Γ
(
d+1

2

)
d
√

2Γ
(
d
2

) I ' 1√
d
I (5)

This can be seen by first noting that the magnitude of a random Gaussian vector is independent of
its direction (i.e., the Gaussian measure with identity covariance is a product measure in spherical
coordinates, trivial from the fact that it is spherically symmetric), then explicitly evaluating the
expected normalized outer product xx>

x·x . Term-by-term, this evaluation reduces to E
[

x[i]x[j]∑d
i=1 x[i]2

]
.

Symmetry implies this expectation is 0 for i 6= j and 1
d for i = j. Finally we apply a well-known

formula for the expected Euclidean norm of a Gaussian random vector [45]. We now have (6) and (7)
(as a measure of bias and variance) for any i ∈ [m/2], j ∈ [n]. Here, ‖W ij‖2 is the operator norm
of W ij .

E [W ij ] = E

[
x(2i)j∥∥x(2i)j

∥∥
2

x>(2i)j

(
U∗v∗j

(
v∗j
)>

(U∗)
>
)
·

x(2i+1)j∥∥x(2i+1)j

∥∥
2

x>(2i+1)j

]
' 1

d
U∗
(
v∗j
(
v∗j
)>)

(U∗)
>

(6)

‖W ij‖2 ≤ ζ
2 (7)

Therefore, by (6) we have the following. Here, V ∗ = [v∗1| · · · |v∗n].

B =
4

nm

∑
i∈[m/4],j∈[n]

E [W ij ] ' U∗

 1

dn

n∑
j=1

v∗j
(
v∗j
)> (U∗)

>
=

1

dn
U∗
(
V ∗ (V ∗)

>
)

(U∗)
>

(8)

We will now bound

∥∥∥∥∥ 4
nm

∑
i∈[m/4],j∈[n]

W ij −B

∥∥∥∥∥
2

using Matrix Bernstein’s inequality [49, Theorem

1.4]. Let Aij = W ij− 1
d ·U

∗
(
v∗j
(
v∗j
)>)

(U∗)
>. Clearly, E [Aij ] = 0, and ‖Aij · 1A‖2 ≤ ζ

2+C2

d .

Now, in the following we bound

∥∥∥∥∥ ∑
i∈[m/4],j∈[n]

E
[
A2
ij

]∥∥∥∥∥
2

. Let Π∗j be the projector onto the eigenspace

of U∗v∗j
(
v∗j
)>

(U∗)
>. We have the following in (9).

∑
i∈[m/4],j∈[n]

E
[
A2
ij

]
=

∑
i∈[m/4],j∈[n]

E
[
W 2

ij

]
− m

4d2

∑
j∈[n]

U∗v∗j
(
v∗j
)>

(U∗)
>
U∗v∗j

(
v∗j
)>

(U∗)
>

=
∑

i∈[m/4],j∈[n]

E
[
W 2

ij

]
− m

4d2

∑
j∈[n]

∥∥U∗v∗j∥∥4

2
·Π∗j (9)

We now bound E
[
W 2

ij

]
the first term in (9). We have the following.

E
[
W 2

ij

]
= E

[
x(2i)jx

>
(2i)j∥∥x(2i)j

∥∥
2

U∗
(
v∗j
(
v∗j
)>)

(U∗)
> x(2i+1)jx

>
(2i+1)j∥∥x(2i+1)j

∥∥
2

x(2i+1)jx
>
(2i+1)j∥∥x(2i+1)j

∥∥
2

U∗
(
v∗j
(
v∗j
)>)

(U∗)
> x(2i)jx

>
(2i)j∥∥x(2i)j

∥∥
2

]

= E

[
1∥∥x(2i)j

∥∥2
2

x(2i)jx
>
(2i)j ·U∗

(
v∗j
(
v∗j
)>)

(U∗)
>
x(2i+1)jx

>
(2i+1)jU

∗
(
v∗j
(
v∗j
)>)

(U∗)
>
x(2i)jx

>
(2i)j

]

= E

[
1∥∥x(2i)j

∥∥2
2

x(2i)jx
>
(2i)j ·U∗

(
v∗j
(
v∗j
)>)

(U∗)
>
U∗
(
v∗j
(
v∗j
)>)

(U∗)
>
x(2i)jx

>
(2i)j

]
(10)
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In the last equality, we have used independence to evaluate the outer product in the middle of
the expression. This operation can be viewed as evaluating a chain of conditional expectations:
E [ABA] = E [E [ABA|A]] = E [A · E [B|A] ·A] = E [A · E [B] ·A]. Separating the norm of
U∗v∗j (U

∗v∗j )
> from projection onto its range, we see

E
[
W 2

ij

]
= E

[∥∥U∗v∗j∥∥4

2∥∥x(2i)j

∥∥2

2

x(2i)jx
>
(2i)j ·Π

∗
j · x(2i)jx

>
(2i)j

]

= E

[∥∥U∗v∗j∥∥4

2∥∥x(2i)j

∥∥2

2

x(2i)jx
>
(2i)j · (Π

∗
j )
> ·Π∗j · x(2i)jx

>
(2i)j

]

=
∥∥U∗v∗j∥∥4

2
· E

[∥∥Π∗jx(2i)j

∥∥2

2
·
x(2i)jx

>
(2i)j∥∥x(2i)j

∥∥2

2

]
(11)

To estimate the expectation on the right, we let a = Π∗jx(2i)j and b = (I−Π∗j )x(2i)j , and note that
a and b are independent. So we are interested in evaluating

E

[
‖a‖22

(a + b)(a + b)>

‖a‖22 + ‖b‖22

]
= E

[
‖a‖22

‖a‖22 + ‖b‖22
(aa> + bb>)

]
+ E

[
‖a‖22

‖a‖22 + ‖b‖22
(ab> + ba>)

]
(12)

The second expectation is 0, as can be noted by symmetry. That is, conditioning on b and ‖a‖2 yields
the integral of a spherically symmetric random variable. We can then bound:

E

[
‖a‖22

(a + b)(a + b)>

‖a‖22 + ‖b‖22

]
4 E

[
‖a‖22
‖b‖22

aa>

]
+ E

[
‖a‖22

]
E

[
bb>

‖b‖22

]

= E

[
1

‖b‖22

]
E
[
‖a‖42

]
Π∗j + η

(
I−Π∗j

)
(13)

for some η > 0. E
[

1
‖b‖22

]
= O

(
1
d

)
and E

[
‖a‖42

]
= O(1), so the first term is on the order of 1

d ·Π
∗
j .

We evaluate η by cyclically permuting the trace:

η(d− 1) = tr
(
η
(
I−Π∗j

))
= tr

(
E

[
bb>

‖b‖22

])
= E

[
tr

(
bb>

‖b‖22

)]
= E

[
tr

(
b>b

‖b‖22

)]
= 1

(14)

so that η = 1
d−1 = O

(
1
d

)
.

Putting together (13) and (14) with (11), we see

E
[
W 2

ij

]
4 O

(∥∥U∗v∗j∥∥4

2

d

)
· I (15)

From (9) and (15) we have the following.∥∥∥∥∥∥
∑

i∈[m/2],j∈[n]

E
[
A2
ij

]∥∥∥∥∥∥
2

= O

m
d

∑
j∈[n]

∥∥U∗v∗j∥∥4

2

 = O

(
mnµ4k2λ2

k

d

)
(16)

Therefore we may apply Matrix Bernstein’s inequality [50, Theorem 1.4] by restricting nonzero
values to the previously defined event A where clipping plays no role, ensuring the pointwise bound
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‖Aij · 1A‖2 ≤ ζ2 + µ2kλk
d . Notice that this restriction can only strengthen the bound (16). So we

have the following.

Pr

∥∥∥∥∥∥ 4

nm

∑
i∈[m/4],j∈[n]

Aij · 1A

∥∥∥∥∥∥
2

≥ 4t

nm

 ≤ d·exp

− t2/2

O
(
nmµ4k2λ2

k

d

)
+
(
ζ2 + C2

d

)
· t3

 ≤ β

2

(17)

Setting t =
√

log(d/β) ·Ω
(

max

{√
nmµ4k2λ2

k

d ,
(
ζ2 + µ2kλk

d

)√
log(d/β)

})
in (17) suffices, by

setting up and solving the associated quadratic. Therefore, since P [Ac] ≤ β
2 , w.p. at least 1− β we

have:

∥∥∥∥∥∥ 4

nm

∑
i∈[m/4],j∈[n]

Aij

∥∥∥∥∥∥
2

≤
√

log(d/β)·O

(
max

{
µ2kλk√
dnm

,
(ζ2 + µ2kλk/d)

√
log(d/β)

nm

})
= O

(√
ζ4 · log(d/β)

dnm

)
(18)

The last equality in (18) follows from the assumption mn =

Ω

(
d
(
ζ2 + µ2kλk

d

)2

· log(d/β)/(µ2kλk)2

)
. With (18) in hand, we now use the Davis-

Kahn Sin Θ-theorem [12] from matrix perturbation theory to bound
∥∥Πnon-priv −Π∗

∥∥
2
. We use the

following variant in Lemma B.2.

Lemma B.2 (Sin Θ-Theorem [12]). Let G and H be two PSD matrices. Let Π
(i)
G be the projector

onto the top-i eigenvectors of G, and let eig(i)(G) be the i-th largest eigenvalue of G. Define these
quantities correspondingly for H . Then, the following is true.(

eig(i)(G)− eig(j+1)(G)
)
·
((

I−Π
(j)
H

)
Π

(i)
G

)
≤ ‖G−H‖2

Let G = 1
dnU

∗
(
V ∗ (V ∗)

>
)

(U∗)
> and H = 4

nm

∑
i∈[m/4],j∈[n]

W ij . Note that both G and H are

PSD matrices. Furthermore, from (18) we have ‖G−H‖2 = O

(√
ζ4·log(d/β)

dnm

)
w.p. ≥ 1 − β.

Recall that Πnon-priv is the projector onto the rank-k approximation of H . Following the notation
of Lemma B.2, and by assumption

√
nm = Ω

(√
dζ4 log(d/β)/λk

)
, we have eig(k) (G) = λk

d ,

eig(k)
(
Πnon-priv

)
∈
[
eig(k)(G)

2 , 2 · eig(k) (G)
]
, and eig(k+1)

(
Πnon-priv

)
≤ eig(k)(G)

2 . Here, λk is

the k-th eigenvalue of U∗
(

1
nV
∗ (V ∗)

>
)

(U∗)
>, which equals the k-th eigenvalue of 1

nV
∗ (V ∗)

>.
Also, notice that the projector onto G equals Π∗ as long as λk > 0, which is true by assumption.

Therefore, from Lemma B.2 we have the following w.p. at least 1− β.

∥∥(I−Π∗) Πnon-priv
∥∥

2
= O


√

ζ4·log(d/β)
dnm

eig(k) (G)

 (19)

∥∥(I−Πnon-priv
)

Π∗
∥∥

2
= O


√

ζ4·log(d/β)
dnm

eig(k) (G)

 (20)

Furthermore, notice that
∥∥Π∗ −Πnon-priv

∥∥
2
≤
∥∥(I−Π∗) Πnon-priv

∥∥
2

+
∥∥(I−Πnon-priv

)
Π∗
∥∥

2
.

Plugging in the value of eig(k) (G) in (19) and (20) completes the proof.
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B.4 Proof of Theorem 4.2
Proof. Let b = 〈a,U∗v∗〉+ w, where a ∼ N (0, 1)d, w ∼ N (0, σ2

F), U∗ ∈ Rd×k is a matrix with
orthonormal columns, and v∗ ∈ Rk. Consider the loss function L(U ,v) = Ea,w

[
(b− 〈a,Uv〉)2

]
,

where U ∈ Rd×k is a matrix with orthonormal columns and v ∈ Rk. We have,

L(U ,v) = E
[(
a> (U∗v∗ −Uv) + w

)2]
= (U∗v∗ −Uv)

> E
[
aa>

]
(U∗v∗ −Uv) + σ2

F

= ‖U∗v∗ −Uv‖22 + σ2
F. (21)

We consider v̂ = arg min
v

∥∥∥y −X>Ûv
∥∥∥2

2
=
(
Û
>
XX>Û

)−1

Û
>
Xy, where Û ∈ Rd×k is some

matrix with orthonormal columns, X ∼ N (0, 1)
d×m and y = X>U∗v∗+w (with w ∼ N (0, σ2

F)m.
Notice that the inverse exists w.p. at least 1− 1

m10 as long as m = Ω(k).

In the following, we will bound L(Û , v̂). To do so, we will first bound
∥∥∥U∗v∗ − Ûv

∥∥∥2

2
in (21).

Assume, Π̂ = ÛÛ
>

, Π∗ = U∗ (U∗)
>, ∆ = Π̂−Π∗ , and ‖∆‖2 ≤ Γ. We have,

E
[∥∥∥U∗v∗ − Û v̂

∥∥∥2

2

]
= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
Xy −U∗v∗

∥∥∥∥2

2

]

= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
XX>U∗v∗ −U∗v∗ + Û

(
Û
>
XX>Û

)−1

Û
>
Xw

∥∥∥∥2

2

]

= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
XX>U∗v∗ −U∗v∗

∥∥∥∥2

2

]
+
k

m
σ2
F

= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
XX>

(
ÛÛ

>
·U∗v∗ + (I− ÛÛ

>
)U∗v∗

)
−U∗v∗

∥∥∥∥2

2

]
+
k

m
σ2
F

= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
XX>ÛÛ

>
U∗v∗ −U∗v∗

∥∥∥∥2

2

]
+
k

m
σ2
F

=
∥∥∥ÛÛ

>
U∗v∗ −U∗v∗

∥∥∥2

2
+
k

m
σ2
F

= ‖(Π∗ + ∆)U∗v∗ −U∗v∗‖22 +
k

m
σ2
F

= ‖∆U∗v∗‖22 +
k

m
σ2
F

≤ Γ2 ‖U∗v∗‖22 +
k

m
σ2
F (22)

Therefore, by (22) and (21), we have the following.

E
[
L(Û , v̂)

]
≤ Γ2 ‖U∗v∗‖22 +

(
k

m
+ 1

)
σ2
F (23)

Let Πpriv = Upriv
(
Upriv

)>
. (23) immediately implies,

RiskPop(
(
Upriv,V priv

)
; (U∗,V ∗)) ≤

∥∥Πpriv −Π∗
∥∥2

2
· µ2kλk +

(
k

m

)
σ2
F (24)

Plugging in the bounds from Lemma 4.4 (and instantiating via Lemma 4.6) completes the proof.

B.5 Proof of Lemma 4.4
Proof. Consider the t-th iteration of Algorithm 1. We first simplify the notation, i.e., let U = U (t)

and U+ = U (t+1), vj = v
(t)
j .
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Now, the clipping parameters are set large enough so that under the data generation assumptions
(Assumption 4.1), there is no "clipping". So the updates in the Algorithm 1 and Algorithm 2 reduce
to:

vj =

 2

m

∑
i∈[m/2]

U>xijx
>
ijU

−1 2

m

∑
i∈[m/2]

yij ·U>xij

 ,

H(j) =
2

m

∑
i∈[m/2+1,m]

xijx
>
ij ,

r(t) =
∑
j∈St

 2

m

∑
i∈[m/2+1,m]

xijzij

v>j + g(t),

Û = Ã−1

∑
j∈St

H(j)U∗v∗jv
>
j + r(t)

 ,

U+ = ÛR−1, (25)

where U+ and R are obtained by QR decomposition of Û . Also, g(t) ∼ η · ζ∆(ε,δ) · N (0, 1)dk, and
Ã : Rd×k → Rd×k is defined as:

Ã(U) = A(U) + G(U) with

A(U) =
2

m

∑
i∈[m/2+1,m]

H(j)Uvjv
>
j , and G(U) =

∑
ab

〈Gab,U〉eae>b ,

where ea is the a-th standard canonical basis vector, and for
#     »

Gab being the vectorized version of
Gab, Ḡ = [

#     »

G11;
#     »

G12; . . . ;
#     »

Gab; . . .
#     »

Gdk] ∼ ηζ∆(ε,δ) · Nsym(0, 1)dk×dk. Note that A and G, and
consequently Ã, are self-adjoint operator i.e. 〈Ã(U), Ū〉 = 〈U , Ã(Ū)〉 for all U , Ū . Furthermore,
letW(U) = U

∑
j vjv

>
j .

Note that the update for vj is same as the update in the non-private Alternating Minimization
algorithm (similar to Algorithm 1 of [46]). Now, let Q = (U∗)>U , and ∆ ∈ Rd×k be such that
∆j = vj −Q−1v∗j . Using Lemma B.4, we get:

‖vj‖2 ≤ Õ
(
µ2k

n
λtk

)
, λk ≤ 2λtk,

max
j
‖∆j‖2 ≤ Õ

(
‖(I−U∗(U∗)>)U‖2 · µ

√
kλk

)
+ σF

√
k log n

m
, (26)

where λti is the i-th eigenvalue of 1
n

∑
j vjv

>
j .

Now, using standard calculations, we get:

Û −U∗Q (27)

=Ã−1

∑
j

H(j)U∗Q(Q−1v∗j − vj)v
>
j +

∑
ij

zijxijv
>
j + g(t) − G(U∗Q)


=W− 1

2

(
W 1

2 Ã−1W 1
2

)
W− 1

2

∑
j

H(j)U∗Q(Q−1v∗j − vj)v
>
j +

∑
ij

zijxijv
>
j + g(t) − G(U∗Q)


=U∗Q

∑
j

(Q−1v∗j − vj)v
>
j

∑
j

vjv
>
j

−1

+ F + F̃ , (28)
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where for E =W 1
2 Ã−1W 1

2 − I ,

F =W− 1
2 EW− 1

2

(
U∗Q(Q−1v∗j − vj)v

>
j

)
+W− 1

2 (I + E)W− 1
2

∑
j

(H(j) − I)U∗Q(Q−1v∗j − vj)v
>
j +

∑
ij

zijxijv
>
j

 ,

F̃ =W− 1
2 (I + E)W− 1

2

(
g(t) − G(U∗Q)

)
.

Using Lemma B.3 and the assumption on n, ∆(ε,δ), we get:

‖E‖F ≤
1

32
. (29)

Furthermore, using Lemma B.6, setting κ = λ1/λk, we get w.p. ≥ 1− 1/n100,

‖F ‖F ≤ Õ

(
µ log n ·

√
κdk2T

mn
‖(I−U∗(U∗)>)U‖F

)
+

√
µ2dkT log n

mn
· σF√

λk
. (30)

Finally, using Lemma B.7, we get w.p. ≥ 1− 1/n100,∥∥∥F̃∥∥∥
F
≤ Õ

(
(
√
kη2 + ηζ)∆(ε,δ)

√
dk

nλk

)
. (31)

That is, by setting n = Ω̃
(
λ1

λk
· µ2dk + ∆(ε,δ) ·

(
NSR2 + µ2k

)
d3/2

)
and m =

Ω̃
(
(1 + NSR) · k + k2

)
(as per Assumption 4.1), we get:

‖F ‖F ≤
1

64
,
∥∥∥F̃∥∥∥

F
≤ 1

64
.

Similarly, using n and m as specified in Assumption 4.1 and Lemma B.6, for M =

U∗Q
∑
j(Q

−1v∗j − vj)v
>
j

(∑
j vjv

>
j

)−1

, we get

‖M‖F ≤
1

64
.

Finally, due to the initialization condition, σmin(Q) ≥ 1/2. Thus, using standard calculations (for
example, see Lemma A.3 in [46]), we get:

‖R−1‖ ≤ 4,

where Û = U+R.

Note that U∗Q
∑
j(Q

−1v∗j − vj)v
>
j

(∑
j vjv

>
j

)−1

lies along U∗, so does not contribute to the

error
∥∥(I −U∗(U∗)>)U+

∥∥
F

. Hence,∥∥(I−U∗(U∗)>)U+
∥∥
F
≤
∥∥∥F + F̃

∥∥∥
F

∥∥R−1
∥∥
F
≤ 4

∥∥∥F + F̃
∥∥∥
F

≤ 4Õ

(
µ log n ·

√
κdk2T

mn
‖(I−U∗(U∗)>)U‖F +

√
µ2dkT log n

mn
· σF√

λk
+

(
√
kη2 + ηζ)∆(ε,δ)

√
dk

nλk

)
,

≤ 1

4

∥∥(I−U∗(U∗)>)U
∥∥
F

+ Õ

(√
µ2dkT log n

mn
· σF√

λk
+

(
√
kη2 + ηζ)∆(ε,δ)

√
dk

nλk

)
. (32)

The result now follows by applying the above bound for all t and by using: η = Õ(µ
√
λkdk),

ζ = Õ
(
σF + µ

√
kλk

)
, i.e.,

√
kη2 + ηζ = λkÕ((NSR + µ

√
dk2)µ

√
dk).

Lemma B.3. Consider the setting of Lemma 4.4 and the notation introduced in the proof above. Let
E =W 1

2 Ã−1W 1
2 − I . Then, w.p. ≥ 1− 1/n100: ‖E‖F ≤ 1

32 .
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Proof. Using Lemma B.5 and (26), we get: ‖W− 1
2AW− 1

2 − I‖F ≤ 1/32, where I(U) = U .

Furthermore, ‖W− 1
2GW− 1

2 ‖F ≤ 8∆(ε,δ)

√
kη2
√

dk
nλk

by using the bound on λtk given in (26). The
result now follows by combining the above two given bounds.

Lemma B.4 (Restatement of Lemma A.1 of [46]). Consider the setting of Lemma 4.4 and the
notation introduced in the proof above. Then, if ‖(I − U∗(U∗)>)U‖ ≤ Õ(λkλ1

) and if m ≥
Ω̃
(
(1 + NSR) · k + k2

)
, we have w.p. ≥ 1− 1/n101:

‖vj‖2 ≤ Õ
(
µ2k

n
λtk

)
, λk ≤ 2λtk,

max
j
‖∆j‖2 ≤ Õ

(
‖(I −U∗(U∗)>)U)‖2 · µ

√
kλk

)
+ σF

√
k log n

m
.

Lemma B.5 (Restatement of Lemma A.7 of [46]). Consider the setting of Lemma 4.4 and the
notation introduced in the proof above. Let mn ≥ Õ(µ2dk2), then w.p. ≥ 1− 1/n100:

‖E‖F ≤ Õ

(√
µ2dk2

mn

)
.

Lemma B.6 (Restatement of Lemma A.2 of [46]). Consider the setting of Lemma 4.4 and the
notation introduced in the proof above. Then, if mn ≥ Õ(µ2dk2), we have (w.p. ≥ 1− 1/n80):∥∥∥∥∥∥∥U∗Q

∑
j

(Q−1v∗j − vj)v
>
j

∑
j

vjv
>
j

−1
∥∥∥∥∥∥∥
F

≤ Õ

(
√
κ‖(I −U∗(U∗)>)U‖F +

σF√
λk
·
√
k

m

)
,

‖F ‖F ≤ Õ

(
µ log n ·

√
κdk2T

mn
‖(I −U∗(U∗)>)U‖F

)
+

√
µ2dkT log n

mn
· σF√

λk
.

Lemma B.7. Consider the setting of Lemma 4.4 and the notation introduced in the proof above. Let
‖E‖ ≤ 1/2. Then, w.p. ≥ 1− 1/n100:∥∥∥F̃∥∥∥

F
≤ Õ

(
(
√
kη2 + ηζ)∆(ε,δ)

√
dk

nλk

)
.

Proof. Note that,∥∥∥F̃∥∥∥
F
≤ ‖W− 1

2 (I + E)W− 1
2 ‖2 · ‖g(t) − G(U∗Q)‖2 ≤

2

nλk
(‖g(t)‖2 + ‖G(U∗Q)‖F )

≤ 2

nλk
(‖g(t)‖2 +

√
k‖G‖2). (33)

The lemma now follows by using the fact that:
∥∥g(t)

∥∥
2
≤ Õ(ηζ

√
dk) and ‖G‖2 ≤ Õ(η2

√
dk) with

probability 1− 1/n100.

C Missing Proofs from Section 5
Proof of Theorem 5.1. We are going to proof that the sampling step in Algorithm 4 guarantees ε-DP.
Let S0(D) =

∑
j∈[n]

2
m

∑
i∈[m/2]

`
(
〈clip

(
U>0 xij ;Lf

)
,v0; yij〉

)
, where U0 is fixed rank-k matrix

with orthonormal columns in Rd×k, and v0 ∈ Rk, ‖v0‖2 ≤ C is a fixed vector. The sampling step in
Algorithm 4 is identical to the following

Pr[Upriv = U ] ∝ exp

(
− ε

8LfCξ
· (score (U)− S0(D))

)
. (34)
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Let L(U ;D) = score (U)− S0(D). Consider any neighboring data sets D and D′ such that user j
in D is replace by user j′ in D′. We now bound the sensitivity L(U ;D)− L(U ;D′). We have

L(U ;D)− L(U ;D′)

=

[
min

‖vj‖2≤C

2

m

∑
i

`
(
〈clip

(
U>xij ;Lf

)
,vj〉; yij

)
− 2

m

∑
i

`
(
〈clip

(
U>0 xij ;Lf

)
,v0〉; yij

)]

−

[
min

‖vj′‖2≤C
2

m

∑
i

`
(
〈clip

(
U>xij′ ;Lf

)
,vj′〉; yij′

)
− 2

m

∑
i

`
(
〈clip

(
U>0 xij′ ;Lf

)
,v0〉; yij′

)]
(35)

Consider the first term. Let v∗j be the minimizer of the first term. We have

2

m

∑
i

(
`
(
〈clip

(
U>xij ;Lf

)
,v∗j 〉; yij

)
− `(〈clip

(
U>0 xij ;Lf

)
,v0〉; yij)

)
≤ 2

m

∑
i

ξ
∣∣∣〈clip(U>xij ;Lf) ,v∗j 〉 − 〈clip(U>0 xij ;Lf) ,v0〉

∣∣∣
≤ 2

m

∑
i

ξ
(∥∥∥clip(U>xij ;Lf)∥∥∥

2

∥∥v∗j∥∥2
+
∥∥∥clip(U>0 xij ;Lf)∥∥∥

2
‖v0‖2

)
≤2ξLfC,

where the first inequality follows because ` is ξ-Lipschitz in the first parameter, and the last inequality
follows from the bound on the norm of v. Similar can be shown for the second term of (35). Therefore,
the sensitivity of the score function, i.e. (35), is upper bounded by 4ξLfC.

The rest of the proof follows from standard exponential mechanism argument [35].

Proof of Theorem 5.2. First, to bound the size of the net N φ we use classic covering number bound

from [6, Lemma 3.1]. We have
∣∣N φ

∣∣ = O

((
9
√
k

φ

)(2d+1)·k
)

, since ‖ · ‖F of the matrices, over

which the net is built, is
√
k. Let U∗ = arg min

U∈K
score (U).

First, we show that score
(
Ũ
)
− score (U∗) is small for any Ũ ∈ N φ. For any Ũ , we have,

score
(
Ũ
)
≤ score (U∗) + ξC

∑
j∈[n]

2

m

∑
i∈[m/2]

∥∥∥clip(Ũ>xij ;Lf)− clip
(

(U∗)
>
xij ;Lf

)∥∥∥
2

= score (U∗) + ξC
∑
j∈[n]

2

m

∑
i∈[m/2]

∥∥∥∥(Ũ −U∗
)>

xij

∥∥∥∥
2

, (36)

with probability ≥ 1− 1/n10. The first step follows from the Lipschitzness of ` and ‖v‖2 ≤ C, and
the second step follows because the choice of Lf will not introduce any effect due to clipping w.p. at
least 1− 1

n10 . We will condition the rest of the analysis on this.

Let M = Ũ −U∗ with columns [ma : a ∈ [k]]. By the definition of the net, we have
k∑
a=1
‖ma‖22 ≤

φ2. Since the feature vectors are drawn i.i.d. from N (0, 1)
d, we have 〈ma,xij〉 ∼ N

(
0, ‖ma‖22

)
.

Therefore, by standard Gaussian concentration and union bound, we have w.p. at least 1 − 1
n10 ,

∀i ∈ [m/2], j ∈ [n], a ∈ [k], |〈ma,xij〉| ≤ ‖ma‖2 · polylog (n). Therefore,
∥∥∥M>xij

∥∥∥
2
≤

φ · polylog (n). Substituting back to (36), we have

score
(
Ũ
)
≤ score (U∗) + ξCnφ · polylog (n) . (37)
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Second, we aim to show that Upriv and Ũ are close. For any γ, we have

Pr
[
score

(
Upriv

)
− score

(
Ũ
)
≥ γ

]
≤
∣∣N φ

∣∣ · exp
(
− ε

8ξLfC
·
(
score

(
Ũ
)

+ γ
))

exp
(
− ε

8ξLfC
· score

(
Ũ
))

=
∣∣N φ

∣∣ · exp

(
− εγ

8ξLfC

)
. (38)

Setting γ appropriately, we have w.p. at least 1− β,

score
(
Upriv

)
− score

(
Ũ
)
≤

8ξCLf log
(
|N φ|/β

)
ε

= O

(
ξCLfdk

ε
log

(
k

φβ

))
. (39)

Now we show a bound on the excess empirical risk. Combining (37) and (39), we have

score
(
Upriv

)
≤ score (U∗) +O

(
ξCLfdk

ε
log

(
k

φβ

)
+ ξCnφ · polylog (n)

)
.

Let LERM(U ,V ) = 2
mn

∑
i∈[m/2],j∈[n]

`
(
〈U>xij ,vj〉; yij

)
, and V̂ = min

V
LERM(Upriv,V ), i.e., the

minimizer for score
(
Upriv

)
. The above inequality directly transfers to

LERM(Upriv, V̂ ) ≤ LERM(U∗,V ∗) +O

(
ξCLf · dk

εn
log

(
k

φβ

)
+ ξCφ · polylog (n)

)
(40)

Setting φ = 1
εn and plugging in Lf = O(

√
d log(nm)), the above inequality becomes,

LERM(Upriv, V̂ ) ≤ LERM(U∗,V ∗) +O

(
ξC
√
k2d3

εn

)
· polylog (n) . (41)

Finally, to complete the proof, we need to translate the excess empirical risk bound into excess
population risk bound. Recall the following definition of population risk.

LPop(U ;V ) = E(i,j)∼u[m/2]×[n],(xij ,yij)∼τ

[
`
(
〈U>xij ,vj〉; yij

)]
(42)

We have the following.

LPop(Upriv;V priv)− LPop(U∗,V ∗)

=
(
LPop(Upriv;V priv)− LPop(Upriv,V ∗)

)
+
(
LPop(Upriv,V ∗)− LPop(U∗,V ∗)

)
(43)

We will bound the two terms separately. For the first term LPop(Upriv,V priv)−LPop(Upriv,V ∗),
notice that Upriv and V priv are independent as they are trained on disjoint data. This implies ∀i ∈
{m/2 + 1, · · · ,m}, j ∈ [n], w.p. at least 1− 1

min{d,n}10 ,
∥∥∥(Upriv

)>
xij

∥∥∥
2
≤
√
k · polylog (d, n).

Since the loss functions have the form `(〈
(
Upriv

)>
x,v〉; y), by standard uniform convergence

bound [2], we have the following.

LPop(Upriv,V priv)− LPop(Upriv,V ∗) = O

(
ξC

√
k

m

)
· polylog (d, n) (44)

Then we bound the second term LPop(Upriv,V ∗)− LPop(U∗,V ∗) in (43). We can write the inner
product 〈U>x,v〉 as 〈U ,xv>〉. Therefore, if we vectorize U by concatenating its the columns as
#»

U , and vectorize xv> by concatenating its columns as #»z , the inner product equals to 〈z, #»

U〉. The
loss function can be written as `(〈U>x,v〉; y) = `

(
〈z, #»

U〉; y
)

. We define zij as the vectorized

version of xij(v
∗
j )
>. With probability at least 1 − 1

min{d,n}10 , ∀i ∈ [m/2], j ∈ [n], ‖zij‖2 ≤
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C
√
d · polylog (d, n). By standard uniform convergence bound [2] and the bound on the empirical

Rademacher complexity below, we have

LPop(Upriv,V ∗)− LPop(U∗,V ∗)

≤ LERM(Upriv, V̂ )− LERM(U∗,V ∗) +O

(
ξC

√
d

nm

)
· polylog (d, n) . (45)

Combining (41), (45), (44) into (43) and translating the high-probability to expectation statement
completes the proof.

Bound on Rademacher complexity: We aim to compute the Rademacher complexity of
〈U ,

∑
ij xijv

>
j 〉 =

∑
ij〈xij ,Uvj〉. We will follow [33, Theorem 11] with small modification

in the Cauchy-Schwartz step.

Let θ be a vector of length nd that is formed by concatenating Uvj for all j. For any i, j, let x̃ij be a
vector of length dn, such that the j-th “block” (of length d) is xij and the rest of the entries are 0. So
we can express 〈xij ,Uvj〉 as 〈x̃ij , θ〉. We have

〈x̃ij , θ〉 = 〈xij ,Uvj〉 ≤ ‖xij‖2 ‖Uvj‖2 ≤ C ‖xij‖2 ,

where the last step follows because U is orthonormal and ‖vj‖2 ≤ C. Also, because the data

is drawn from a normal distribution, we have E
[
‖x̃ij‖22

]
= E

[
‖xij‖22

]
= d. The Rademacher

complexity is C
√
d√

mn
following the same argument as [33, Theorem 11].
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