
A Proofs

A.1 Proof of Theorem 4.1

Proof. Without loss of generality, assume ef
⇤
= dP/dQ. Then we have

VarQ[e
f⇤
] = EQ

"✓
dP

dQ

◆2
#
�
✓
EQ

dP

dQ

�◆2

= EP

dP

dQ

�
� 1, (8)

since EQ[dP/dQ] = 1. Then the variance of n i.i.d random variable gives us

VarQ

h
EQn [e

f⇤
]
i
=

Var[ef
⇤
]

n
! 0 as n ! 1

For a sequence of random variable Xn defined with respect to distribution Q, and assume we have
limn!1 Xn = E[X], then the following comes from the delta method:

lim
n!1

n · VarQ[f(Xn)] = (f 0(E[X]))2 · VarQ[X]. (9)

Thus, by applying f(t) = t� and EQ[dP/dQ] = 1 gives us

lim
n!1

n · VarQ[EQn [e
�f⇤

]] = �2 · VarQ[ef
⇤
]

= �2(EP [dP/dQ]� 1)

� e�
2EP [log(dP/dQ)] � �2

= e�
2DKL(PkQ) � �2,

(10)

where the last two equations are from Jensen’s inequality and the definition of KL divergence. Now,
by applying f(x) = log x in (9) , we have

lim
n!1

n · VarQ[logEQn [e
�f⇤

]] = lim
n!1

n · VarQ[EQn [e
�f⇤

]]

(EQn [e
�f⇤])2

= lim
n!1

n · VarQ[EQn [e
�f⇤

]]

e2�(��1)R�(PkQ)

� e�
2DKL(PkQ) � �2

e2�(��1)R�(PkQ)

from the definition of Rényi divergence and (10). Thus, we have the following:

lim
n!1

n · Var[Im,n
Renyi[e

f⇤
]] � lim

n!1
n · Var[logEQn [e

f⇤
]] � e�

2DKL(PkQ) � �2

e2�(��1)R�(PkQ)
.

A.2 Proof of Theorem 4.2

To prove Theorem 4.2, we first state following Lemma.

Lemma A.1. (Proposition 1 & 2 in [24]) Given positive integers n � 1 and m � 2, and for any
collection of positive random variables {Xi}ni=1 and {Yi,j}Kj=1 for each i = 1, . . . , n such that
Xi, Yi,1, . . . , Yi,K are exchangeable. Then for any ↵ 2 (0, 2

K+1], the following inequality holds:

E
"
1

n

nX

i=1

Xi

↵Xi +
1�↵
K

PK
i=1 Yi,j

#
 1

↵(K + 1)

Also, for any ↵ 2
h

1
K+1 ,

1
2

i
, the following inequality holds:

E
"
1

n

nX

i=1

Xi

↵Xi +
1�↵
K

PK
i=1 Yi,j

#
 1

16

Proof of Theorem 4.2. First, remark that the DV bound of ↵-skew KL divergence admits following:

D(↵)
KL (P kQ) = sup

f2F
EP [f]� log

�
↵EP [e

f] + (1� ↵)EQ[e
f]
�
. (11)

Then, note that I(↵)CPC (f) satisfies following:

I(↵)CPC (f) = E(x,y)⇠PX,Y , yi⇠PY ,i=1,...,K

"
log

ef(x,y)

↵ef(x,y) + 1�↵
K

PK
i=1 e

f(x,yi)

#

= E(x,y)⇠PX,Y
[f(x, y)]� E(x,y)⇠PX,Y , yi⇠PY ,i=1,...,K

"
log

↵ef(x,y) +

1� ↵

K

KX

i=1

ef(x,yi)

!#

� EPX,Y [f(x, y)]� log
⇣
↵EPX,Y [e

f(x,y)] + (1� ↵)EPXPY [e
f(x,y)]

⌘
,

(12)

where the last inequality comes from the Jensen’s inequality that �E[logX] � � logE[X]. Then
since (12) holds for all f 2 F , we have

sup
f2F

I(↵)CPC (f) � sup
f2F

EPX,Y [f(x, y)]� log
⇣
↵EPX,Y [e

f(x,y)] + (1� ↵)EPXPY [e
f(x,y)]

⌘
= D(↵)

KL (PX,Y kPXPY) .

Also, KL divergence also admits following variational form as known as NWJ objective [79]:

DKL(P kQ) = sup
g2F

EP [g] + 1� EQ[e
g].

Then by taking g(x, y) = log ef(x,y)

↵ef(x,y)+ 1�↵
K

PK
i=1 ef(x,yi)

for some sampled negatives yi ⇠ PY , i =

1, . . . ,K, in NWJ objective, we have following:

D(↵)
KL (PX,Y kPXPY) � Eyi⇠PY ,i=1,...,K

EPX,Y

log

ef(x,y)

↵ef(x,y) + 1�↵
K

PK
i=1 e

f(x,yi)

�
+ 1

� ↵EPX,Y

ef(x,y)

↵ef(x,y) + 1�↵
K

PK
i=1 e

f(x,yi)

�

� (1� ↵)EPXPY

ef(x,y)

↵ef(x,y) + 1�↵
K

PK
i=1 e

f(x,yi)

��

� E(x,y)⇠PX,Y ,yi⇠PY ,i=1,...,K

log

ef(x,y)

↵ef(x,y) + 1�↵
K

PK
i=1 e

f(x,yi)

�

= I(↵)CPC (f),

by Lemma A.1, we have

1� ↵EPX,Y

ef(x,y)

↵ef(x,y) + 1�↵
K

PK
i=1 e

f(x,yi)

�
� (1� ↵)EPXPY

ef(x,y)

↵ef(x,y) + 1�↵
K

PK
i=1 e

f(x,yi)

��
� 1� 1

↵(K + 1)
� 0,

for ↵ 2
⇣
0, 2

K+1

⌘
, and

1� ↵EPX,Y

ef(x,y)

↵ef(x,y) + 1�↵
K

PK
i=1 e

f(x,yi)

�
� (1� ↵)EPXPY

ef(x,y)

↵ef(x,y) + 1�↵
K

PK
i=1 e

f(x,yi)

��
� 1� 1 � 0,

for ↵ 2
h

1
K+1 ,

1
2

i
. Therefore, since we have

D(↵)
KL (P kQ) sup

f2F
I(↵)CPC (f) D(↵)

KL (P kQ),

we have our results.

17

A.3 Proof of Theorem 4.3

In this section, we state and define the regularity assumptions to derive the asymptotic upper bounds
for the variance of ↵-skew KL divergence in Theorem 3.2. We first review the definition of f -
divergence. Let f : (0,1) ! R be a convex function with f(1) = 0. Let P and Q be distributions
with respect to a base measure dx on domain X , and assume P ⌧ Q. Then the f -divergence
generated by f is defined by

Df (PkQ) := EQ

f

✓
dP

dQ

◆�
.

Note that for any c 2 R, Dfc(PkQ) = Df (PkQ), where fc(t) = f(t)+c(t�1). Hence, w.l.o.g, we
assume f(t) � 0 for all t 2 (0,1). The conjugate of f is a function f⇤ : (0,1) ! [0,1) defined
by f⇤(t) = tf(1/t), where f⇤(0) = limt!0+ f⇤(t) for convenience. The conjugate f⇤ of convex
function f is also convex. Also, one can see that f⇤(1) = 0 and f⇤(t) � 0 for all t 2 (0,1), thus it
induces another divergence Df⇤ . The conjugate divergence Df⇤ satisfies Df⇤(PkQ) = Df (QkP).

The KL divergence is a f -divergence generated by f(t) = t log t � t + 1, and the ↵-skew KL
divergence is a f -divergence generated by

f (↵)(t) = t log

✓
t

↵t+ 1� ↵

◆
� (1� ↵)(t� 1).

From [80], we state following regularity assumptions on the functions f and f⇤.

Assumption A.1. The generator f is twice continuously differentiable with f 0(1) = 0. Moreover

(A1) We have C0 := f(0) < 1 and C⇤
0 := f⇤(0) < 1.

(A2) There exist constants C1, C⇤
1 < 1 such that for any t 2 (0, 1), we have,

|f 0(t)| C1 max{1, log(1/t)}, and |(f⇤)0(t)| C⇤
1 max{1, log(1/t)}.

(A3) There exist constants C2, C⇤
2 < 1 such that for every t 2 (0,1), we have,

t

2
f 00(t) C2, and

t

2
(f⇤)00(t) C⇤

2 .

We refer authors [80] for the detailed discussion on Assumption A.1. Then one can observe that KL
divergence does not satisfy Assumption A.1, because KL divergence can be unbounded. On the other
hand, the ↵-skew KL divergence satisfies Assumption A.1 from following proposition.

Proposition A.1 ([80]). The ↵-skew KL divergence generated by f (↵) satisfies Assumption A.1 with

C0 = 1� ↵, C⇤
0 = log

1

↵
� 1 + ↵, C1 = 1, C⇤

1 =
(1� ↵)2

↵
, C2 =

1

2
, C⇤

2 =
1� ↵

8↵
.

For the general f -divergences which satisfy Assumption A.1, the following concentration bound
holds.

Proposition A.2 ([80]). Assume f satisfies Assumption A.1, and let P and Q be two distributions
with P ⌧ Q. Let Pm be m i.i.d samples from P and Qn be n i.i.d samples from Q. Then the
f -divergence Df satisfies following:

P[|Df (PmkQn)� E[Df (PmkQn)]| > "] 2 exp

✓
� "2

2
m (C1 logm+ c1)2 +

2
n (C

⇤
1 log n+ c2)2

◆

where c1 = max{C⇤
0 , C2} and c2 = max{C0, C⇤

2}.

Thus, the following lemma derives a concentration bound for the ↵-skew KL divergence by plugging
the constants in Proposition A.1 to Proposition A.2.

Lemma A.2. For ↵ < 1
8 , the following holds:

P[|D(↵)
KL (PmkQn)� E[D(↵)

KL (PmkQn)]| > "] 2 exp

� "2

2
m log2(↵m) + 2

↵2n log2(e1/8n)

!

18

Proof. Note that C⇤
0 = log(1/↵)� 1 + ↵ � C2 = 1/2, and C0 = 1� ↵ C⇤

2 = 1�↵
8↵ for ↵ < 1

8 .
Then the concentration bound follows from Proposition A.2.

Lastly, we present following upper bound on the bias of empirical estimator of KL divergence:

Proposition A.3 ([81]). Suppose P ⌧ Q, and Var[dP/dQ] < 1. Then we have

|E[DKL(PmkQn)]�DKL(PkQ)| �2(PkQ)

min{n,m} .

From proposition A.3, we have

|E[D(↵)
KL (PmkQn)]�D(↵)

KL (PkQ)| �2(Pk↵P + (1� ↵)Q)

min{n,m} ,

where �2(Pk↵P + (1 � ↵)Q) =
R

d2P
↵dP+(1�↵)dQ

R
1
↵dP = 1

↵ , or
R

d2P
↵dP+(1�↵)dQ

1
1�↵

R
d2P
dQ = �2(PkQ)

1�↵ . Therefore, we have

|E[D(↵)
KL (PmkQn)]�D(↵)

KL (PkQ)| c(↵)

min{n,m} , for c(↵) := min

⇢
1

↵
,
�2(PkQ)

1� ↵

�
.

Now we present the proof of Theorem 4.3 in the main paper.

Proof of Theorem 4.3. Define

B1 := |D(↵)
KL (PmkQn)� E[D(↵)

KL (PmkQn)]|

B2 := |E[D(↵)
KL (PmkQn)]�D(↵)

KL (PkQ)|

B3 := |I(↵)
KL (bf)�D(↵)

KL (PmkQn)|.

From Proposition A.3, we have B2 c2
min{n,m} for some constant c(↵) > 0, and from the assumption,

we have B3 "f . By using triangle inequality twice, we have

B1 � |D(↵)
KL (PmkQn)�D(↵)

KL (PkQ)|�B2

� |D(↵)
KL (PkQ)� I(↵)

KL (bf)|�B3 �B2.

Therefore, it follows that

P[|D(↵)
KL (PkQ)� I(↵)

KL (bf)| > "] P[B1 +B2 +B3 > "]

 P

B1 > "� "f � c(↵)

min{n,m}

�

 2 exp

� ("� "f � c(↵)/min{n,m})2

2
m log2(↵m) + 2

↵2n log2(e1/8n)

!
,

where the last inequality comes from Proposition A.2. Since the following holds for any random
variable X ,

Var(X) = E[(X � EX)2] =

Z 1

0
P[|X � EX|2 > t]dt =

Z 1

0
P[|X � EX| >

p
t]dt,

we have

VarP,Q

⇥
I(↵)

KL (bf)
⇤

Z 1

0
2 exp

� (

p
t� "f � c(↵)/min{n,m})2

2
m log2(↵m) + 2

↵2n log2(e1/8n)

!
dt,

which proves our result.

19

A.4 Proof sketch for Rényi divergence

In this section, we provide a proof sketch for the upper bound for the variance of RMLCPC objective.
We use similar proof technique that we used in previous section. Recall that the Rényi Divergence is
related to �-divergence3 D� , a f -divergence generated by f (�)(t) = t��1

�(��1) . The KL divergence is
recovered from �-divergence if we let � ! 1. Then we have following equation for Rényi divergence
and �-divergence:

R�(PkQ) =
1

�(� � 1)
log(�(� � 1)D�(PkQ) + 1).

One can observe that f(x) = 1
�(��1) log(�(� � 1)x+ 1) is of 1-Lipschitz function for any � 6= 0, 1.

Thus, if we can derive concentration bound for ↵-skew �-divergence, we can derive concentration
bound for Rényi divergence.

Here, we provide an example when � = 2. Remark that when � = 2, the �-divergence is equivalent to
�2-divergence, which is generated by f(t) = (t� 1)2. Then the ↵-skew �2-divergence is generated
by following generators:

f (↵)(t) =
(t� 1)2

↵t+ 1� ↵
= (f (1�↵))⇤(t).

Then from [80], the ↵-skew �2-divergence satisfies Assumption A.1 with

C0 =
1

1� ↵
, C⇤

0 =
1

↵
, C1 =

2

(1� ↵2
, C⇤

1 =
2

↵2
, C2 =

4

27↵(1� ↵)2
, C⇤

2 =
4

27↵2(1� ↵)
.

Then by using Proposition A.2, for ↵ < min{ 2
3
p
3
, 1� 2

3
p
3
}, we have

P[|D(↵)
�2 (PmkQn)� E[D(↵)

�2 (PmkQn)]| > "] 2 exp

� "2

c1
n log2(c2n) +

c3
↵2m log2(c4m)

!
,

for some constant c1, c2, c3, c4 > 0, then from the Lipschitz continuity, we have

P[|R(↵)
2 (PmkQn)� E[R(↵)

2 (PmkQn)]| > "] 2 exp

� "2

c1
n log2(c2n) +

c3
↵2m log2(c4m)

!
,

Thus, by deriving the asymptotic bound for the bias |E[R(↵)
2 (PmkQn)] � R(↵)

2 (PkQ)|, and if the
Rényi variational objective has sufficiently small error, we can derive upper bound for the variance of
RMLCPC objective.

B Details for Experiments

B.1 Implementation

As explained in Section 3.3, we derive the full equivalent form of MLCPC and RMLCPC with
non-zero ↵. Recall that the ↵-MLCPC objective with neural network f✓ is given by

I(↵)
MLCPC(f✓) = Ev,v+ [f✓(v, v

+)]� log
�
↵Ev,v+ [ef✓(v,v

+)] + (1� ↵)Ev,v� [ef✓(v,v
�)]
�
, (13)

then the gradient of (13) with respect to parameter ✓ is given by

r✓I(↵)
MLCPC(f✓)

= Ev,v+ [r✓f✓(v, v
+)]�

↵Ev,v+ [ef✓(v,v
+)r✓f✓(v, v+)] + (1� ↵)Ev,v� [ef✓(v,v

�)r✓f✓(v, v�)]

↵Ev,v+ [ef✓(v,v+)] + (1� ↵)Ev,v� [ef✓(v,v�)]

= Ev,v+ [r✓f✓(v, v
+)]�

�
Esg(q✓(v,v+))[r✓f✓(v, v

+)] + Esg(q✓(v,v�))[r✓f✓(v, v
�)]
�
,

3we use � for consistency, in general, it is called ↵-divergence.

20

Table 7: Ablation on the effect of ↵ when training with harder data augmentation.

↵�1 1024 4096 16384 65536

Base Aug. 79.0 79.3 78.6 78.4
Hard Aug. 81.1 81.3 81.6 81.1

Gap +2.1 +2.0 +3.0 +2.7

where

q✓(v, v
+) / ↵p(v, v+)ef✓(v,v

+)

↵Ev,v+ [ef✓(v,v+)] + (1� ↵)Ev,v� [ef✓(v,v�)]

q✓(v, v
�) / (1� ↵)p(v)p(v�)ef✓(v,v

�)

↵Ev,v+ [ef✓(v,v+)] + (1� ↵)Ev,v� [ef✓(v,v�)]
,

are importance weights for positive and negative pairs in the second term of (13). For the generalized
(↵, �)-RMLCPC, recall that the RMLCPC with neural network f✓ is given by

I(↵,�)
RMLCPC(f✓) =

1

� � 1
logEv,v+ [e(��1)f✓(v,v

+)]� 1

�
log
�
↵Ev,v+ [e�f✓(v,v

+)] + (1� ↵)Ev,v� [e�f✓(v,v
�)]
�
.

(14)
Then the gradient of (14) with respect to ✓ is given by

r✓I(↵,�)
RMLCPC(f✓)

= E
q(1)✓ (v,v+)

[r✓f✓(v, v
+)]�

↵Ev,v+ [e�f✓(v,v
+)r✓f✓(v, v+)] + (1� ↵)Ev,v� [e�f✓(v,v

�)r✓f✓(v, v�)]

↵Ev,v+ [e�f✓(v,v+)] + (1� ↵)Ev,v� [e�f✓(v,v�)]

= E
sg(q(1)✓ (v,v+))

[r✓f✓(v, v
+)]�

�
E
sg(q(2)✓ (v,v+))

[r✓f✓(v, v
+)] + E

sg(q(2)✓ (v,v�))
[r✓f✓(v, v

�)]
�
,

where
q(1)✓ (v, v+) / p(v, v+)e(��1)f✓(v,v

+)

q(2)✓ (v, v+) / ↵p(v, v+)e�f✓(v,v
+)

↵Ev,v+ [e�f✓(v,v+)] + (1� ↵)Ev,v� [e�f✓(v,v�)]

q(2)✓ (v, v�) / (1� ↵)p(v)p(v�)e�f✓(v,v
�)

↵Ev,v+ [e�f✓(v,v+)] + (1� ↵)Ev,v� [e�f✓(v,v�)]
,

are importance weights for positive and negative pairs for the first and second term in (14). As
discussed in Section 3.3, regardless of the insertion of parameter ↵, MLCPC and RMLCPC explicitly
conduct hard-negative sampling, and especially RMLCPC, conducts easy-positive sampling.

The PyTorch style pseudo-code for our implementation on RényiCL is demonstrated in Algorithm 1.
In our default implementation, we use multi-crop data augmentation [43] with two global views and
multiple local views. In Algorithm 1, we implement the negative of (↵, �)-RMLCPC, and ↵-MLCPC
which is equivalent to the case when � ! 1 for RMLCPC, for the contrastive losses. Note that our
pseudo-code for contrastive objectives are based on the approach that uses importance weights.

Effect of ↵ in RényiCL. One can observe that the gradient of positive pairs in the second term
is multiplied by ↵, thus the gradient of positive pairs is affected by ↵ and negative pairs. However,
since we use a small value of ↵, the gradient of the second term can be ignored in practice. To verify
our claim, we experimented with different values of ↵ on both basic and hard data augmentations:

In Table 7, one can observe that as ↵ becomes smaller, the gap between using hard augmentation and
the base augmentation becomes larger. Thus, there is a tradeoff in the choice of ↵: the ↵ should be
large enough to evade large variance (Thm 3.2), but small ↵ is preferred to have the effect of easy
positive sampling.

B.2 Further ablation studies

In this section, we provide further ablation studies to validate the effectiveness of RényiCL.

21

Algorithm 1 RényiCL: PyTorch-like Pseudocode

f_q: base encoder: backbone + proj mlp + pred mlp
f_k: momentum encoder: backbone + proj mlp
m: momentum coefficient
tau: temperature
aug_g : global view data augmentation
aug_l : local view data augmentation

for x in loader: # load a minibatch x with N samples
x1, x2 = aug_g(x), aug_g(x) # two global views
k1, k2 = f_k(x1), f_k(x2) # keys: [N, D] each
q1, q2 = [], [] # list of queries
q1.append(f_q(x1)), q2.append(f_q(x2)) # queries: [N, D] each
for i in range(n_crops):

x_l = aug_l(x)
q1.append(f_q(x_l)), q2.append(f_q(x_l)) # pass local views only to base encoder

pos1, pos2, neg1, neg2 = [], [], [], []
for j in range(n_crops + 1):

pos, neg = extract_pos_neg(q1[j], k2) # extract pos, neg from q1 and k2
pos1.append(pos)
neg1.append(neg)

pos, neg = extract_pos_neg(q2[j], k1) # extract pos, neg from q2 and k1
pos2.append(pos)
neg2.append(neg)

pos1, pos2, neg1, neg2 = pos1.cat(), pos2.cat(), neg1.cat(), neg2.cat()
loss = ctr_loss(pos1, neg1) + ctr_loss(pos2, neg2) # symmetrized

update(f_q) # optimizer update: f_q
f_k = m*f_k + (1-m)*f_q # momentum update: f_k

extract positive pairs and negative pairs
def extract_pos_and_neg(q, k):

N : number of samples in minibatch
logits = mm(q, k.t()) / tau # matrix multiplication
pos = logits.diag() # size N
neg = logits.flatten()[1:].view(N-1, N+1)[:,:-1].reshape(N,N-1) # size N x (N-1)
return pos, neg

contrastive losses using importance weights
def ctr_loss(pos, neg, alpha, gamma):

pos_d = pos.detach(), neg_d = neg.detach() # no gradient for importance weights
if gamma == 1: # MLCPC

loss_1 = -1 * pos.mean()
iw2_p, iw2_n = pos_d.exp(), neg_d.exp() # importance weights
loss_2 = alpha*(pos*iw2_p.exp()).mean()+(1-alpha)*(neg*iw2_n.exp()).mean()
loss_2 /= alpha*iw2_p.mean() + (1-alpha)*iw2_n.mean()
loss = loss_1 + loss_2

elif gamma > 1: # RMLCPC
iw1 = ((gamma - 1)*pos_d).exp() # importance weight for first term
loss_1 = (pos*iw1).mean() / iw1.mean()
iw2_p, iw2_n = (gamma*pos_d).exp(), (gamma*neg_d).exp() # importance weights
loss_2 = alpha*(pos*iw2_p).mean() + (1-alpha)*(neg*iw2_n).mean()
loss_2 /= alpha*iw2_p.mean() + (1-alpha)*iw2_n.mean()
loss = loss_1 + loss_2

return loss

Fair comparison with other self-supervised methods. To see the effectiveness of RényiCL, we
conduct additional experiments for fair comparison with other self-supervised methods. MoCo v3 [6]
is a state-of-the-art method in contrastive self-supervised learning. For fair comparison of RényiCL
with MoCo v3, we apply harder data augmentations such as RandAugment [50] and multi-crops [43]
on MoCo v3. We first reimplemented MoCo v3 with smaller batch size (original 4096 to 1024)
and in our setting, we achieved 69.6%, which is better than their original reports (68.9%). Then we
use harder data augmentations RandAugment (RA), RandomErasing (RE), and multi-crops (MC)
when training MoCo v3. Second, we compare RényiCL with DINO [82]. Note that DINO uses
default multi-crops, therefore we further applied RandAugment (RA) and RandomErasing (RE) for a
fair comparison. For each model, we train for 100 epochs. The results are shown in Table 8. One
can observe that while MoCo v3 and DINO benefit from using harder data augmentation, RenyiCL
shows the best performance when using harder data augmentation. Also, compared to the Base data
augmentation, RényiCL attains the most gain by using harder data augmentation.

Robustness to data augmentations. To see the robustness of RényiCL on the choice of data
augmentation, we conduct additional ablation studies on the robustness of RényiCL on various data

22

Table 8: Fair comparison with other self-supervised learning methods by using same hard data augmentation.
All models are run by us with 100 training epochs.

Method DINO [82] MoCo v3 [6] RényiCL

Base 70.9 69.6 69.4
Hard 72.5 73.5 74.3
Gain +1.6 +3.9 +4.9

Table 9: Ablation on the robustness of RényiCL to
Noisy Crop.

Method CIFAR-10 CIFAR-100 ImageNet-100

CPC 91.7 65.4 79.7
+NC 90.6(-1.1) 64.9(-0.5) 79.2(-0.5)

MLCPC 91.9 65.6 79.5
+NC 90.7(-1.2) 65.0(-0.6) 79.4(-0.1)

RMLCPC 90.7 64.5 78.9
+NC 91.6(+0.9) 67.6(+3.1) 80.5(+1.6)

Table 10: Ablation on the robustness of RényiCL
when learning with limited data augmentation.

Method CIFAR-10 CIFAR-100 STL-10

CPC 63.2 31.8 52.8
MLCPC 63.3 32.9 53.1
RMLCPC 67.1 41.2 56.4

augmentation schemes. We first show that RényiCL is more robust to the noisy data augmentation, as
similar to that in [30], we apply Noisy Crop, which additionally perform RandomResizedCrop of
size 0.2. Then the generated views might contain only nuisance information (e.g. background), thus
it can hurt the generalization of contrastive learning. We train each model with CPC, MLCPC, and
RMLCPC objectives and data augmentations with and without Noisy Crop. We experimented on
CIFAR-10, CIFAR-100, and ImageNet-100 datasets and the results are shown in Table 9. One can
observe that while the performance of using CPC and MLCPC degrades as we apply the noisy crop,
RMLCPC conversely improves the performance. Hence, RMLCPC is robust in the choice of data
augmentation.

Second, we experiment when there is limited data augmentation. For each CIFAR-10, CIFAR-100,
and STL-10 dataset, we remove data augmentations such as color jittering and grayscale and only
apply RandomResizedCrop and HorizontalFlip. The results are in Table 10. Note that RMLCPC
achieves the best performance among CPC and MLCPC, when we do not apply data augmentation.
Therefore we show that the RMLCPC objective is not only robust to the hard data augmentation but
is also robust when there is limited data augmentation.

B.3 ImageNet experiments

Data augmentation. For the baseline, we follow the good practice in existing works [2, 3, 47, 6],
which includes random resized cropping, horizontal flipping, color jittering [2], grayscale conver-
sion [2], Gaussian blurring [3], and solarization [47]. Given the baseline data augmentation, we add
the following data augmentation methods:

• RandAugment [50]: a strong data augmentation strategy that includes 14 image-specific
transformations such as AutoContrast, Posterize, etc. We use default settings that were used
in [50] (2 operations at each iteration and a magnitude scale of 10).

• RandomErasing [65]: a simple data augmentation strategy that randomly masks a box in an
image with a random value. The RandomErasing was applied with probability 0.2.

• Multi-crop [43]: a multi-view data augmentation strategy for self-supervised learning, we
use two global crops of size 224 and 2 or 6 local crops of size 96. For global crops, we scale
the image with (0.2, 1.0) and for the local crops, we scale the image with (0.05, 0.2), which
is slightly different from that in [43].

For the implementation of RandAugment and RandomErasing, we use the implementation in [83].
Note that when using Multi-crop, we only use RandAugment on the global views, and we do not use

23

RandomErasing, which slightly degrades performance when used for Multi-crops. Otherwise, if we
do not use Multi-crop, we use both RandAugment and RandomErasing.

Model. We use ResNet-50 [49] for backbone. For our base encoder, we further use a projection
head [3], and a prediction head [47]. The momentum encoder is updated by the moving average of
the base encoder, except that we do not use the prediction head for momentum encoder [6]. The
momentum coefficient is initialized by 0.99 and gradually increased by the half-cycle cosine schedule
to 1. We use 2-layer MLP with dimensions 2048-4096-256 for the projection head. We attach the
batch-normalization (BN) layer and ReLU activation layer at the end of each fully-connected layer,
except for the last one, to which we only attach the BN layer. For the prediction head, we use
2-layer MLP with dimensions of 256-4096-256, and we attach BN and ReLU at the end of each fully
connected layer except the last one. Then the critic is implemented by the temperature-scaled cosine
similarity: f(x, y; ⌧) = x>y/(⌧kxk2kyk2), with ⌧ = 0.5. For RMLCPC objective, we use � = 2.0,
and ↵ = 1/65536.

Optimization. We use LARS [84] optimizer with a batch size of 512, weight decay of 1.5⇥ 10�6,
and momentum of 0.9 for all experiments. We use root scaling for learning rate [3], which was
effective in our framework. When training for 100 epochs, we use the base learning rate of 0.15, and
for training for 200 epochs, we use the base learning rate of 0.075. The learning rate is gradually
annealed by a half-cycle cosine schedule. We also used automatic mixed precision for scalability.

Linear evaluation. For ImageNet linear evaluation accuracy, we report the validation accuracy of
the linear classifier trained on the top of frozen features. We use random resized cropping of size 224
and random horizontal flipping for training data augmentation, and resizing to the size of 256 and
center-crop of 224 for validation data augmentation. We use cross-entropy loss for training, where
we train for 90 epochs with SGD optimizer, batch size of 1024, and base learning rate of 0.1, where
we use linear learning rate scaling and learning rate follows cosine annealing schedule. We do not
use weight decay.

Semi-supervised learning. For semi-supervised learning on ImageNet, we follow the protocol as
in [3, 47, 43]. We add a linear classifier on the top of frozen representation, then train both backbone
and classifier using either 1% or 10% of the ImageNet training data. For a fair comparison, we use the
splits proposed in [3]. We use the same data augmentation and loss function as in linear evaluation.
As same as previous works, we use different learning rates for each backbone and classification
head. For the 1% setting, we use a base learning rate of 0.01 for backbone and 0.2 for classification
head. For the 10% setting, we use a base learning rate of 0.08 for the backbone and 0.03 for the
classification head. The learning rate is decayed with a factor of 0.2 at 16 and 20 epochs. We do
not use weight decay or other regularization technique. We train for 20 epochs with SGD optimizer,
batch size of 512 for both 1% and 10% settings, and do not use weight decay.

Transfer learning. For transfer learning, we train a classifier on the top of frozen representations
as done in many previous works [3, 47]. In Table 11, we list the information of the datasets we
used; the number of classes, number of samples for each train/val/test split, and evaluation metric.
We use the same data augmentation that we used for linear evaluation on the ImageNet dataset.
For optimization, we `2-regularized L-BFGS, where the regularization parameter is selected from a
range of 45 logarithmically spaced values from 10�6 to 105 using the validation split. After the best
hyperparameter is selected, we train the linear classifier using both training and validation splits and
report the test accuracy using the metric instructed in Table 3. The maximum number of iterations
in L-BFGS is 5000 and we use the previous solution as an initial point, i.e., a warm start, for the
next step. For few-shot learning experiments, we perform logistic regression on the top of frozen
representations and use N ⇥ K support samples without fine-tuning and data augmentation in a
N -way K-shot episode.

Extended version of Table 4. We provide additional experimental results in the comparison with
other contrastive representation learning methods that use stronger augmentations. The InfoMin [14]
used RandAugment [50] and Jigsaw cropping for data augmentation and trained for 800 epochs.
The CLSA [59] used both RandAugment [50] and pyramidal multi-crop data augmentation, which
generates additional crops of size 192⇥ 192, 160⇥ 160, 128⇥ 128, and 96⇥ 96. For comparison,

24

Table 11: Dataset information for the transfer learning tasks. For FC100, CUB200, Plant Disease, we perform
few-shot learning, otherwise, we perform linear evaluation.

Dataset # of classes Training Validation Test Metric

CIFAR10 [51] 10 45000 5000 10000 Top-1 accuracy
CIFAR100 [51] 100 45000 5000 10000 Top-1 accuracy
Food [52] 101 68175 7575 25250 Top-1 accuracy
MIT67 [85] 67 4690 670 1340 Top-1 accuracy
Pets [60] 37 2940 740 3669 Mean per-class accuracy
Flowers [53] 102 1020 1020 6149 Mean per-class accuracy
Caltech101 [61] 101 2525 505 5647 Mean Per-class accuracy
Cars [54] 196 6494 1650 8041 Top-1 accuracy
Aircraft [55] 100 3334 3333 3333 Mean Per-class accuracy
DTD (split 1) [56] 47 1880 1880 1880 Top-1 accuracy
SUN397 (split 1) [57] 397 15880 3970 19850 Top-1 accuracy
VOC2007 [58] 20 4952 2501 2510 Mean average precision

FC100 [62] 20 - - 12000 Average accuracy
CUB200 [50] 200 - - 11780 Average accuracy
Plant Disease [63] 38 - - 54305 Average accuracy

Table 12: Comparison of contrastive self-supervised methods with harder augmentations by downstream few-shot
classification accuracy (%) over 2000 episodes on FC100, CUB200, and Plant disease datasets. (N,K) denotes
N -way K-shot classification. † denotes the usage of multi-crop data augmentation. Bold entries denote the best
performance.

FC100 CUB200 Plant Disease

Method (5,1) (5,5) (5,1) (5,5) (5,1) (5,5)

InfoMin [14] 31.80 45.09 53.81 72.20 66.11 84.12
CLSA [59] 34.46 49.16 50.83 67.93 67.39 86.15
CLSA† [59] 41.09 58.38 52.87 70.92 71.57 88.94

RényiCL 36.31 53.39 59.73 82.12 80.68 94.29
RényiCL† 42.10 60.80 58.25 82.38 83.40 95.71

we use the checkpoints from their official github repositories4 5. In Table 12, we report the few-shot
classification accuracies (%) on FC100 [62], CUB200 [50], and Plant Disease [63] datasets, which
is the extended version of Table 3 in the main paper. In Table 13, we report the linear evaluation
accuracies (%) on various object classification datasets extending the results in Table 3 in the main
paper.

B.4 CIFAR experiments

For CIFAR experiments, we use random resized cropping with a size of 32⇥ 32, random horizontal
flipping, color jittering, and random grayscale conversion with probability 0.2 for the base data
augmentation. For harder data augmentation, we apply RandAugment [50], where we use 3 operations
at each iteration with a magnitude scale of 5, and RandomErasing [65]. We use modified ResNet-
18 [49], where the kernel size of the first convolutional layer is converted from 7⇥ 7 to 3⇥ 3, and
we do not use Max pooling at the penultimate layer [3]. We attach a 2-layer projection head of size
512-2048-128 with ReLU and BN layer attached at each FC layer, except for the last one. We do
not use a prediction head, and the temperature is set to be 0.5 for every CIFAR experiment. We
use � = 1.5 and ↵ = 1/4096 for both CIFAR-10 and CIFAR-100 experiments. We train for 500
epochs with the SGD optimizer, learning rate of 0.5 (without linear scaling), weight decay of 5e-4,
and momentum of 0.9. For evaluation, we train a linear classifier on the top of frozen features with
100 epochs with an SGD optimizer, learning rate of 0.3, without using weight decay. We only used
random resized crop with a size of 32, and random horizontal flipping for both training and evaluation.

4InfoMin: https://github.com/HobbitLong/PyContrast
5CLSA: https://github.com/maple-research-lab/CLSA

25

https://github.com/HobbitLong/PyContrast
https://github.com/maple-research-lab/CLSA

Table 13: Comparison of contrastive self-supervised methods with harder augmentations by downstream linear
evaluation accuracy on various datasets. IN denotes ImageNet validation accuracy (%), and † denotes the use of
multi-crop data augmentation. Bold entries denote the best performance.

Method IN CIFAR10 CIFAR100 Food101 Pets MIT67 Flowers Caltech101 Cars Aircraft DTD SUN397

InfoMin [14] 73.0 92.8 75.8 73.8 86.4 76.9 91.2 88.5 49.6 50.5 75.0 61.2
CLSA [59] 72.2 94.2 77.4 73.2 85.2 77.1 90.8 91.2 48.7 51.6 75.0 62.0
CLSA† [59] 73.3 93.9 76.9 73.4 86.4 77.7 91.2 90.2 47.4 50.0 75.5 62.9

RényiCL 72.6 93.8 78.8 72.7 88.4 75.8 94.2 94.0 62.1 58.8 74.6 62.1
RényiCL† 75.3 94.4 78.9 77.5 89.2 81.1 96.2 94.0 66.4 61.1 76.3 65.9

Table 14: Full experimental results for CovType and Higgs-100K datasets. We report top-1 accuracy (%) with
linear evaluation. Average over 5 runs. Bold entries denote the best performance.

CovType Higgs-100K

Method No Aug. RM FC RM+FC No Aug. RM FC RM+FC

CPC 71.6± 0.36 69.8± 0.26 74.3± 0.44 73.6± 0.16 64.7± 0.22 71.3± 0.08 64.9± 0.11 71.4± 0.15
MLCPC 71.7± 0.26 70.2± 0.15 74.1± 0.39 74.0± 0.45 64.9± 0.11 71.5± 0.06 65.3± 0.26 71.5± 0.06
RMLCPC (�=1.1) 72.1± 0.31 70.9± 0.42 74.9±0.28 73.8± 0.47 65.1± 0.29 71.8± 0.17 65.2± 0.13 71.9± 0.06
RMLCPC (�=1.2) 71.9± 0.58 70.8± 0.25 74.5± 0.38 73.7± 0.37 64.5± 0.41 72.4±0.13 65.3± 0.44 72.3± 0.10

B.5 Tabular experiments

For the data augmentation of tabular experiments, we consider simple random masking (RM) noise
that was used in [68], and random feature corruption (FC) proposed in [69]. The random masking
noise is analogous to RandomErasing [65] that we used in image contrastive learning. The FC data
augmentation randomly selects a subset of attributes on each tabular data and mixes it with the
attributes from another data. Note that the random corruption is performed in the whole dataset
scale [69]. We refer to [69] for detailed implementation of FC data augmentation. We use a probability
of 0.2 for both random masking noise and FC data augmentation. For the backbone, we use a 5-layer
MLP with a dimension of 2048-2048-4096-4096-8192, where all layers have a BN layer followed
by RELU, except for the last one. We use MaxOut activation for the last layer with 4 sets, and on
the top of the backbone, we attach 2-layer MLP with a dimension of 2048-2048-128 as a projection
head. For Higgs-100K, we set the ⌧ = 0.1, � = 1.2, and ↵ = 1/4096. For CovType, we set ⌧ = 0.2,
� = 1.1, and ↵ = 1/4096. We train for 500 epochs with an SGD optimizer of momentum 0.9, base
learning rate of 0.3, and the learning rate is scheduled by half-cycle cosine annealing. For evaluation
of the CovType experiments, we train a linear classifier on the top of frozen representation for 100
epochs with a learning rate in {1, 3, 5} and report the best validation accuracy (%). For evaluation
of the Higgs-100K experiments, we use linear regression on the top of frozen representations by
pseudo-inverse and report the validation accuracy (%). In Table 14, we provide the full experimental
results on CovType and Higgs-100K. One can notice that the RM data augmentation is effective for
the Higgs dataset, and FC data augmentation is effective for the CovType dataset.

B.6 Graph experiments

For graph contrastive learning experiments on TUDataset [70], we follow the same experimental
setup in [15]. Thus, we adopt the official implementation6, and experiment over the hyper-parameter
� 2 {1.5, 2.0, 3.0} and choose the best parameter by evaluating on the validation dataset.

C Mutual Information Estimation

C.1 Implementation details

Assume we have B batches of samples {xi}Bi=1 from xi ⇠ X and B batches of samples {yi}Bi=1
from yi ⇠ Y . Assume (xi, yi) ⇠ PXY , i.e. positive pair, and (xi, yj) ⇠ PXPY for i 6= j. Then let
f⇤(x, y) be optimal critic learned by maximizing CPC, MLCPC, or RMLCPC objectives. From the

6
https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU

26

https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU

optimality condition, we have

f⇤(x, y) / log
dPXY (x, y)

↵dPXY (x, y) + (1� ↵)dPX(x)dPY (y)
= log

r(x, y)

↵r(x, y) + 1� ↵
,

where r(x, y) = dPXY
dPXdPY

is a true density ratio. Then our idea is to recover r by using f⇤ and
approximate the true mutual information. To do that, we first compute the log-normalization constant
Z, i.e. ef

⇤(x,y)

Z = r(x,y)
↵r(x,y)+1�↵ . We use Monte-Carlo [44] methods by computing empirical mean as

following:

Ẑ =
↵

B

BX

i=1

ef
⇤(xi,yi) +

1� ↵

B(B � 1)

BX

i=1

X

j 6=i

ef
⇤(xi,yj).

Then we have following approximate density ratio r̂:

r̂(x, y) =
(1� ↵)ef

⇤(x,y)

Ẑ � ↵ef⇤(x,y)
.

Since the mutual information is defined by the empirical mean of log-density ratio, we have

Î(X;Y) =
1

B

BX

i=1

log r̂(xi, yi)

C.2 MI estimation between correlated Gaussians

Setup. We follow the general procedure in [38, 24]. We sample a pair of vectors (x, y) 2 Rd⇥d

from random variable X ⇥ Y , where X and Y are unit normal distribution, and are correlated
with correlation coefficient ⇢ 2 (0, 1). Then the true mutual information (MI) between X and Y
can be computed by I(X;Y) = �d

2 log
�
1 � ⇢

2

�
. In our experiments, we set the initial mutual

information to be 2, and we increase the MI by ⇥2 for every 4K iterations. We consider joint critic,
which concatenates the inputs x, y and then passes through a 2-layer MLP with a dimension of
d� 256� 1, and the output of the fully connected layers are followed by the ReLU activation layer.
For optimization, we use the Adam optimizer with learning rate of 10�3, �1 = 0.9, �2 = 0.999,
batch size of 128.

Results. In Figure , we depict the curve of training curves and MI estimation that we proposed in
Section 3.4. We consider ↵-CPC, ↵-MLCPC, (↵, �)-RMLCPC with � = 2.0. Remark that when
↵ = 0.0, the MI estimators exhibit large variance as we proved in Theorem 3.1. But for large
enough ↵ > 0, the training objectives tend to have low variance, and thus we have a low variance MI
estimator.

From Theorem 4.1, since there are total 128 ⇥ 127 negative pairs, we need to select ↵ / 1/128.
Therefore, we divide the ↵ by 128 for each experiment in Figure 2. One can observe that even though
the optimal ↵ varies across the objectives, choosing ↵ around 1/128 gives a fairly good estimation of
MI.

Note that the skew divergence is not only applicable to DV objectives, but also for the NWJ [79]
objective, which is another variational lower bound of KL divergence defined as following:

INWJ(f) := EPXY [f(x, y)]� EPXPY [e
f(x,y)�1],

and we have I(X;Y) = DKL(PXY kPXPY) = supf INWJ(f) [79]. Note that the NWJ objective is
proven to have large variance as the true MI is too large [41]. However, we show that by introducing
the NWJ objective for ↵-skew KL divergence, one can lower the variance of the training objective,
and perform MI estimation as we explained in Section 3.4. We refer the NWJ variational lower bound
of ↵-skew KL divergence as ↵-NWJ, and is defined by following:

I(↵)
NWJ (f) := EPXY [f(x, y)]� ↵EPXY [e

f(x,y)�1]� (1� ↵)EPXPY [e
f(x,y)�1],

and we have D(↵)
KL (PXY kPXPY) = supf I

(↵)
NWJ (f). Lastly, in Figure , we show that one can perform

stable MI estimation through ↵-NWJ objective by choosing appropriate ↵.

27

Algorithm 2 Pseudocode for MI estimation between the views

aug: data augmentation that generates views
x: batch of samples
f: critic that takes a pair of inputs
extract_pos_and_neg: a function that extracts positive and negative pairs (Alg. 1)

def MI_estimation(x, f, aug, alpha, gamma):
x1, x2 = aug(x), aug(x) # two views
pos, neg = extract_pos_and_neg(f(x1, x2)) # extract positive and negative pairs
Z = alpha*pos.exp() + (1-alpha)*neg.exp().mean(dim=1) # normalization constant
r_alpha = pos.exp() / Z
r_true = (1-alpha)*r_alpha / (1-alpha*r_alpha)
return r_true.log().mean()

Figure 1: MI between the views and validation accuracy on ImageNet-100. RA: RandAugment [50], RE:
RandomErasing [65], MC: Multi-crops [43].

C.3 Mutual Information between the views and InfoMin principle.

Implementation. We present the pseudocode for estimation of MI between the views in Algorithm 2.
In Figure , we compute the MI for every iteration, and report the mean value of MI for the last epoch
of training.

InfoMin principle and RényiCL. Following [14], we plot the mutual information versus linear
evaluation accuracy (%) by training with different data augmentations and contrastive objectives. In
Figure 1, we observe that for harder data augmentations, the RMLCPC induces lower MI than that of
CPC and MLCPC, while showing better downstream performances. This is because of the effect of
easy positive and hard negative sampling explained in Section 4.3. Note that InfoMin [14] principle
argues that the optimal views must share sufficient and minimal information about the downstream
tasks. Here, one can observe that RényiCL intrinsically follows the InfoMin principle as it extracts
minimal and sufficient information between the views. Therefore, RényiCL intrinsically follows
InfoMin principle [14] that it extracts minimal and sufficient information between the views. Here,
we establish the orthogonal relationship between the InfoMin principle [14] and RényiCL: InfoMin
principle aims to find views that share minimal and sufficient information, while RényiCL can extract
minimal and sufficient information from given views.

D Hyperparameter Sensitivity Analysis

The temperature is a hyperparameter that greatly affects the performance of contrastive learning [3,
86]. Here, we show that RMLCPC objective is robust to the choice of temperature hyperparameter.
We conduct simple ablation studies on CIFAR-10 and CIFAR-100 with temperature ⌧ = 0.5, 1.0 and
� = 1.5, 2.0. We use the same experimental setup described in B.4 except the value of temperature.
For comparison, we use same data augmentation setup; base data augmentation and hard augmentation
using RandAugment and RandomErasing. In Table 15, we report the linear evaluation accuracy
of each setting trained on CIFAR-10 and CIFAR-100 datasets. When using large temperature, i.e.,

28

� ���� ����� ����� �����
6WHSV

�

�

�

�

�

��

��

2
EM
HF
WLY
H�
9D
OX
H

&3&�ͅ ���

*DXVVLDQ
&XELF
7UXH�0,

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ����

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ���

� ���� ����� ����� �����
6WHSV

�

�

�

�

�

��

��

0
,��
QD
WV
�

&3&�ͅ ���
*DXVVLDQ
&XELF
7UXH�0,

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ����

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
&3&�ͅ ���

(a) Top: ↵-CPC objective, Bottom: MI estimation from ↵-CPC

� ���� ����� ����� �����
6WHSV

�

�

�

�

�

��

��

2
EM
HF
WLY
H�
9D
OX
H

0/&3&�ͅ ���
*DXVVLDQ
&XELF
7UXH�0,

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ����

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ���

� ���� ����� ����� �����
6WHSV

�

�

�

�

�

��

��

0
,��
QD
WV
�

0/&3&�ͅ ���

*DXVVLDQ
&XELF
7UXH�0,

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ����

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
0/&3&�ͅ ���

(b) Top: ↵-MLCPC objective, Bottom: MI estimation from ↵-MLCPC

� ���� ����� ����� �����
6WHSV

�

�

�

�

�

��

��

2
EM
HF
WLY
H�
9D
OX
H

50/&3&�͇ ����ͅ ���

*DXVVLDQ
&XELF
7UXH�0,

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ����

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ���

� ���� ����� ����� �����
6WHSV

�

�

�

�

�

��

��

0
,��
QD
WV
�

50/&3&�͇ ����ͅ ���
*DXVVLDQ
&XELF
7UXH�0,

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ����

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
50/&3&�͇ ����ͅ ���

(c) Top: (↵, �)-RMLCPC objective, Bottom: MI estimation from (↵, �)-RMLCPC

� ���� ����� ����� �����
6WHSV

�

�

�

�

�

��

��

2
EM
HF
WLY
H�
9D
OX
H

1:-�ͅ ���
*DXVVLDQ
&XELF
7UXH�0,

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ����

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ���

� ���� ����� ����� �����
6WHSV

�

�

�

�

�

��

��

0
,��
QD
WV
�

1:-�ͅ ���
*DXVVLDQ
&XELF
7UXH�0,

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ����

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ���

� ���� ����� ����� �����
�

�

�

�

�

��

��
1:-�ͅ ���

(d) Top: ↵-NWJ, Bottom: MI estimation from ↵-NWJ

Figure 2: The plots for Gaussian MI estimation. We plot the values of training objectives, i.e., the negative of
each objective, and the estimated MI value. For RMLCPC objective, we use � = 2.0. Note that we divide the ↵
by the batch size of 128.

29

⌧ = 1.0, CPC and MLCPC degrades their performance when using harder data augmentation. On
the other hand, RMLCPC consistently achieves better performance when using harder augmentations
on both ⌧ = 0.5 and ⌧ = 1.0. Especially for CIFAR-100 dataset, using RMLCPC objective with
⌧ = 1.0 shows similar performance with using MLCPC objective with ⌧ = 0.5. Thus, our RényiCL
does not only provide empirical gain, but also it could be a good starting point to search for effective
hyperparameter due to their robustness to temperature.

Table 15: Sensitivity of CPC, MLCPC, RMLCPC on temperature. We report the linear evaluation accuracy (%)
on CIFAR-10 and CIFAR-100 datasets. Bold entries denote the best performance.

CIFAR-10 CIFAR-100

⌧ = 1.0 ⌧ = 0.5 ⌧ = 1.0 ⌧ = 0.5

Method Base Hard Base Hard Base Hard Base Hard

CPC 91.7 90.9 91.7 91.9 63.0 62.2 65.4 67.1
MLCPC 91.6 90.8 91.9 92.1 62.8 61.9 65.6 66.6

RMLCPC (� = 1.5) 91.6 91.7 91.4 92.5 64.2 64.2 65.4 68.0
RMLCPC (� = 2.0) 91.3 92.2 90.7 92.5 64.5 66.2 64.5 68.5

30

	Introduction
	Related Works
	Preliminaries
	Rényi divergence
	Variational lower bounds of mutual information

	Variational Estimation of Skew Rényi Divergence
	Challenges in variational Rényi divergence estimation
	Contrastive learning objectives are variational skew-divergence estimators
	Variational estimation of skew Rényi divergence

	Rényi Contrastive Representation Learning
	Rényi contrastive representation learning
	Gradient analysis for RényiCL

	Experiments
	RényiCL for visual representation learning on ImageNet
	RényiCL for representation learning on various domains
	Mutual information estimation and view selection

	Conclusion and Discussion
	Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof sketch for Rényi divergence

	Details for Experiments
	Implementation
	Further ablation studies
	ImageNet experiments
	CIFAR experiments
	Tabular experiments
	Graph experiments

	Mutual Information Estimation
	Implementation details
	MI estimation between correlated Gaussians
	 Mutual Information between the views and InfoMin principle.

	Hyperparameter Sensitivity Analysis

