A Appendix

Roadmap: More details of Algorithm 1 is introduced in § A.1. Then, we present more details of the
datasets (§ A.2) and attacks (§ A.3) used in the experiments. We also perform an ablation study for
the Trojan mitigation task in § A.4. In § A.5, we visualize our reverse-engineered Trojans. We also
show the generalization (§ A.6) and the efficiency (§ A.7) of FEATURERE. Finally, we discuss the
findings in the evaluation (§ A.8).

A.1 More details of Algorithm 1

In this section, we discuss more details of our Reverse-engineering Algorithm (Algorithm 1). Given
a model M and a small set of clean samples X', the output of the algorithm is a flag indicating if
the model is Trojaned, and Trojaned label pairs denoting the source label and the target label of the
detected Trojans.

In line 2, we iterate (source label, target label) pair from possible pairs K. FE in line 3 means the
maximal optimization epoch number for each pair. It is set to 400 in this paper. In line 4, we randomly
sample a batch of inputs from the samples in source classes. The batch size is set to 128 by default.

In lines 5 to Line 11, we optimize the parameters of the input space transformation F', which is
represented by a UNet [54] model in our implementation. In line 5, we calculate the loss value
specified in Eq. 1, where @ = A(x) is the inner feature on clean samples. By default, A is the
submodel from the input layer to the penultimate layer, and B is the submodel from the penultimate
layer to the output layer. m is the feature space trigger mask. ¢ = mean (m © A(F (X)) is the
feature space trigger pattern. L is the cross-entropy loss calculating the distance between the target
label and the output of the model under inner features with feature space Trojans. In line 6, if the
input space MSE (Mean Square Error) distance for original inputs and the transformed inputs F'(x)
is larger than a threshold value 7 (i.e., 0.15), then the regularization item w; - ||F () — || will be
added. Note that we calculate input space distance on the preprocessed inputs, and the details of the
preprocessing are in § A.2. Following NC [19], the coefficient value w; is adjusted dynamically to
make the reverse-engineering satisfy the constrain (i.e., || F(x) — || < 71). wo in line 9 and ws in
line 14 are also adjusted dynamically. In lines 8-9, similarly, we add the regularization item for the
standard deviation of different Trojan samples’ activation values on each pixel in the hyperplane. The
default value for 7 is 0.25. Lines 10-11 are the standard backward propagation process to update the
parameters of the input space transformation function F' based on the gradients. The optimizer used
to optimize F' is Adam [69]. The value of learning rate [r is 1e-3. In each epoch, we optimize both
the input space transformation function F' and the feature space mask m.

Lines 12-16 describes the process for optimizing 1. Similar to line 5, we calculate the cross-entropy
loss between the target label and the output of the model under inner features with feature space
Trojans in line 12. In lines 13-14, we add the regularization item for the size of the feature space
Trojan hyperplane. The default value for 73 is 5% of the whole feature space. Lines 15-16 describe
the process of updating feature space mask m via gradients. The value of learning rate 75 in line 16
is le-1. The optimizer used is Adam [69].

In line 17, we check if the Trojan is successfully reverse-engineered. In detail, we calculated the ASR
(attack success rate) on inner features with feature space Trojans (i.e., (1 —m) ®a+m O t). We
flag that reverse-engineering is successful if the ASR is above a threshold value X (i.e., 0.8). If the
Trojan is successfully reverse-engineered, we flag the model as a Trojan model and label the (source
class, target class) pair as Trojaned pair. Besides the details above, we also use K-arm scheduler [21]
to speed up the reverse engineering. Lastly, we use Liu et al. [70] to distinguish the Injected Trojans
and UAPs (Universal Adversarial Patterns) [71].

A.2 Details of Datasets

In this section, details of the used datasets are discussed. We also provide the details of the prepro-
cessing for each dataset. All datasets are open-sourced. The license for all datasets is the MIT license.
They do not contain any personally identifiable information or offensive content.

MNIST [56]. This dataset is used for classifying hand-written digits. It contains 60000 training
samples in 10 classes. The number of samples in the test set is 10000.

17

Table 10: Details of Mean and Std value on each dataset.

Dataset Mean Std

MNIST [0.1307] [0.3081]
CIFAR-10 [0.4914,0.4822,0.4465] [0.2023, 0.1994, 0.2010]

GTSRB [0.3403,0.3121,0.3214] [0.2724, 0.2608, 0.2669]
ImageNet [0.4850, 0.4560, 0.4060] [0.2290, 0.2240, 0.2250]

GTSRB [57] This dataset is built for traffic sign classification tasks. The number of classes is 43.
The sample numbers for the training set and test set are 39209 and 12630, respectively.

CIFAR10 [58] This dataset is used for recognizing general objects, e.g., dogs, cats, and planes. It has
50000 training samples and 10000 training samples. This dataset has 10 classes.

ImageNet [59] This dataset is also a general object classification benchmark. Note that we use a
subset (containing 200 classes) of the original ImageNet dataset specified in ISSBA [9]. The subset
has 100000 training samples and 10000 test samples.

Following standard convention on the image classification task, we scale the inputs to the range [0,1]
and use mean-std normalization to preprocess the images. In detail, the preprocessing can be written
as ' = (2 M) Ghere 2/ is the normalized input and « is the original inputs. The Mean value

and Std (Standard Deviation) value for each channel on different datasets are summarized in Table 10.

A.3 Details of Attacks

In this section, we discuss the details of the used attacks. By default, the attacks are in all-to-one (i.e.,
single-target) setting, and the target label is randomly selected when we generate Trojaned models.

BadNets [1]. This attack uses a fixed pattern (i.e., a patch or a watermark) as Trojan triggers, and it
generates Trojan inputs by simply pasting the pre-defined trigger pattern on the input. It compromised
the victim models by poisoning the training data (i.e., injecting Trojan samples and modifying their
labels to target labels). In our experiments, we use a 3*3 yellow patch located at the left-upper corner
as Trojan trigger. The poisoning rate we used is 5%. The attack can be all-to-one (i.e., single-target)
and all-to-all (i.e., label-specific). For an all-to-one attack, all Trojan samples have the same target
label. For label-specific attacks, the samples in different original classes have different target labels.
In our experiment, the target label for label-specific attack is yr = n(y) = y + 1, where 7 is a
mapping and y is the correct label of the sample.

Filter Attack [20]. This attack exploits image filters as triggers and creates Trojan samples by
applying selected filters on images. Similar to BadNets, the Trojans are injected with poisoning.
Following ABS [20], we use a 5% poisoning rate and apply the Nashville filter from Instagram as the
Trojan trigger.

WaNet [7]. This method achieves Trojan attacks via image warping techniques. The trigger transfor-
mation of this attack is an elastic warping operation. Different from BadNets and Filter Attack, in
this attack, the adversary needs to modify the training process of the victim models to make the attack
more resistant to Trojan defenses. It is stealthy to human inspection, and it can also bypass many
existing Trojan defense mechanisms [13, 15, 19, 63]. In our experiments, the wrapping strength and
the grid size are set to 0.5 and 4, respectively.

Input-aware Dynamic Attack [8]. This attack generates Trojan triggers via a trained generator
network. The trigger generator is trained on a diversity loss so that two different input images do not
share the same trigger. Similar to WaNet [7], the attacker needs to control the training process.

SIG [27]. This method uses superimposed sinusoidal signals as Trojan triggers. In this attack, the
attacker can only poison a set of training samples but can not control the full training process. We set
the poisoning rate as 5%. The frequency and the magnitude of the backdoor signal in our experiments
are 6 and 20, respectively.

Clean Label Attack [26]. This attack poisons the datasets without manipulating the label of poisoning
samples so that the attack is more stealthy. The poisoning samples are generated by a trained GAN.
In our experiments, we set the poisoning rate as 5%.

18

Table 11: Influence of hyperparameters on Trojan mitigation task.

T1 T2 T3
0.05 0.15 0.35 0.10 0.25 0.50 1% 2% 3% 4% 5% 6% 7%

BA 91.77% 91.79% 91.79% 91.76% 91.79% 91.80% 91.92% 91.87% 91.85% 91.82% 91.79% 91.65% 90.08%
ASR 0.02% 0.04% 0.08% 0.02% 0.04% 0.08% 57.75% 0.50% 0.06% 0.06% 0.04% 0.00% 0.00%

Metric

Table 12: Effects of clean set size on Trojan mitigation task.

Samples Per Class BA ASR
5 91.03% 0.08%

10 91.79% 0.04%

50 91.66% 0.02%

100 91.66% 0.06%

ISSBA [9]. This attack utilizes an encoder-decoder network to generate sample-specific triggers.
The generated triggers are invisible noises. The generated noises also contain the information of a
representative string of the target label. The threat model of this attack is that the attacker can only
poison the training data, but can not control other components in training (e.g., the loss function).
Following the original paper, we poison 10% training data in our experiments.

A.4 Ablation Study on Trojan Mitigation

In this section, we study the performance of FEATURERE under different constrain values and
different numbers of used clean samples. The attack used in this section is WaNet [7].

Influence of constrain values. To investigate the influence constrain values (i.e., 7, 72, and 73) on
the Trojan mitigation performance, We vary 7; from 0.05 to 0.35, change 7 from 0.10 to 0.50, and
tune 73 from 1% of the whole feature space to 7% of the whole feature space. We collect the BA
and ASR of the mitigated models and report them in Table 11. The results show that the mitigation
performance of FEATURERE is not sensitive to 7; and 7». For 73, when the size of the Trojan
hyperplane is extremely small (e.g., 1% of the feature space), the ASR is high. This is understandable
because breaking an extremely small feature space Trojan hyperplane means flipping a very small
number of neurons, and it is not enough to completely remove the Trojans in the model. Therefore,
we set the default value of the hyperplane’s size as 5% of the feature space.

Number of clean reference samples. To understand the influence of clean set size on the Trojan
mitigation task, we vary the number of used clean samples from 5 per class to 100 per class and
report the BA and ASR of mitigated model. The results in Table 12 demonstrate that the performance
of FEATURERE is robust when the number of used samples changes.

A.5 Visualization of Reverse-Engineered Trojans

To understand our method and study if it can reverse-engineer Trojans accurately, we visualize the
inputs and inner features of clean samples, real Trojan samples, and reversed Trojan samples on nine
randomly selected samples in Fig. 4. The model is ResNet18 injected with Filter Trojan [20], Blend
Trojan [24] and SIG Trojan [27]. In the feature space, the reverse-engineered Trojan is close to the
real Trojan, demonstrating the effectiveness of our reverse-engineering method.

A.6 Generalization

Performance on mitigation task for more attacks. To measure the effectiveness of FEATURERE on
Trojan mitigation task, we use more Trojan attacks and report BA and ASR of our method. Besides
the results of BadNets [1], Filter [20], WaNet [7] and IA [8] in Table 5, in Table 13, we also show
the BA and ASR on LS [1], CL [26] and SIG [27]. The dataset and the model used is CIFAR-10
and ResNet18, respectively. For LS, CL, and SIG, the ASR of FEATURERE is 1.15%, 2.62%, and
1.22%, which are 80.01, 33.18, and 81.22 times lower than that of undefended models. As can be
observed, FEATURERE can effectively reduce the ASR while keeping the BA nearly unchanged.
Thus, FEATURERE is robust to different attacks on mitigation task.

19

Original Real Trojan Reversed Trojan

Input Space

S
[<5]
= -
[4
o A - E == =L
Q
h5od = = = — - - o
o
[92] -
" -
o ¢ g I K
5 - 3 - L2 3
- X - — =
= 3 3 : =
(5]
R =
Original
[
Q
@
o
w
b
>
[«
=
©
<
k) -
m | —1 -
(]
=) F - & o o <,
@©
o =
w
e - 8 | i i i
e
>
= = & S 2 =
©
S = =
L
Original
(b}
Q
©
o
wn
-
>
Q.
=
O
n

Feature Space

Fig. 4: Visualization of the input space and the feature space for original inputs, real Trojan inputs,
and reverse-engineered Trojan inputs.

20

Table 14: Detection accuracy on more models.

Table 13: Mitigation results for more attacks.
Attack VGGI16 ResNetl8 PRN18 LeNet 4Conv+2FC

Undefended FeatureRE

Attack BadNets 95% 95% 100% 100% 95%
BA ASR BA ASR Filter 90% 90% 95% 90% 100%

‘WaNet 90% 95% 90% 90% 95%

LS 93.66% 92.02% 92.86% 1.15% 1A 90% 90% 90% 95% 95%

CL 93.51% 86.94% 92.94% 2.62% LS 85% 90% 85% 80% 85%

SIG 93.73% 99.09% 93.47% 1.22% CL 80% 85% 85% 80% 90%

SIG 95% 95% 90% 90% 90%

Generalization to different models. To understand the generalization of FEATURERE to different
model architectures, we evaluate its detection accuracy on BadNets [1], Filter [20], WaNet [7],
IA [8], LS [1], CL [26], and SIG [27] attacks using VGG16 [72], ResNet18 [61], Preact-ResNet18
(PRN18) [60], LeNet5 [56], and 4Conv+2FC [51]. The results are summarized in Table 14. In
Table 15, we also report FEATURERE’s performance on a larger model (i.e., Wide-ResNet34 [73]).
In all settings, the detection accuracy is above 80%, and the average detection accuracy on VGG16,
ResNet18, and PRN18 is 89.26%, 91.43%, and 90.71%, respectively. FEATURERE achieves high
detection accuracy on all different models, demonstrating it is generalizable to different model
architectures and larger models.

Generalization to large input size. To see if FEATURERE can generalize to large datasets, we report
its accuracy on the ImageNette! dataset under different attacks. The input size of ImageNette is 3 x
224 x 224. The model architecture used here is Wide-ResNet34 [73]. For each attack, we have 5
Trojaned models. We also train 5 benign models. The results are in Table 15. For all different attacks,
the detection accuracy of FEATURERE is above 80%. The average detection accuracy on a large
input size is 91.43%. Thus, our method can generalize to large input sizes.

Table 15: Detection accuracy on large input size.

Attack TP FP FN TN Acc

100%
90%
90%
100%
80%
80%
100%

BadNets
Filter

5
4
4
1A 5
3
3
5

[=NeNeleNoNoeRel
OO ==
W b b v

A.7 Efficiency

In this section, we measure the efficiency of FEATURERE. Like existing reverse-engineering meth-
ods [19, 22, 23], it scans all labels. We optimize this process with a K-arm scheduler [21], which
uses the Multi-Arm Bandit to iteratively and stochastically select the most promising labels for
optimization. We measure the average runtime on the CIFAR-10 and ImageNet datasets. The model
used is ResNet18. The running time on CIFAR-10 and ImageNet are 530.8s and 8934.5s, respectively.

A.8 Discussions

One finding we have is that using later layers to conduct the reverse-engineering is relatively better
than using earlier layers (more results and details can be found in § 4.5). We also found that
FEATURERE’s performance under the clean-label attack is relatively worse than that of other attacks.
We suspect this is because the benign and Trojan features of the clean-label attack are highly mixed.
As a consequence, the clean label attack has lower ASR than other attacks. For example, the ASR of
the clean-label attack and BadNets are 86.94% and 100.00%, respectively.

"https://github.com/fastai/imagenette

21

	Introduction
	Background & Motivation
	Methodology
	Threat Model
	Observation
	Feature Space Trojan Hyperplane Reverse-engineering
	Trojan Mitigation

	Experiments and Results
	Experiment Setup.
	Effectiveness on Trojan Detection
	Effectiveness on Trojan Mitigation
	Ablation Study
	Discussion for Model Split
	Adaptive Attack

	Discussion
	Conclusion
	Appendix
	More details of Algorithm 1
	Details of Datasets
	Details of Attacks
	Ablation Study on Trojan Mitigation
	Visualization of Reverse-Engineered Trojans
	Generalization
	Efficiency
	Discussions

