A Appendix

A.1 Proofs: Existing Methods are Instances of the LFA Framework (Section [3)
A.l.1 LIME

The instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = w %, (2) perturbations of the form x¢ = x¢ ® & where & (€ {0, 1}4) ~ my, with 7,
being the exponential kernel (defined below), and (3) loss function as squared-error loss given by
U(f,g,%0,&) = (f(xe) — g(€))? is equivalent to LIME.

As defined in [4] (Section 3.4), the exponential kernel 7y, (§) exp{—%} with distance
function D (such as cosine distance or L2 distance) and width o.

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by:

g =argmin E £(f,9,%0,§)
geEG &E~Txg

=argmin E [£(f, g,Xo0,&) - Tx,(&)] where p is the Bernouilli(0.5) distribution
geg &~p
Through importance sampling using a Bernouilli(0.5) proposal distribution (i.e., a Uniform(0,1)
distribution over the space of binary inputs), the optimization setting of the LFA framework is that
described for LIME by Ribeiro et al. [4] (Equations 1 and 2). O

A.1.2 KernelSHAP

The instance of the LFA framework with (1) interpretable model class G as the class of linear models

where g(x) = w 'x, (2) perturbations of the form x¢ = x¢ ® & where £ (€ {0,1}9) ~ 7 with

7 being the Shapley kernel (defined below), and (3) loss function as squared-error loss given by

U(f,9,%0,&) = (f(x¢) — g(£))? is equivalent to KernelSHAP.

As defined in [6] (Theorem 2), the Shapley kernel 7(£) o % where M is the total number
Y e (M—

of elements in £ and k is the number of ones in £.

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by:
g* = argmin E f(f7 g, Xo, 6)
9geg

E~vm

=argmin E [£(f,g,Xo0,&) - 7(§)] where p is the Bernouilli(0.5) distribution
geg &~p
Through importance sampling using a Bernouilli(0.5) proposal distribution (i.e., a Uniform(0,1)
distribution over the space of binary inputs), the optimization setting of the LFA framework is that
described for KernelSHAP by Lundberg and Lee [[6] (Equation 2 and Theorem 2). O

A.1.3 Occlusion

The instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = wx, (2) perturbations of the form x¢ = xo ® & where £ (€ {0,1}%) is a random
one-hot vector, and (3) loss function as squared-error loss given by /(f, g,%0,&) = (Af — g(£))?
where Af = f(x0) — f(x0(1 — &)) converges to Occlusion.

Proof. This instance of the LFA framework optimizes g(&) to approximate A f. For &; (a one-hot
vector with element ¢ equal to 1), g(§;) = w; and Af; is the difference in the model prediction
when feature 7 takes the original value versus when feature i is set to zero. A f is the definition of
explanations generated by Occlusion. Thus, in this instance of the LFA framework, the weights of
g recover the explanations of Occlusion. O

14

Al14 C-LIME

The instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = w ' x, (2) perturbations of the form x¢ = x¢ + £ where £ (€ R?) ~ Normal(0, 02),
and (3) loss function as squared-error loss given by £(f, g,%0,&) = (f(x¢) — g(£))? is equivalent to
C-LIME.

Proof. This instance of the LFA framework is equivalent to C-LIME by definition of C-LIME. O

A.1.5 SmoothGrad

In this section, we provide two derivations showing the connection between the LFA framework and
SmoothGrad. When using gradient-matching loss, the instance of the LFA framework is exactly
equivalent to SmoothGrad given the same n perturbations. When using squared-error loss, the
instance of the LFA framework is equivalent to SmoothGrad asymptotically for a large number of
perturbations.

Gradient-matching loss function

This instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = w x, (2) perturbations of the form x¢ = xo + & where & (€ R?) ~ Normal(0, 02),
and (3) loss function as gradient-matching loss given by £y, (f, g,%0,&) = || Ve f(x¢) — Veg(€)|13
is equivalent to SmoothGrad. In other words, for the same n perturbations, this instance of the LFA
framework and SmoothGrad yield the same explanation.

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by
g* = argmingcg L where:

L= Efg(fmgax(%g)
_ % S IVef(xe) = Veg(€)]3

1 2
2 2 1V) = wl

To derive the solution for w, take the partial derivative of L w.r.t. w, set the partial derivative to zero,
and solve for w.

Vwl =0= (—2)%Z[Vx(}f(x5) —w]j=0=>w= %vaOf(Xg)

n n

Therefore, for the same n perturbations, the weights w of the interpretable model g are equivalent to
the SmoothGrad explanations. O

Squared-error loss function

Consider the instance of the LFA framework corresponding to SmoothGrad described above, except
with loss function as squared-error loss given by £(f, g, %o, &) = (f(x¢) — g(£))?. This instance of
the LFA framework converges to SmoothGrad in expectation. Note that this instance of the LFA
framework is C-LIME and its convergence to SmoothGrad in expectation is consistent with the results
of [5] which previously proved the same convergence (using a different approach).

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by
g* = argmin g L where:

L =Eel(f, 9,%0,€)
= Ee[(f(x¢) = 9(&))’]
= Ee[(f(x¢) - w'€)?)

To derive the solution for w, take the partial derivative of L w.r.t. w, set the partial derivative to zero,
and solve for w.

15

Vwl =0

—2B¢[(f(x¢) —w' €] =0
Eelf(xe)é" —w'&€']=0
Eelf(xe)¢"] —w E[EET] =0

o°E¢ [V f(x¢) '] — 0w = 0 by Stein’s Lemma

0?Ee[Vx, f(x¢)] —o*w! =0
w = E¢[Vy, f(x¢)]

Therefore, the weights w of the interpretable model g converge to SmoothGrad explanations in
expectation. O

A.1.6 Vanilla gradients

Consider the instance of the LFA framework corresponding to SmoothGrad described above (with
loss function as either squared-error loss or gradient-matching loss). As o — 0, this instance of the
LFA framework converges to Vanilla Gradients.

Proof. Starting with the solution for w derived for SmoothGrad, take the limit of w as ¢ — 0.

lim w= hr(IJl Ee[Vx, f(x¢)]

o—0t
— Jim [T xpl6:0,0)de
= lm [onf(xO + &) ne(€) d€ where ¢ (€) = p(§;0,0)

=V f (X()) by property of the Dirac delta distribution

To derive the third line from the second line, we view the Normal density function p(£;0,0) as a
nascent delta function 7¢ (&) (which is defined such that lim,, _, o+ f p(§;0,0) = 6(€), where ¢ is
the Dirac delta distribution) and by assuming that V, f(x¢) has a compact support.

Therefore, the weights w of the interpretable model g converge to Vanilla Gradients explanations.
O

A.1.7 Integrated Gradients

This instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = w ' x, (2) perturbations of the form x¢ = xo ® & where £ (€ R?) ~ Uniform(0, 1),
and (3) loss function as gradient-matching loss given by £y, (f, g,%0,&) = || Ve f(x¢) — Veg()|13
is equivalent to Integrated Gradients. In other words, for the same n perturbations, this instance
of the LFA framework and Integrated Gradients yield the same explanation.

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by
g* = argmingcg L where:

L =Eel(f,9,%0,6)
= E¢||Vef(xe) — Veg(&)II3
= Ee||Vix, f (x¢) © %0 — w3
Note that, by the chain rule, V¢ f(x¢) = Ve f(x0 © &) = Vi, f(x¢) © Vexe = Vi, f(x¢) © Xo.

To derive the solution for w, take the partial derivative of L w.r.t. w, set the partial derivative to zero,
and solve for w.

Vwl =0
—2E; [onf(xd ®x9 — w] =0
w =Xy ® Eg [vxof(xf)]

16

Therefore, the weights w of the interpretable model g converge to Integrated Gradients expla-
nations in expectation. O

A.1.8 Gradient x Input

Consider the instance of the LFA framework corresponding to Integrated Gradients described
above, except with & (€ RY) ~ Uniform(a,1). As a — 1, this instance of the LFA framework
converges to Gradient x Input.

Proof. Asa — 1,& — 1,and w — xo ® Vi, f(xXo). Therefore, the weights w of the interpretable
model g converge to Gradient x Input explanations. O

A.2 Which Explanations Are Not Function Approximations?

In this section, we briefly discuss explanation methods that cannot be viewed as instances of the
LFA framework. In the cases below, the lack of connection to the LFA framework is mainly due to a
property of the explanation method.

Model-independent methods. Some explanation methods are known to produce attributions that are
independent of the model they intend to explain. These methods cannot be cast in the LFA framework
in a meaningful way due to the model recovery conditions we impose. Such model-independent
methods include guided backpropagation [24] and DeconvNet [25]], following theory by Nie et al.
[33]], as well as logit-gradient-based methods [34] such as Grad-CAM [26]], Grad-CAM++ [27]], and
FullGrad [28].

Modified-backpropagation methods. Some explanation methods such as DeepLIFT [9]], guided
backpropagation [24], DeconvNet [25], and layer-wise relevance propagation [35] work by modifying
the backpropagation equations and propagating attributions using finite-difference-like methods.
Such methods violate an important property called “implementation invariance”, first identified
by Sundararajan et al. [[11]], which states that two functionally identical models can have different
attributions due to the lack of a chain rule for modified backpropagation methods. This property
ensures that such methods cannot be function approximators, as the attribution changes based on the
function implementation.

Unsigned-gradient methods. Some gradient-based methods return unsigned attribution values
instead of the full signed values. Such methods can be written in the LFA framework using the
following loss function £(f, g,%0,&) = ||| Ve f(x0 @ &)| — wy||* where w,, consists of the weights
of the interpretable model g. Using this loss function with different choices for neighborhoods gives
unsigned versions of different gradient methods. However, this loss function is not a valid loss
function, i.e.,, { = 0 =5 f = g¢. Using this loss function, w is always positive and thus cannot
recover an underlying model’s negative weights.

A.3 Proof: No Free Lunch Theorem (Section 4)

Theorem. Consider explaining a black-box model [around point x(using an interpretable model
g from model class G and a valid loss function { where the distance between f and G is given by
d(f7 g) = mingeg maXxex e(f? 9, 07 X)

Then, for any explanation g* over a neighbourhood distribution & ~ 21 such that
maxe, U(f,9%,%0,61) < € there always exists another neighbourhood £, ~ Zo such that

maxe, ((f, g%, %0, &2) > d(f,G).

Proof. Given an explanation g*, we can find an "adversarial" input X,4, such that x,q4, =
arg maxxecx £(f, g*,0,%x) has a large error £. Construct perturbation xo = xo + &2 such that
p(§2) = Uniform(0, X4, — Xo), which implies p(x2) = Uniform(xg,Xqq4,). In this proof,
Uniform(a, b) denotes uniformly sampling along the straight line connecting a and b.

By definition maxg, ¢(f,g*, %o, &2)

= g(fvg*7X07Xadv - XO) = INaXxex é(fug*70ax) >
mingEg maXxex g(fagv O,X) = d(f7 g) 0

17

A salient feature of this proof is that it makes no assumptions about the form of model, input or output
domains. This implies that the result applies equally to discrete and continuous domains, regression
and classification tasks, and for any model type.

A.4 Summary of Properties of Existing Explanation Methods

Method ‘ Characteristics of £ ‘ g recovers f? ‘ Scale of g’s weights when X’ € R¢
C-LIME Continuous, Additive When X € R? Gradient
SmoothGrad Continuous, Additive When X € R? Gradient
Vanilla Gradients Continuous, Additive When X € R? Gradient
Integrated Gradients | Continuous, Multiplicative No Gradient x Input
Gradients x Input Continuous, Multiplicative No Gradient x Input
LIME Binary, Multiplicative When X € {0,1}¢ Gradient X Input
KerneISHAP Binary, Multiplicative When X € {0,1}¢ Gradient x Input
Occlusion Binary, Multiplicative When X € {0, 1}¢ Gradient X Input

Table 2: Summary of properties of existing explanation methods in relation to the LFA framework.
In this table, we consider the scale of g’s weights when X' € R

A.5 Setup of Experiments

Datasets. The first dataset is the life expectancy dataset from the Global Health Observatory data
repository of the World Health Organization (WHO) [29]. The WHO dataset consists of demographic,
economic, and health factors of 193 countries from 2000 to 2015, including a country’s population,
gross domestic product, health expenditure, human development index, infant mortality rate, hepatitis
B immunization rate, and life expectancy. The other dataset is the home equity line of credit (HELOC)
dataset from the Explainable Machine Learning Challenge organized by FICO [30]. The HELOC
dataset contains information on HELOC applications made by homeowners, including an applicant’s
installment balance, number of trades, longest delinquency period, and risk category (whether an
applicant made payments without being 90 days overdue). To our knowledge, these datasets do not
contain personally identifiable information or offensive content.

For the WHO dataset, missing values were imputed using kNN imputation with & = 5. For the
HELOC dataset, missing values were dropped. For both datasets, continuous features were mean-
centered and then normalized to [0, 1] range.

Models. For the WHO dataset, we train four models: a linear regression model (train MSE:
9.39 x 1075; test MSE: 9.80 x 10~5) and three feed-forward neural networks. The neural networks
have 8-node hidden layers with tanh activation and a linear output layer. The first neural network has
3 hidden layers (train MSE: 7.83 x 10~%; test MSE: 8.23 x 10~?), the second has 5 hidden layers
(train MSE: 7.76 x 1075; test MSE: 8.11 x 10~°), and the third has 8 hidden layers (train MSE:
7.78 x 1075; test MSE: 8.20 x 107?). The neural networks are referred to as NN1, NN2, and NN3,
respectively.

For the HELOC dataset, we train four models: a logistic regression model (train accuracy: 0.73; test
accuracy: 0.74) and three feed-forward neural networks. The neural networks have 8-node hidden
layers with relu activation and an output layer with sigmoid activation. The first neural network has
3 hidden layers (train accuracy: 0.75; test accuracy: 0.75), the second has 5 hidden layers (train
accuracy: 0.75; test accuracy: 0.75), and the third has 8 hidden layers (train accuracy: 0.75; test
accuracy: 0.75). The neural networks are referred to as NNA, NNB, and NNC, respectively.

Models were trained based on an 80/20 train/test split using stochastic gradient descent. Hyperparame-
ters were selected to reach decent model performance. The emphasis is on generating explanations for
individual model predictions, not on high model performance. Thus, we do not focus on tuning model
hyperparameters. Linear and logistic regression models trained for 100 epochs while neural network
models trained for 300 epochs. All models used a batch size of 64 and a cosine annealing scheduler
for the learning rate. Hyperparameters for all models are included in the code accompanying this

paper.

18

Explanation Methods. Each explanation method is implemented using (1) the existing method
and (2) the LFA framework. For (1), we used Meta’s Captum library [31]. When using Captum,
methods with number of perturbations as a parameter (i.e., LIME, KerneISHAP, SmoothGrad, and
Integrated Gradients) used 1000 perturbations, a number of perturbations at which explanations for
the method converged. For (2), we implemented the LFA framework, instantiating each method based
on Table [I For each method, the number of perturbations is set to 1000 for the same reason above.
The interpretable model g is optimized using stochastic gradient descent. The perturbations are split
into a train and test set (80/20 split) and ¢g* is optimized based on test set performance.

Analyses were performed on GPUs. The total amount of compute is approximately 54 GPU-hours.

A.6 Full Results for Experiments

A.6.1 Experiment 1: Existing Methods Are Instances of the LFA Framework

19

L1 Distance

0.0000 | 0.0000 | 0.0000

Cosine Distance

0.0000

0,0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000
12 035
10
[OYNEILE 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 ‘Occlusion -JEtRY 000 | 0.0000 | 0.0000 | 0.0000 -0.25
3 -08 3
g g
R 0.0000 | 0.0000 | 0.0000 | 0.000 LG 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 020
2 2 Gradients
g -06 F
® Gradient ® Gradient [o1s
0.0000 | 0.0000 | 0.0000 | 0.0000 4 00000 | 0.0000 | 00000 | 00000 | 0.0000 | 03868 | 03868
-04
Vanil Vanil 0.10
Aanilla 0.0000 nilla .3868 | 0.0000
Gradients o Gradients °
02 0.05
SmoothGrad SmoothGrad 0 0.3868
" "y L Yy 0.00
$ 5 Bz Es 2 3 £ & § B2 5 =i %
& 2 &5 38 & ¢ E] F 3 &5 g2 zE o
] 3 g3 55 - £ b 3 g3 BS H £
£ 3 €5 ° 4] H £ 8 £§ © 2§ 8
g - & < - &
Local Function Approximation (LFA) Framework Local Function Approximation (LFA) Framework
L1 Distance Cosine Distance
1.6 05
0.0256 | 0.0937 | 0.0273 [0.0900 . 0.0005 | 0.0005 | 0.0091 | 0.0006 | 0.0069 | 0.5130 | 0.5131
14
KernelSHAP 00872 [RINENYE 0.0008 | 0.0008 | 0.0090 | 0.0005 | 0.0067 | 0.5141 | 0.5142 04
-12
E -1.0 E -03
g Inte ted g Inte ted
Integrate: 0.0280 083¢ 0.0043 .0° Integratec 0.0006 0.000(0.0058 0.5122
3 Imegrated 0.0280 | 0.0836 | 0.0043 | 0.0777 op 3 'egrated RAT 0000 | 0.0 0.512;
“ Gradient 6 “ Gradient [o2
radient 0.1058 | 0.0478 | 0.0846 | 0.0093 - 0.6 St 0.0091 0.0067 | 0.0000 0.5128
x Input X Input
Vanilla 1.6864 0.4 Vanilla
Gradients Gradients 0.1
02
SmoothGrad 1.6204 SmoothGrad
° K o 2 00
K § Iz 5 ¢ F H S § 3z 8% £ 3
] 5 &h g T2 ¢] 5 2 g5 g2 g 2
: % fF 5% %% % I B I
3 EG6 © H 3 Eo © H
Local Function Approximation (LFA) Framework Local Function Approximation (LFA) Framework
L1 Distance Cosine Distance
00192 | 0.0187 | 00767 | 0.0243 | 01057 0.0003 | 0.0003 | 0.0064 | 0.0005 | 0.0030 | 05741 | 05736
16
05
12 o4
0.0000 | 00722 | 0.0575 Occlusion -JELLEES 0.0074 | 0.0060 | 05745
2 2
g Inte ted 0 g Inte ted -03
Integratex 0 0.00 Integrate 0.000 0.002').572! 0.5719
3 Imegrated 00721 | 0.0041 3 'eorated HHY 0.0027 | 0 0.571:
] -08 B
EE® 01192 | 01196 | 0.0640 | 0.1043 Cetl® 0.0038 0.0031 | 0.000(5
X Input 06 X Input 02
NCAUGR 17965 | 1.7967 | 17741 | 17913 0.4 Vanilla 0.5745 | 0.5745 0.0000 | 0.0001
Gradients Gradients
01
0.2
SmoothGrad 16824 01475 SmoothGrad 05744 | 0.5747 715 | 0.0000 | 0.0
- = "y " 00
¢ 5 B £y o2 B % § 3 £y o g ®
E g 85 S8 g [& g 85 82 =z [
g g3 & &8¢ 3 H g g3 &< #EF 3
e H £8 g
£5 I3 H § £5 S H
Local Function Approximation (LFA) Framework Local Function Approximation (LFA) Framework
L1 Distance Cosine Distance
05
- - - B 1.50 7 7 | 0.007" 3; 0.5 "
[GUUELILE 0.0300 | 0.0302 | 0.0857 | 0.0366 | 0.1214 | 1.8612 LSUEEIYE 0.0007 | 0.0007 | 0.0077 | 0.0012 | 0.0035 | 0.5905 | 0.5905
-1.25 - 0.4
Occlusion - 0.0961 | 0.0000 | 0.0835 | 0.0652 | 1.8362 0.0000 0.5912
2 2
g -100 &
= Integrated 0.0045 | 01147 17280 = Integrated | -03
Gradients 2 Gradients
-075 &
RAlaE 01395 | 01396 | 00719 | 01231 | 00099 | 1.8475 | 1.7377 Gradient L] 0.5862 o2
0.50
Vanilla 1.8633 | 1.8376 1.8416 | 0.0060 | 0.2015 Vanilla OEEELY 0.0000
Gradients Gradients
01
0.25
SmoothGrad 1.7297 | 1.7102 0.1937 | 0.0455 0.5861 | 0.0000 | 0.0001
9 o o 5 o 00
H E4 § B2 5% o 3 & 5 Bz 5y 3
3 3 g 52 <) g g 58 9
§ o3 5 & B % 3 5 & H
g8 & g8 &
3 s £8 H § s £5 g
& &

Local Function Approximation (LFA) Framework

Local Function Approximation (LFA) Framework

Figure 4: Correspondence of existing methods to instances of the LFA framework. Experiments
performed on the WHO dataset for linear regression (Row 1), NN1 (Row 2), NN2 (Row 3), and NN3

(Row 4). The similarity of pairs of explanations are measured based on L1 distance (left column) and
cosine distance (right column).

20

1eSproothGrad vs. Vanilla Gradients

SmoothGrad vs. Vanilla Gradients

1.0
0.04
0.8
0.02
8
S o6 s
] 2
k] o 000 {—mm — — — ——
a o
04 g
© —0.02 {
0.2
~0.04
0.0 * * *
0.3 0.2 0.1 0.05 0.01 0.3 0.2 0.1 0.05 0.01
Standard Deviation (o) of Noise (N(0, 02)) Standard Deviation (o) of Noise (N(0, 6?))
for SmoothGrad for SmoothGrad
SmoothGrad vs. Vanilla Gradients SmoothGrad vs. Vanilla Gradients
0.7 -T- L]
0.005 A
0.6
.
05 0.004
o
g 5
204 £ 0.003 1
k] a
a o
o 0.3 £
3 0.002 4 .
. o
0.2
‘
0.001 4
0‘1 i .
0.0 ; —_—— 0.000 “ ; —— e ——
0.3 0.2 0.1 0.05 0.01 0.3 0.2 0.1 0.05 0.01
Standard Deviation (0) of Noise (N(0, 02)) Standard Deviation (0) of Noise (N(0, 02))
for SmoothGrad for SmoothGrad
SmoothGrad vs. Vanilla Gradients SmoothGrad vs. Vanilla Gradients
14 00124 *
12 0.010 4
1.0 °
g E 0.008
E 0.8 k]
& 2 0.006 1
= 0.6 .g
© 0.004 .
0.4
.
0.2 0.002 4 .
0.0 i—-‘-— o.ooo-ii—-‘-——‘——o—
0.3 0.2 0.1 0.05 0.01 0.3 0.2 0.1 0.05 0.01
Standard Deviation (0) of Noise (N(0, 02)) Standard Deviation (0) of Noise (N(0, 02))
for SmoothGrad for SmoothGrad
SmoothGrad vs. Vanilla Gradients SmoothGrad vs. Vanilla Gradients
175 .
0.004
1.50 4
o 00031 ¢
o g
2] ¢
a 200021 o N
= 8
8] ‘)
0.001 M
0.00 1 ; | 0000 “ =L N
0.3 0.2 0.1 0.05 0.01 0.3 0.2 0.1 0.05 0.01
Standard Deviation (o) of Noise (N(0, 02)) Standard Deviation (0) of Noise (N(0, 02))
for SmoothGrad for SmoothGrad

Figure 5: Using the LFA framework, explanations generated by SmoothGrad converge to those
generated by Vanilla Gradients. Experiments performed on the WHO dataset for linear regression
(Row 1), NN1 (Row 2), NN2 (Row 3), and NN3 (Row 4). The similarity of pairs of explanations are
measured based on L1 distance (left column) and cosine distance (right column).

21

Integgated Gradients vs. Gradient x Input Integrated Gradients vs. Gradient x Input

1.0
0.04
0.8
g 0.02
g o6 5
I} @
hed 8 000{—mm — —— — ——
a o
= 04 é
o
—0.02 A
0.2
—0.04 -
0.0
0 050 065 080 095 0 050 065 080 095
Lowerbound (a) of Noise (Uniform(a, 1)) Lowerbound (a) of Noise (Uniform(a, 1))
for Integrated Gradients for Integrated Gradients
Integrated Gradients vs. Gradient x Input Integrated Gradients vs. Gradient x Input
L L]
0.25 N 0.035 N
L
‘ 0.030
0.20
] 0.025 :
o 2
g s .
s @2 0.020
k] a
a o
o § 0015 H
o
0.010 ;
i == i =
0 050 065 080 095 0 050 065 080 095
Lowerbound (a) of Noise (Uniform(a, 1)) Lowerbound (a) of Noise (Uniform(a, 1))
for Integrated Gradients for Integrated Gradients
Integrated Gradients vs. Gradient x Input Integrated Gradients vs. Gradient x Input
040{ .
¢ 0.014 ¢
0.35 . :
¢+
0304 ¢ L
@
o 025 g o010 (]
I s
5]
£ 020 2 o.008
a o
do1s 5 0.006 $
O ¢+
¢+
0.10 0.004
0.00 E=Sm 000 == _,
0 050 065 080 095 0 050 065 080 095
Lowerbound (a) of Noise (Uniform(a, 1)) Lowerbound (a) of Noise (Uniform(a, 1))
for Integrated Gradients for Integrated Gradients
Integrated Gradients vs. Gradient x Input Integrated Gradients vs. Gradient x Input
! 001751 *
0.4) ¢
0.0150 4
'
03 ° 0.0125 4
g 5
< 3§ 001007 ¢
@ a (] t
a o
b 02 £ 00075
o +
o
0.0050 4 ‘
0.1
i - i
0.0 === 00000 i = —
0 050 065 080 095 0 050 065 080 095
Lowerbound (a) of Noise (Uniform(a, 1)) Lowerbound (a) of Noise (Uniform(a, 1))
for Integrated Gradients for Integrated Gradients

Figure 6: Using the LFA framework, explanations generated by Integrated Gradients converge to those
generated by Gradient x Input. Experiments performed on the WHO dataset for linear regression
(Row 1), NN1 (Row 2), NN2 (Row 3), and NN3 (Row 4). The similarity of pairs of explanations are
measured based on L1 distance (left column) and cosine distance (right column).

22

L1 Distance

020
0.0794 25 KernelSHAP -JIUE] 8 2 2
Occlusion 20 Occlusion MOUEE]
- - 015
£ £
g Inte ted g Inte ted
Integrate 0076 0.0 2818 ntegrated {NE 0.00 016
) " 0761 0140 | 02819 RGOS ooo1s | 00014 | 00tes
é é -0.10
Gradient 20 | 0.1589 | 0.2980 | O. 2 R 00014 | 0.0014 | 0.0164
X Input
-10
Vanilla 2 Vanilla
Gradients Gradients 0.05
05
SmoothGrad 0. 0.0501 SmoothGrad ‘E
P o 0 - L P 0.00
K § Pz 5y =2 B H S § Bz §y =2 B
& E s 3k 2 2 = & 3 g 58 ZZ g
g 8 g & 2§ g H 8 £ & 2§ H
g =© & g =0 &
Local Function Approximation (LFA) Framework Local Function Approximation (LFA) Framework
L1 Distance Cosine Distance
05
48883 00120 | 00120 [‘0162 04315
5
0.4
4
[SENELLE 0.7661 Occlusion [XLLON 0.1570 0.4796 | 0.4511
3 3 -03
2 egrated R —
integrated _JRNPS Integrate 3 o
3 'meorated EILH 4.9078 i vy 00535 | 0.0544 0.001:
& & -02
Gradient JUEPED] -2 Gradient VRELN VRIS 0.0876 0.4462
x Input X Input
Vanilla 6 5.0057 | 0.5304 JPXELY AL 05052 | 05045 | 0.4841 | 0.5022 | 0.4481 | 0.0048 | 0.0437
Gradients 1 Gradients. 0.1
£ 5 B £ty 2 ¥ % 5 Be s F] 3
08 §f g s EI S R T
b g g% &= i H T g% &< S8 %
£ 8 €5 ° I3 £ S €85 ° G g
g = g £ H
Local Function Approximation (LFA) Framework Local Function Approximation (LFA) Framework
L1 Distance Cosine Distance
6
5 0.4
KernelSHAP 0.2555 | 0.9379 | 5.5476 KernelSHAP -JRULEET IR EL]
Occlusion -JNEEE] [4 Occlusion ﬁ 04338 L o3
2 2
g g
= Integrated .3 = Integrated
2 Gradients 2 Gradients
3 £ -02
[SEECU® 10219 | 1.0278 | 0.9378 | 0.9811 Gradient URTpYY
X Input 2 X Input
Vanilla 5 5.445 Vanilla [T 5 3
6.0514 9 5.4457 2500 0.4694 0.4517 | 0.0366 | 0.0682
redents n “ 1 Grad'e"ts. . o
SmoothGrad -SEREI SR ZEES . 4.6638 E 2.6758 [NVEEEE ‘SmoothGrad ﬂ 0.4644 | 0.0279 M
y u g ’ 00
o 3 o o w o < 2 = M
ES 5 B gy 2 ® B % H B £y 2 B
I A 5§ 3 sr g gr ¢
g 3 - R - £ F 3 s E% 5% g
g g fE o *§ 3 g g £ ¢ § 3
g £0C © l% g £6 L4 \E
Local Function Approximation (LFA) Framework Local Function Approximation (LFA) Framework
L1 Distance Cosine Distance
0.1711 | 0.1749 98 | 0.3096 | 1.0420 | 5.3741 0.0138 | 0.0142 EUSEY 01049 QUSLYFE 0.4146
5
0.4
KernelSHAP -JUSEFERN IS EET 0.7183 | 0.3364 | 1.0343 | 53988 KernelSHAP -JEUGFERT PZE] LBYETA 0.4267 | 0.3669
4
[OQETEINE 0.7575 | 0.7584 | 0.0001 | 0.6984 | 0.9083 | 5.0923 Occlusion - 01708 01724 0.4714
3 -03
£
Integrated 02977 | 0:6980 | 00541 | 09923 P2 imegrated 01031 RPN 00511
02977 | 0.6980 | 0.05: . : 0
Gradients 2 Gradients
& 02
Gradient { 1.2040 | 1.0702 | 11760 | 0.4117 | 4.5771 2 Gradient _ 91629 | 01633 0.2323 = 0.1603 0.4645
X Input x Input
Vanilla 54173 | 5.6049 | 49487 4.6238 Vanilla_SRTPH) 0.4930 | 0.4586 | 0.4451 (101170
Gradients Gradients [N 0 | 04588 - 01

SmoothGrad - 36189 JUREN

36913 . 38953

e AIE

Local Function Approximation (LFA) Framework

§ Ir &% Z g § Iz =%
H b5 B% H g H £e it
8§ E§ © H £ 8 E§ §
ES g g Ly
&

Cosine Distance

SmoothGrad

e ‘.

Gradient 2
xinpur S
e E.

Local Function Approximation (LFA) Framework

Figure 7: Correspondence of existing methods to instances of the LFA framework. Experiments
performed on the HELOC dataset for logistic regression (Row 1), NNA (Row 2), NNB (Row 3),
and NNC (Row 4). The similarity of pairs of explanations are measured based on L1 distance (left
column) and cosine distance (right column).

23

SmoothGrad vs. Vanilla Gradients

SmoothGrad vs. Vanilla Gradients

2.004 0.0025 N
L]
0.0020 4
L
g
E E 0.0015 A "
I K] L]
3 a
° 2
] -g 0.0010 A ’
© ¢
z L] L
0.0005 A
i ; i H
0.00 —— o.oooo~| -
0.3 0.2 0.1 0.05 0.01 0.3 0.2 0.1 0.05 0.01
Standard Deviation (0) of Noise (N(0, 02)) Standard Deviation (o) of Noise (N(0, 0?))
for SmoothGrad for SmoothGrad
SmoothGrad vs. Vanilla Gradients SmoothGrad vs. Vanilla Gradients
N 0.5 . N
14 " .
12 0.4 +
: .
10 M ¢ 1 . ¢
() o
g 503 N
5 8 $ 2 ' M ¢
2 M . =)
a + o $
- . € 02 '
- 3
4 L] o ‘ .
‘
4 $. ¢+
0.1
2 ; -‘L
o 0.0 —L
0.3 0.2 0.1 0.05 0.01 0.3 0.2 0.1 0.05 0.01
Standard Deviation (0) of Noise (N(0, 02)) Standard Deviation (0) of Noise (N(0, 02))
for SmoothGrad for SmoothGrad
SmoothGrad vs. Vanilla Gradients SmoothGrad vs. Vanilla Gradients
¢ ‘ 10 L] L] L] L] L]
$ ¢
40
08 ¢ . .
*
]
30 . g . . ¢
o 2
I . s 0.6 . "
£ 'y i}
2 + a
a o
321 ¢ $ 5 04
M ¢ S . N
M ¢ Ll .
) ; ; i . ; . |
0 ; ; 0.0 i ———
0.3 0.2 0.1 0.05 0.01 0.3 0.2 0.1 0.05 0.01
Standard Deviation (0) of Noise (N(0, 02)) Standard Deviation (0) of Noise (N(0, 02))
for SmoothGrad for SmoothGrad
SmoothGrad vs. Vanilla Gradients SmoothGrad vs. Vanilla Gradients
¢ 2.00 L
.
2071 .
. . 175
‘ : : .
15 . ‘ 150
o
o [2125
I g
2 il
s H 2
3 10 ¢ | G100 ¢ . 3 . .
a o
p . £ P "
ai . 2 075 . . N ¢
¢ | °© ‘
5 M 0.50 ' ¢ ¢ ¢
L]
L]
0.25
; ; 4 _-L
0 0.00 == ——
0.3 0.2 0.1 0.05 0.01 0.3 0.2 0.1 0.05 0.01
Standard Deviation (o) of Noise (N(0, 02)) Standard Deviation (o) of Noise (N(0, 62))
for SmoothGrad for SmoothGrad

Figure 8: Using the LFA framework, explanations generated by SmoothGrad converge to those
generated by Vanilla Gradients. Experiments performed on the HELOC dataset for logistic regression
(Row 1), NNA (Row 2), NNB (Row 3), and NNC (Row 4). The similarity of pairs of explanations
are measured based on L1 distance (left column) and cosine distance (right column).

24

Integrated Gradients vs. Gradient x Input Integrated Gradients vs. Gradient x Input

$ 00006 { *
0.6
‘ 0.0005 +
05 ¢
[
° ¢ 0.0004 4
g 0.4 5
2 Jcl
I} @
hof a]
'3 0.3 P 0.0003
ba g ¢
02 © 000021 ¢
0.1 0.0001 + , L] L]
== = S
00 ooooomimm A 4§,
0 050 065 080 095 0 050 065 080 095
Lowerbound (a) of Noise (Uniform(a, 1)) Lowerbound (a) of Noise (Uniform(a, 1))
for Integrated Gradients for Integrated Gradients
Integrated Gradients vs. Gradient x Input Integrated Gradients vs. Gradient x Input
251 ¢ 03s{ ¢
L]
20 ¢+ 0.30 ‘
.
‘ . » 0259 .
g
v 15 2 t
< ¢ ! £ 020 i L
o) a . L]
a o ¢
— ¢ £ 015
ai ¢ 2 M
$ | © i U D
‘ 0.10 .
L]
t 0.05 4 ;
0.0 0.00 A ; —‘—
0 0.50 065 080 095 0 050 065 080 095
Lowerbound (a) of Noise (Uniform(a, 1)) Lowerbound (a) of Noise (Uniform(a, 1))
for Integrated Gradients for Integrated Gradients
Integrated Gradients vs. Gradient x Input Integrated Gradients vs. Gradient x Input
. ¢ 10{ ¢ ¢ N t .
+
¢ . .
6 S 0.8
L] ‘ .
5 [¢ 8
g 5 06
2 . o
84 .]
a2 . e
q 2
a3 . € 0.4
o * . ‘e 041 .
5 (] . 3 . .
0.2 *
L]
0 0.0 i 4
0 0.50 0.65 0.80 0.95 0 050 065 0.80 0.95
Lowerbound (a) of Noise (Uniform(a, 1)) L (a) of Noise (Uniform(a, 1))
for Integrated Gradients for Integrated Gradients
Integrated Gradients vs. Gradient x Input Integrated Gradients vs. Gradient x Input
71 104 ¢ . 3
¢ H ' $ ¢ .
6 $ 3) .)
¢ 0.8 . s
51 ¢ . ¢ .
g | 8 o g e .
g4 g™
] i ¢
k) a
8 3 * 2
ja} + 2 0.4 4 ’ .
. o +
2 :)
0.2 H N
1 ; ; : ; :
o 001 == b
0 0.50 0.65 0.80 095 0 050 065 0.80 0.95
Lowerbound (a) of Noise (Uniform(a, 1)) L (a) of Noise (Uniform(a, 1))
for Integrated Gradients for Integrated Gradients

Figure 9: Using the LFA framework, explanations generated by Integrated Gradients converge to
those generated by Gradient x Input. Experiments performed on the HELOC dataset for logistic
regression (Row 1), NNA (Row 2), NNB (Row 3), and NNC (Row 4). The similarity of pairs of
explanations are measured based on L1 distance (left column) and cosine distance (right column).

25

A.6.2 Experiment 2: g’s recovery of f

Weights of g vs. Weights of f Weights of g vs. Weights of f
071 e 0 0 0 0
150 4 06 ¢ 0 0 0 0
1.25 4 2 05
g % 0.5
£ 1004 £ 04
2 a
& 0751 2 03
o £
2 0,501 8 02
0.25 9 0.14
(A D R |
0.00 1 —— 0.0 q
w a c T w0 e ° n w o c T 0 Eu ° n
< £ g e < 2 5 c
] E] BE £ k-] o 2 55 BE £ c5
2 g a8 5% 5 sg 2 3 gs &5 % 8 se
£ 3 £6 8 [£ <} £6 8 5
¢ = & ¢ = &
Explanation Method Explanation Method
Weights of g vs. Weights of fx Input Weights of g vs. Weights of f x Input
0.7 9 . .
1507 0.6 4 ¢ ¢
1.251 o 4
Y g 0.5
§ 1001 £ 04
a
8 075 S 03
- £
S 0,50 4 8 021
0.25 0.1 ' '
0.00 {—4%— —4— —4— 00— ——— —
w o I3 E-3%) 2o o 8 w a c L= ™ ° ¥l
< o < o < =] =4 o
5 i &8 8 22 § <8 s § 0§ BE s E oz
T] 55 o= £ &% T 35 T s £ 5]
2 F} g 5%] S el S 23 &x g]
E <] £6 3 [} £ 3 25 3 [}
2 - & ¢ - &
Explanation Method Explanation Method

Figure 10: Analysis of g’s recovery of f using a linear regression model trained on the WHO dataset.
g’s weights are compared with f’s weights (top row) or f’s weights multiplied by the input (bottom
row) based on L1 distance (left column) or cosine distance (right column).

Weights of g vs. Weights of f Weights of g vs. Weights of f
0.4

20--;****;;

L1 Distance
=
)

snges

Cosine Distance

it
- -

0.0 —— —— ¢
¢ % 5 32 %3 3 £ B 8 ¢ % 5 32 E5 Bs £ 3
2 5 = € 4 2 E] S € €
ES 2 &8t 3 = 5 _ & — ES 2 &8t 93 = 5 _ & —
35 3 Tg g2 95 2w 9g £ 9 & 2 £g 3L 95 5% 28 59
o S 9% fx ¢ ®s S22 B [S P8 Bx £9 ps £2 By
€ g &L 6 SE 55 82 5% € § L££ 6 SE 55 8° &8
g £0 g3 2 g3 B g £0 g3 2 g3 5
&7 23 8% 28 &7 235 5% 28
= = = =
S s S s
Explanation Method Explanation Method
Weights of g vs. Weights of f x Input Weights of g vs. Weights of f x Input

30 9 Y 0.4 4

254

0.3 4
204

0.2 q
10 4 0.1

T

L1 Distance
=
]
Cosine Distance

#
h
[\
[\

0.0 q

UME 4

t

t
Occlusion - l—'-

it

t

Integrated

X Input
Gradients

KernelSHAP -
Occlusion 4
Integrated
Gradients
Gradient
SmoothGrad
(Linearg) 7
Vanilla Gradients
(Linear g)
SmoothGrad
(Logistic g)
Vanilla Gradients
(Logistic g)
KernelSHAP -
Gradient
x Input
SmoothGrad
(Linear g)
Vanilla Gradients
(Linear g)
SmoothGrad
(Logistic g)
Vanilla Gradients
(Logistic g)

Explanation Method Explanation Method

Figure 11: Analysis of ¢’s recovery of f using a logistic regression model trained on the HELOC
dataset. g’s weights are compared with f’s weights (top row) or f’s weights multiplied by the input
(bottom row) based on L1 distance (left column) or cosine distance (right column).

26

A.6.3 Experiment 3: Perturbation Tests

Binary Perturbations Continuous Perturbations
c 012 LIME c 8
2 KernelSHAP 20035 ¥
3 0.10 Occlusion 3 + y 9
I Integrated Gradients & 0.030 ‘ []
2 0.08 Gradient x Input $ 0.025 ¢
2 SmoothGrad 2 +
s Vanilla Gradients k] 4
g 0.06 g 0.020
e e +
1] @ 0.015
£ o0.04 g
a G 0.010
£ 0.02 £
zo 2 0.005
g A E
0.00 & = = = = = =® 0.000
2 4 6 8 10 2 4 6 8 10
k k
Binary Perturbations Continuous Perturbations
c LIME c
5 0.08 S ¥
g KernelSHAP g 005 "] §
° Occlusion 5 f !
2 2
& Integrated Gradients < 0044 r ® ¥
3z 0.06 Gradient x Input Che ¥ 4
g SmoothGrad 2 L]
s Vanilla Gradients % 0.034
9 0.04 g f ¢
5] g
5 $ 0.024
£ £
2 0.02 A
=1 20014 ¢
s é 35
2 L 2
3 N a & ¢]
<ooo{ & & & @& & A @ < 0.00
2 4 6 8 10 2 4 6 8 10
k k
Binary Perturbations Continuous Perturbations
< LIME < 0.06 ' o
£ 008 KernelSHAP - } [
E Occlusion g 0.05 L] +)
& Integrated Gradients & [] i ¢
2 0.06 Gradient x Input 2 0.04 #
2 SmoothGrad 2 |
5 Vanilla Gradients 5 1
8 0.04 g 0037 §
So. € $
o o
g _51;’ 0.02 /)
S 0.02 S
5 So0014 ¢
s s
K a B8 8
<ooo{a & m a a a = = ® < 0.00
2 4 6 8 10 2 4 6 8 10
k k
Binary Perturbations Continuous Perturbations
0.06
c LIME c
0.06
£ KernelSHAP 2 ' ¥ ¥
S 0.05 . g ¥
° Occlusion k=1
g) 8 0.05 ¥
a Integrated Gradients a f
T o.04 Gradient x Input 3 Y 1
g SmoothGrad 2004 ¢ y
6 0.03 Vanilla Gradients S5
] 300379 #
e e
o L
g 002 £ 0.02
o o
] -1
5 0.01 2 0.01
2 [] 2
3 . a 3
<o00]{ & m & & s @8 ® < 0.004
2 4 6 8 10 2 4 6 8 10
k k

Figure 12: Perturbation tests based on bottom-k features using binary noise (left column) or continu-
ous noise (right column) performed on the WHO dataset for linear regression (Row 1), NN1 (Row 2),
NN2 (Row 3), and NN3 (Row 4). The lower the curve, the better a method identifies unimportant
features. (Note: Row 2 is a duplicate of Figure|3).

27

0.04

0.03

0.02

0.01

Absolute Difference of Model Prediction

0.00

0.12

0.10

0.08

0.06

0.04

0.02

Absolute Difference of Model Prediction

0.00

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

Absolute Difference of Model Prediction

0.00

0.12

0.10

0.08

0.06

0.04

0.02

Absolute Difference of Model Prediction

0.00

Binary Perturbations

Continuous Perturbations

LIME c ¢
2 0.04 4
KernelSHAP g [
Occlusion 5
L
Integrated Gradients a 'y .
Gradient x Input 2003 ¥
Smt?othGradv 2 |]
Vanilla Gradients * 5 (]
o ¥
© 0.02 4 s
e Y
o
k]
H £
a
¢ 0.01
A El
o <
E = = 0.00
2 4 6 8 10 4 6 8 10
k k
Binary Perturbations Continuous Perturbations
LIME c
2
KernelSHAP £ 0.08 1 + + *
Occlusion K ? + 1
Integrated Gradients & } {'
Gradient x Input o}
0.06]
SmoothGrad 2 ¥
Vanilla Gradients 5
@
£0.044
'\ o
¥ E
4 t a
é ¢ 2 0.02
2
é ¢ <
]] L 0.00 A
2 4 6 8 10 4 6 8 10
k k
Binary Perturbations Continuous Perturbations
LIME s
KernelSHAP £ 0.081 ¥ + 1
Occlusion 3 b + * f
Integrated Gradients & ¥ ¥
Gradient x Input 3 0.06 ¥
SmoothGrad 2
Vanilla Gradients 5
v
2 0.04 1 i
I
£
) s}
. 2 0.02
4 2
2 ¢ 2
S ! . 2
0.00
2 4 6 8 10 4 6 8 10
k k
Binary Perturbations Continuous Perturbations
LIME s 0.07 |
KernelSHAP i + f
Occlusion S 0.06 | | f * *
Integrated Gradients & 4 L] L ¢
Gradient x Input Q 0.05 f 4
SmoothGrad 2
Vanilla Gradients ‘s 0.04
g 4
003 |
£
¢ 8 0.02
4 t 2
. 4 # ¢ 2
i 3 0.01
: £
Py x
L : : : 0.00 : : , ,
2 4 6 8 10 4 6 8 10
k k

Figure 13: Perturbation tests based on bottom-k£ features using binary noise (left column) or contin-
uous noise (right column) performed on the HELOC dataset for logistic regression (Row 1), NNA
(Row 2), NNB (Row 3), and NNC (Row 4). The lower the curve, the better a method identifies
unimportant features.

28

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Absolute Difference of Model Prediction

0.00

0.30

0.25

0.20

0.15

0.10

0.05

Absolute Difference of Model Prediction

0.00

0.30

0.25

0.20

0.15

0.10

0.05

Absolute Difference of Model Prediction

0.30

0.25

0.20

0.15

0.10

0.05

Absolute Difference of Model Prediction

Figure 14: Perturbation tests based on top-k features using binary noise (left column) or continuous
noise (right column) performed on the WHO dataset for linear regression (Row 1), NN1 (Row 2),
NN2 (Row 3), and NN3 (Row 4). The higher the curve, the better a method identifies important

features.

Binary Perturbations

Continuous Perturbations

0.055
c
LR R AR
[S 0.050 4
* 3
a
3 0.045
°
<3
=
' 0.040 1 "
@
LIME 2 . 4 *
KernelSHAP g 0.035 .
Occlusion £ 'y
i a
Integ.rated Gradients 2 0.030 |
Gradient x Input =]
SmoothGrad E
Vanilla Gradients < 0025
4 6 8 10 4 6 8 10
k k
Binary Perturbations Continuous Perturbations
£ 0.07
bbb bbb
<
t g
8 £ 0.06 |
’ 3
°
o
Z 0.051
S
@
;IME ISHAP 5 []
erne
o 0.04
Occlusion £ [¥ . ’
Integrated Gradients ‘3 ']
Gradient x Input _g 0.034
SmoothGrad 2
Vanilla Gradients <
4 6 8 10 4 6 8 10
k k

Binary Perturbations

Continuous Perturbations

R
§*+

0.07

0.06 1

0.05

Absolute Difference of Model Prediction

LIME +
KernelSHAP
Occlusion 0.04 P ob [} '
Integrated Gradients []
Gradient x Input 0.03
SmoothGrad
Vanilla Gradients
0.02
4 6 8 10 4 6 8 10
k k
Binary Perturbations Continuous Perturbations
0.08
T ETIE
$ Soo07
2o
' g
’ &
Z 0.06
3
=
Pt
©0.05
LIME g
KernelSHAP @ ’ +
Occlusion %’ 0.04 * * +
Integrated Gradients e ¥
Gradient x Input 50.03
SmoothGrad ﬁ
Vanilla Gradients < 0.02
4 6 8 10 4 6 8 10
k k

29

0.400

Absolute Difference of Model Prediction

0.40

0.35

0.30

0.25

0.20

0.15

0.10

Absolute Difference of Model Prediction

0.05

0.40

0.35

0.30

0.25

0.20

0.15

0.10

Absolute Difference of Model Prediction

0.05

0.40

0.35

0.30

0.25

0.20

0.15

Absolute Difference of Model Prediction

0.10

Figure 15: Perturbation tests based on top-k features using binary noise (left column) or continuous
noise (right column) performed on the HELOC dataset for logistic regression (Row 1), NNA (Row
2), NNB (Row 3), and NNC (Row 4). The higher the curve, the better a method identifies important

features.

Binary Perturbations

Continuous Perturbations

0.085
| | g
= 0.080 A
©
} s 8 0 5
2 0.0754
a
ko)
3 0.070 A + + #
: ¥
5 0065 1 ;]
LIME 9
KernelSHAP § 0:0601
X]
Occlusion £ 0.055 4
Integrated Gradients 3
Gradient x Input 5 0.0501
SmoothGrad E
Vanilla Gradients <0045

6
k

8 10

Binary Perturbations

o
®

Continuous Perturbations

10

5 012
k=]
L
* < 0.10
O
°
S
g g 4!
%5 0.08 3’
LIME 4 4]
KernelSHAP 2 .06
5 0.
Occlusion £
Integrated Gradients ‘3
Gradient x Input 5 0.044
SmoothGrad 2
Vanilla Gradients <
0.02
2 4 6 8 10 6 8 10
k k
Binary Perturbations Continuous Perturbations
.5 0.12
+ g
SERRERNEIS
+ ! & 0104
3
s L
% 0.8+ ¥ ¥ Y
LIME I & X
KernelSHAP g 0.06 4
Occlusion £
Integrated Gradients a
Gradient x Input 50.041
SmoothGrad g
Vanilla Gradients <
0.02
2 4 6 8 10 6 8 10
k k
Binary Perturbations Continuous Perturbations
0.11

LIME

KernelSHAP
Occlusion
Integrated Gradients
Gradient x Input
SmoothGrad

Vanilla Gradients

0.10

0.09 A

0.08

0.07

0.06

Absolute Difference of Model Prediction

8 10

30

o
©

10

	Introduction
	Related Work
	Explanation as Local Function Approximation
	LFA with Continuous Noise: Gradient-Based Explanation Methods
	LFA with Binary Noise: LIME, KernelSHAP and Occlusion maps
	Which Methods Do Not Perform LFA?

	When Do Explanations Perform Model Recovery?
	No Free Lunch Theorem for Explanation Methods
	Characterizing Explanation Methods via Model Recovery
	Designing Novel Explanations with LFA

	Empirical Evaluation
	Datasets, Models, and Metrics
	Experiments

	Conclusions and Future Work
	Appendix
	Proofs: Existing Methods are Instances of the LFA Framework (Section 3)
	LIME
	KernelSHAP
	Occlusion
	C-LIME
	SmoothGrad
	Vanilla gradients
	Integrated Gradients
	Gradient Input

	Which Explanations Are Not Function Approximations?
	Proof: No Free Lunch Theorem (Section 4)
	Summary of Properties of Existing Explanation Methods
	Setup of Experiments
	Full Results for Experiments
	Experiment 1: Existing Methods Are Instances of the LFA Framework
	Experiment 2: g's recovery of f
	Experiment 3: Perturbation Tests

