A Appendix

A.1 Proofs: Existing Methods are Instances of the LFA Framework (Section [3)
A.l.1 LIME

The instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = w %, (2) perturbations of the form x¢ = x¢ ® & where & (€ {0, 1}4) ~ my, with 7,
being the exponential kernel (defined below), and (3) loss function as squared-error loss given by
U(f,g,%0,&) = (f(xe) — g(€))? is equivalent to LIME.

As defined in [4] (Section 3.4), the exponential kernel 7y, (§) exp{—%} with distance
function D (such as cosine distance or L2 distance) and width o.

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by:

g =argmin E £(f,9,%0,§)
geEG  &E~Txg

=argmin E [£(f, g,Xo0,&) - Tx,(&)] where p is the Bernouilli(0.5) distribution
geg &~p
Through importance sampling using a Bernouilli(0.5) proposal distribution (i.e., a Uniform(0,1)
distribution over the space of binary inputs), the optimization setting of the LFA framework is that
described for LIME by Ribeiro et al. [4] (Equations 1 and 2). O

A.1.2 KernelSHAP

The instance of the LFA framework with (1) interpretable model class G as the class of linear models

where g(x) = w 'x, (2) perturbations of the form x¢ = x¢ ® & where £ (€ {0,1}9) ~ 7 with

7 being the Shapley kernel (defined below), and (3) loss function as squared-error loss given by

U(f,9,%0,&) = (f(x¢) — g(£))? is equivalent to KernelSHAP.

As defined in [6] (Theorem 2), the Shapley kernel 7(£) o % where M is the total number
Y e (M—

of elements in £ and k is the number of ones in £.

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by:
g* = argmin E f(f7 g, Xo, 6)
9geg

E~vm

=argmin E [£(f,g,Xo0,&) - 7(§)] where p is the Bernouilli(0.5) distribution
geg  &~p
Through importance sampling using a Bernouilli(0.5) proposal distribution (i.e., a Uniform(0,1)
distribution over the space of binary inputs), the optimization setting of the LFA framework is that
described for KernelSHAP by Lundberg and Lee [[6] (Equation 2 and Theorem 2). O

A.1.3 Occlusion

The instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = wx, (2) perturbations of the form x¢ = xo ® & where £ (€ {0,1}%) is a random
one-hot vector, and (3) loss function as squared-error loss given by /(f, g,%0,&) = (Af — g(£))?
where Af = f(x0) — f(x0(1 — &)) converges to Occlusion.

Proof. This instance of the LFA framework optimizes g(&) to approximate A f. For &; (a one-hot
vector with element ¢ equal to 1), g(§;) = w; and Af; is the difference in the model prediction
when feature 7 takes the original value versus when feature i is set to zero. A f is the definition of
explanations generated by Occlusion. Thus, in this instance of the LFA framework, the weights of
g recover the explanations of Occlusion. O
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Al14 C-LIME

The instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = w ' x, (2) perturbations of the form x¢ = x¢ + £ where £ (€ R?) ~ Normal(0, 02),
and (3) loss function as squared-error loss given by £(f, g,%0,&) = (f(x¢) — g(£))? is equivalent to
C-LIME.

Proof. This instance of the LFA framework is equivalent to C-LIME by definition of C-LIME. O

A.1.5 SmoothGrad

In this section, we provide two derivations showing the connection between the LFA framework and
SmoothGrad. When using gradient-matching loss, the instance of the LFA framework is exactly
equivalent to SmoothGrad given the same n perturbations. When using squared-error loss, the
instance of the LFA framework is equivalent to SmoothGrad asymptotically for a large number of
perturbations.

Gradient-matching loss function

This instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = w x, (2) perturbations of the form x¢ = xo + & where & (€ R?) ~ Normal(0, 02),
and (3) loss function as gradient-matching loss given by £y, (f, g,%0,&) = || Ve f(x¢) — Veg(€)|13
is equivalent to SmoothGrad. In other words, for the same n perturbations, this instance of the LFA
framework and SmoothGrad yield the same explanation.

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by
g* = argmingcg L where:

L= Efg(fmgax(%g)
_ % S IVef(xe) = Veg(€)]3

1 2
2 2 1V ) = wl

To derive the solution for w, take the partial derivative of L w.r.t. w, set the partial derivative to zero,
and solve for w.

Vwl =0= (—2)%Z[Vx(}f(x5) —w]j=0=>w= %vaOf(Xg)

n n

Therefore, for the same n perturbations, the weights w of the interpretable model g are equivalent to
the SmoothGrad explanations. O

Squared-error loss function

Consider the instance of the LFA framework corresponding to SmoothGrad described above, except
with loss function as squared-error loss given by £(f, g, %o, &) = (f(x¢) — g(£))?. This instance of
the LFA framework converges to SmoothGrad in expectation. Note that this instance of the LFA
framework is C-LIME and its convergence to SmoothGrad in expectation is consistent with the results
of [5] which previously proved the same convergence (using a different approach).

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by
g* = argmin g L where:

L =Eel(f, 9,%0,€)
= Ee[(f(x¢) = 9(&))’]
= Ee[(f(x¢) - w'€)?)

To derive the solution for w, take the partial derivative of L w.r.t. w, set the partial derivative to zero,
and solve for w.
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Vwl =0

—2B¢[(f(x¢) —w' €] =0
Eelf(xe)é" —w'&€']=0
Eelf(xe)¢"] —w E[EET] =0

o°E¢ [V f(x¢) '] — 0w = 0 by Stein’s Lemma

0?Ee[Vx, f(x¢) ] —o*w! =0
w = E¢[Vy, f(x¢)]

Therefore, the weights w of the interpretable model g converge to SmoothGrad explanations in
expectation. O

A.1.6 Vanilla gradients

Consider the instance of the LFA framework corresponding to SmoothGrad described above (with
loss function as either squared-error loss or gradient-matching loss). As o — 0, this instance of the
LFA framework converges to Vanilla Gradients.

Proof. Starting with the solution for w derived for SmoothGrad, take the limit of w as ¢ — 0.

lim w= hr(IJl Ee[Vx, f(x¢)]

o—0t
— Jim [ T xpl6:0,0)de
= lm [ onf(xO + &) ne(€) d€ where ¢ (€) = p(§;0,0)

=V f (X()) by property of the Dirac delta distribution

To derive the third line from the second line, we view the Normal density function p(£;0,0) as a
nascent delta function 7¢ (&) (which is defined such that lim,, _, o+ f p(§;0,0) = 6(€), where ¢ is
the Dirac delta distribution) and by assuming that V, f(x¢) has a compact support.

Therefore, the weights w of the interpretable model g converge to Vanilla Gradients explanations.
O

A.1.7 Integrated Gradients

This instance of the LFA framework with (1) interpretable model class G as the class of linear models
where g(x) = w ' x, (2) perturbations of the form x¢ = xo ® & where £ (€ R?) ~ Uniform(0, 1),
and (3) loss function as gradient-matching loss given by £y, (f, g,%0,&) = || Ve f(x¢) — Veg()|13
is equivalent to Integrated Gradients. In other words, for the same n perturbations, this instance
of the LFA framework and Integrated Gradients yield the same explanation.

Proof. For this instance of the LFA framework, by definition, the interpretable model g is given by
g* = argmingcg L where:

L =Eel(f,9,%0,6)
= E¢||Vef(xe) — Veg(&)II3
= Ee||Vix, f (x¢) © %0 — w3
Note that, by the chain rule, V¢ f(x¢) = Ve f(x0 © &) = Vi, f(x¢) © Vexe = Vi, f(x¢) © Xo.

To derive the solution for w, take the partial derivative of L w.r.t. w, set the partial derivative to zero,
and solve for w.

Vwl =0
—2E; [onf(xd ®x9 — w] =0
w =Xy ® Eg [vxof(xf)]
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Therefore, the weights w of the interpretable model g converge to Integrated Gradients expla-
nations in expectation. O

A.1.8 Gradient x Input

Consider the instance of the LFA framework corresponding to Integrated Gradients described
above, except with & (€ RY) ~ Uniform(a,1). As a — 1, this instance of the LFA framework
converges to Gradient x Input.

Proof. Asa — 1,& — 1,and w — xo ® Vi, f(xXo). Therefore, the weights w of the interpretable
model g converge to Gradient x Input explanations. O

A.2  Which Explanations Are Not Function Approximations?

In this section, we briefly discuss explanation methods that cannot be viewed as instances of the
LFA framework. In the cases below, the lack of connection to the LFA framework is mainly due to a
property of the explanation method.

Model-independent methods. Some explanation methods are known to produce attributions that are
independent of the model they intend to explain. These methods cannot be cast in the LFA framework
in a meaningful way due to the model recovery conditions we impose. Such model-independent
methods include guided backpropagation [24] and DeconvNet [25]], following theory by Nie et al.
[33]], as well as logit-gradient-based methods [34] such as Grad-CAM [26]], Grad-CAM++ [27]], and
FullGrad [28].

Modified-backpropagation methods. Some explanation methods such as DeepLIFT [9]], guided
backpropagation [24], DeconvNet [25], and layer-wise relevance propagation [35] work by modifying
the backpropagation equations and propagating attributions using finite-difference-like methods.
Such methods violate an important property called “implementation invariance”, first identified
by Sundararajan et al. [[11]], which states that two functionally identical models can have different
attributions due to the lack of a chain rule for modified backpropagation methods. This property
ensures that such methods cannot be function approximators, as the attribution changes based on the
function implementation.

Unsigned-gradient methods. Some gradient-based methods return unsigned attribution values
instead of the full signed values. Such methods can be written in the LFA framework using the
following loss function £(f, g,%0,&) = ||| Ve f(x0 @ &)| — wy||* where w,, consists of the weights
of the interpretable model g. Using this loss function with different choices for neighborhoods gives
unsigned versions of different gradient methods. However, this loss function is not a valid loss
function, i.e.,, { = 0 =5 f = g¢. Using this loss function, w is always positive and thus cannot
recover an underlying model’s negative weights.

A.3  Proof: No Free Lunch Theorem (Section 4)

Theorem. Consider explaining a black-box model [ around point x( using an interpretable model
g from model class G and a valid loss function { where the distance between f and G is given by
d(f7 g) = mingeg maXxex e(f? 9, 07 X)

Then, for any explanation g* over a neighbourhood distribution &  ~ 21 such that
maxe, U(f,9%,%0,61) < € there always exists another neighbourhood £, ~ Zo such that

maxe, ((f, g%, %0, &2) > d(f,G).

Proof. Given an explanation g*, we can find an "adversarial" input X,4, such that x,q4, =
arg maxxecx £(f, g*,0,%x) has a large error £. Construct perturbation xo = xo + &2 such that
p(§2) = Uniform(0, X4, — Xo), which implies p(x2) = Uniform(xg,Xqq4,). In this proof,
Uniform(a, b) denotes uniformly sampling along the straight line connecting a and b.

By definition maxg, ¢(f,g*, %o, &2)

= g(fvg*7X07Xadv - XO) = INaXxex é(fug*70ax) >
mingEg maXxex g(fagv O,X) = d(f7 g) 0
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A salient feature of this proof is that it makes no assumptions about the form of model, input or output
domains. This implies that the result applies equally to discrete and continuous domains, regression
and classification tasks, and for any model type.

A.4 Summary of Properties of Existing Explanation Methods

Method ‘ Characteristics of £ ‘ g recovers f? ‘ Scale of g’s weights when X’ € R¢
C-LIME Continuous, Additive When X € R? Gradient
SmoothGrad Continuous, Additive When X € R? Gradient
Vanilla Gradients Continuous, Additive When X € R? Gradient
Integrated Gradients | Continuous, Multiplicative No Gradient x Input
Gradients x Input Continuous, Multiplicative No Gradient x Input
LIME Binary, Multiplicative When X € {0,1}¢ Gradient X Input
KerneISHAP Binary, Multiplicative When X € {0,1}¢ Gradient x Input
Occlusion Binary, Multiplicative When X € {0, 1}¢ Gradient X Input

Table 2: Summary of properties of existing explanation methods in relation to the LFA framework.
In this table, we consider the scale of g’s weights when X' € R

A.5 Setup of Experiments

Datasets. The first dataset is the life expectancy dataset from the Global Health Observatory data
repository of the World Health Organization (WHO) [29]. The WHO dataset consists of demographic,
economic, and health factors of 193 countries from 2000 to 2015, including a country’s population,
gross domestic product, health expenditure, human development index, infant mortality rate, hepatitis
B immunization rate, and life expectancy. The other dataset is the home equity line of credit (HELOC)
dataset from the Explainable Machine Learning Challenge organized by FICO [30]. The HELOC
dataset contains information on HELOC applications made by homeowners, including an applicant’s
installment balance, number of trades, longest delinquency period, and risk category (whether an
applicant made payments without being 90 days overdue). To our knowledge, these datasets do not
contain personally identifiable information or offensive content.

For the WHO dataset, missing values were imputed using kNN imputation with & = 5. For the
HELOC dataset, missing values were dropped. For both datasets, continuous features were mean-
centered and then normalized to [0, 1] range.

Models. For the WHO dataset, we train four models: a linear regression model (train MSE:
9.39 x 1075; test MSE: 9.80 x 10~5) and three feed-forward neural networks. The neural networks
have 8-node hidden layers with tanh activation and a linear output layer. The first neural network has
3 hidden layers (train MSE: 7.83 x 10~%; test MSE: 8.23 x 10~?), the second has 5 hidden layers
(train MSE: 7.76 x 1075; test MSE: 8.11 x 10~°), and the third has 8 hidden layers (train MSE:
7.78 x 1075; test MSE: 8.20 x 107?). The neural networks are referred to as NN1, NN2, and NN3,
respectively.

For the HELOC dataset, we train four models: a logistic regression model (train accuracy: 0.73; test
accuracy: 0.74) and three feed-forward neural networks. The neural networks have 8-node hidden
layers with relu activation and an output layer with sigmoid activation. The first neural network has
3 hidden layers (train accuracy: 0.75; test accuracy: 0.75), the second has 5 hidden layers (train
accuracy: 0.75; test accuracy: 0.75), and the third has 8 hidden layers (train accuracy: 0.75; test
accuracy: 0.75). The neural networks are referred to as NNA, NNB, and NNC, respectively.

Models were trained based on an 80/20 train/test split using stochastic gradient descent. Hyperparame-
ters were selected to reach decent model performance. The emphasis is on generating explanations for
individual model predictions, not on high model performance. Thus, we do not focus on tuning model
hyperparameters. Linear and logistic regression models trained for 100 epochs while neural network
models trained for 300 epochs. All models used a batch size of 64 and a cosine annealing scheduler
for the learning rate. Hyperparameters for all models are included in the code accompanying this

paper.
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Explanation Methods. Each explanation method is implemented using (1) the existing method
and (2) the LFA framework. For (1), we used Meta’s Captum library [31]. When using Captum,
methods with number of perturbations as a parameter (i.e., LIME, KerneISHAP, SmoothGrad, and
Integrated Gradients) used 1000 perturbations, a number of perturbations at which explanations for
the method converged. For (2), we implemented the LFA framework, instantiating each method based
on Table [I For each method, the number of perturbations is set to 1000 for the same reason above.
The interpretable model g is optimized using stochastic gradient descent. The perturbations are split
into a train and test set (80/20 split) and ¢g* is optimized based on test set performance.

Analyses were performed on GPUs. The total amount of compute is approximately 54 GPU-hours.

A.6 Full Results for Experiments

A.6.1 Experiment 1: Existing Methods Are Instances of the LFA Framework
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Figure 4: Correspondence of existing methods to instances of the LFA framework. Experiments
performed on the WHO dataset for linear regression (Row 1), NN1 (Row 2), NN2 (Row 3), and NN3

(Row 4). The similarity of pairs of explanations are measured based on L1 distance (left column) and
cosine distance (right column).
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Figure 5: Using the LFA framework, explanations generated by SmoothGrad converge to those
generated by Vanilla Gradients. Experiments performed on the WHO dataset for linear regression
(Row 1), NN1 (Row 2), NN2 (Row 3), and NN3 (Row 4). The similarity of pairs of explanations are
measured based on L1 distance (left column) and cosine distance (right column).
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Figure 6: Using the LFA framework, explanations generated by Integrated Gradients converge to those
generated by Gradient x Input. Experiments performed on the WHO dataset for linear regression
(Row 1), NN1 (Row 2), NN2 (Row 3), and NN3 (Row 4). The similarity of pairs of explanations are
measured based on L1 distance (left column) and cosine distance (right column).
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Figure 7: Correspondence of existing methods to instances of the LFA framework. Experiments
performed on the HELOC dataset for logistic regression (Row 1), NNA (Row 2), NNB (Row 3),
and NNC (Row 4). The similarity of pairs of explanations are measured based on L1 distance (left
column) and cosine distance (right column).
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Figure 8: Using the LFA framework, explanations generated by SmoothGrad converge to those
generated by Vanilla Gradients. Experiments performed on the HELOC dataset for logistic regression
(Row 1), NNA (Row 2), NNB (Row 3), and NNC (Row 4). The similarity of pairs of explanations
are measured based on L1 distance (left column) and cosine distance (right column).
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Figure 9: Using the LFA framework, explanations generated by Integrated Gradients converge to
those generated by Gradient x Input. Experiments performed on the HELOC dataset for logistic
regression (Row 1), NNA (Row 2), NNB (Row 3), and NNC (Row 4). The similarity of pairs of
explanations are measured based on L1 distance (left column) and cosine distance (right column).
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A.6.2 Experiment 2: g’s recovery of f
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Figure 10: Analysis of g’s recovery of f using a linear regression model trained on the WHO dataset.
g’s weights are compared with f’s weights (top row) or f’s weights multiplied by the input (bottom
row) based on L1 distance (left column) or cosine distance (right column).
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A.6.3 Experiment 3: Perturbation Tests
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Figure 12: Perturbation tests based on bottom-k features using binary noise (left column) or continu-
ous noise (right column) performed on the WHO dataset for linear regression (Row 1), NN1 (Row 2),
NN2 (Row 3), and NN3 (Row 4). The lower the curve, the better a method identifies unimportant
features. (Note: Row 2 is a duplicate of Figure|3).
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Figure 13: Perturbation tests based on bottom-k£ features using binary noise (left column) or contin-
uous noise (right column) performed on the HELOC dataset for logistic regression (Row 1), NNA
(Row 2), NNB (Row 3), and NNC (Row 4). The lower the curve, the better a method identifies
unimportant features.
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Figure 14: Perturbation tests based on top-k features using binary noise (left column) or continuous
noise (right column) performed on the WHO dataset for linear regression (Row 1), NN1 (Row 2),
NN2 (Row 3), and NN3 (Row 4). The higher the curve, the better a method identifies important

features.
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Figure 15: Perturbation tests based on top-k features using binary noise (left column) or continuous
noise (right column) performed on the HELOC dataset for logistic regression (Row 1), NNA (Row
2), NNB (Row 3), and NNC (Row 4). The higher the curve, the better a method identifies important

features.
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