A Additional Related Work

In this section we provide further discussion of the related works.

Convergence of FedAvg. The convergence of FedAvg, also known as Local SGD, has been the
subject of intense study in recent years due to the algorithm’s effectiveness combined with the
difficulties of analyzing it. In homogeneous data settings, local updates are easier to reconcile with
solving the global objective, allowing much progress to be made in understanding convergence rates in
this case [2H4, |62H66]]. In the heterogeneous case multiple works have shown that FedAvg with fixed
learning rate may not solve the global objective because the local updates induce a non-vanishing bias
by drifting towards local solutions, even with full gradient steps and and strongly convex objectives
[5H9, 116} 20l 167, 168]]. As a remedy, several papers have analyzed FedAvg with learning rate that
decays over communication rounds, and have shown that this approach indeed reaches a stationary
point of the global objective, but at sublinear rates [} [14-17]] that can be strictly slower than the
convergence rates of D-SGD [5,[18]. Sublinear convergence rates to stationary points of the global
objective have also been shown for gossip algorithms that generalize FedAvg when operating on
time-varying communication graphs [69471]], but these rates have exponential dependence on M and
T.

Another line of work has shown that in overparameterized settings with strongly convex losses,
FedAvg achieves linear convergence to the global optimum [[15, [17]]. We consider more challenging
nonconvex losses, and our setting is not overparameterized in the same sense (in these works
overparameterized implies that the model class contains a single model that achieves zero loss for all
clients). Lastly, like our work, [[72] empirically observed that FedAvg learns strong representations,
but relative to local-only training (i.e., without any communication), thus they did not study the role
of local updates between communication rounds in learning representations, nor did they provide
theoretical analysis.

Multi-task representation learning. Multiple works have studied the multi-task linear representa-
tion learning setting [39]] in recent years. [41] and [42]] give statistical rates for a method-of-moments
estimator for learning the representation and [45]] analyze a projection and eigen-weighting based
algorithm designed for the case in which ground-truth representation is unknown. Other works have
studied alternating minimization procedures for learning col(B.) in the context of meta-learning [43]],
federated learning [11], and differentially private optimization [46]. However, these methods require
a unique head for each client, which greatly simplifies the analysis since head diversity is guaranteed
prior to local updates and is not applicable to some cross-device FL settings which cannot tolerate
stateful clients. Outside of the multi-task linear regression setting, [73]] and [74] have demonstrated
the necessity of task diversity to learning generalizable representations from a learning theoretic
perspective, and [40] considered the statistical rates of representation learning by solving an ERM
with unique heads per task.
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B Proof of Theorem Main Results

B.1 Proof of Theorem[]

In this section we provide the proof of Theorem[I] We make use of the notations in Table|[T]

Table 1: Notations.

Notation Definition
0.5 1 M = = \T
u it (37 Sy (Wi = W) (we = ) T)
Linax max;e(pr] || Wi |2, note that Lyay == Lk where L is defined in Assumption
Kmax Lmax/p, note that Ky = kv'k where & is defined in Assumption
_ 1 M
V_V* ? Zi:l W*,i
Wit m 2uieT, Wi

Bt,i,sa Wii,s
Bt,i,Ov Wi¢,i,0
€ti,s

t,i,s

the results of s local updates of the global model at round ¢ by the i-th client
B, w,, respectively

B; sWi s — B.w, ;,i.e. product error for s-th local update for task 4, round ¢
(Btis+1 — Biis)/a,suchthat By 5411 = Byis — aGys

(Bt+1 — Bt)/Oé, such that Bt+1 = Bt — O[Gt

I, — aB/ B,

I; — aB;B/

dist(By¢, By)

diSto

1 — distg

column space of B, orthogonal complement to column space of B, respectively

Here the local updates are given by

-
Biist1i =Biis—aByisweis — B*W*,i)wt,z‘,s

T
Wtis+1 = Wtis — oB

t,1,s

(Br,i,sWtiis = Buw.s)

T
t,i,s

=A¢;sWeis +aB,, Bow,

and the global updates are given by

1
Bij1 = o g B
i€,

_ 1
Witl1 = o, g Wiir-

1€Ly

First we control the ground-truth heads sampled on each round.
Lemma 1. Suppose m > min(M, 20((7/1)? + (H/L)*)(aLVk)~*log(kT)). Then the event

|

1 = 2713
m Z Wi,i — Wi < 4o Lmaxv
€Ly
M
1 T 1 T 214
P E W iW, i = 27 g Wit W, || <4a Ly, Ve [T
€Ly =1

occurs with probability at least 1 — 4(kT) ™%, where Ly := LVE.

Proof. 1f m = M then Ag holds almost surely. Otherwise, first let W, ; := diag(w. ;) € R¥*%,
and let W, := L Zfil diag(w, ;). Forany t € [T], {W.;}iez, is a set of Hermitian matrices
sampled uniformly without replacement from {W. ; }ic(ar]s [Waill < Lk almost surely, and
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H fwl W, —W.,)?2 ‘ <4 Zf\il |Wi — W.||? = +2k by the triangle and Cauchy-Schwarz
inequalities and Definition |1} Thus, we can apply Theorem 1 in [75] to obtain

(ZW*Z W,

1€Ty
as long as t < Zm’yz\f/L. Choose t = 4ma?L3k"®. Note that indeed t < 2m~y%Vk since
=z Zz 1 M Zl L, (W*J' — W) (Wi — W.) w; > p?, where w; is the I-th standard basis
Vector and o < 112 /(2L*k?). Thus we obtain

IP’( ZW*,i—v‘v*

> t> <2k exp(4m72k) (7N

> 4ma2L3k1'5> < 2kexp (774’”“?%2)

Bt
€Ty
( Z W.,— > 40’ LK"Y 5) < 2kexp (—1001log(kT))
i€y

since m > 20( z—Z) (a*L*k?)~log(kT). An analogous argument, without needing to lift the matrices
to higher dimensions, yields

]P’( %Z (W*ZW — ZW*Z’W*1/>

1€y /=1
Union bounding, we obtain that H

> 4a2L4k2> < 2kexp (—1001log(kT))

W~ W, | < 40?L3"5 an

HE ez, (W*,iW*T,i — LS weew] )H < 4a®L*k? with probability at least

m 161

*,1/

1 — 4k exp(—1001og(kT)) = 1 — 4k=99T~100 Union bounding over all ¢ € [T] completes the
proof. O

Next we state and prove the version of Theorem|[I| with explicit constants. Note that the constants are
not optimized.

Theorem 2 (FedAvg Representation Learning). Consider the case that each client takes gradient
steps with respect to their population loss f;(B,w) = | Bw — B,w. ;||? and all losses are
weighted equally in the global objective. Suppose Assumptlons[Z]and lhold the number of clients
participating each round satisfies m > min(M,20((v/z)? + (H/L)*)(aLVk) *log(kT)), and
the initial parameters satisfy (i) 6o = dist(Bo,B.) < 1—FEq for any Ey € (0,1], (zz) T —

aBg Boll2 < o?7L%k2k? and (iii) ||woll2 < o?57L3k'5. Choose step size o < m.

Then for any € € (0, 1), the distance of the representation learned by FedAvg with T > 2 local
updates satisfies dist(Br, B..) < € after at most

T< m log(1/e)

communication rounds with probability at least 1 — 4(kT)~%°

Proof. In this proof we use the notation L,y := Lk and Kmax ‘= xV'k. First we condition on
the event Ay, which occurs with probability at least 1 — 4(kT") =% by Lemma |1} Conditioned on
this event, we will show that that the following two sets of inductive hypotheses hold for all s € [r],
1 € Iy, and t € [T]. The first set of inductive hypotheses controls local behavior. We apply the below
local induction in parallel for each client ¢ € [M] at every communication round ¢ > 0, starting from
the base case s = 1.

Lo Argi(s) = {lIweiw — aBJ, o 1Buw.illa < deso® 7L3 (k2 Byt Vs €
{1,...,s}}

2. Agri(s) = {lWeislle < 20° Linax Vs €{1,...,s}}
3. Azi(s) = {|Ariell2 < 2c30°TL7 Ejt Vs e{l,...,s}}

max IIl ax
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4. Ayyi(s) = {dist(By,,s,Bs) <1.1dist(B;,B.) Vs €{1,...,s}}

The second set of inductions controls the global behavior, starting from ¢ = 1 as the base case:

LA (t) = {|we — a(lx + Ap)B]BuW. p|l2 < 91a>57L3 W' € {1,...,t}}
2. As(t) = {|lwell2 € 2a%5Lpax V' € {1,...,t}}

3. As(t) = {|Ap |2 < c3®TL2 K2 Byt V€ {1,...,t}}

4. Ag(t) = {|IB] By < (1 - 0.040?r4°Eo)|B]  By_1]2 V' € {1,....t}}
5. As(t) = {dist; < (1 — 0.04a27p?Ep)'=1 Wt € {1,...,t}}

1—60
C3\/FLmaxH1211ax ’
refer to cg symbolically rather than by its value throughout the proof.

where c3 = 4800. Without loss of generality let o < For ease of presentation we

The above inductions are applied in the following manner. First, the global initialization at ¢ = 0
implies that the local inductive hypotheses hold after one local update (the base case). Then, by the
local inductive argument, these conditions continue to hold for all subsequent local updates. This
in turn implies that the global inductive hypotheses hold after the first global averaging step, i.e.
A1(1), A5(1) and A3(1) hold. Next, the global hypotheses holding at ¢ = 1 implies that the local
inductions hold in their base case at t = 1 (after one local update, i.e. s = 1), which implies they
continue to hold for all subsequent local updates. Again, this implies the global hypotheses hold at
t = 2, which implies the base case for the local inductions at ¢ = 2, and so on. In summary, the
ordering of the inductions is:

Initialization at t =0 — Local inductions at t=0 — Global inductions at t=1
— Local inductions at t=1 — ...

We start by showing that the base case s = 1 holds for the local inductions. The proof is identical for
alli € [M]andt > 0.

 If ¢ = O: initial conditions = A; ; (1), else Ax(t) N A3(t) = A1 4.:(1).

Note that at initialization, [Aowo| < ||Aoll|wol < o?57L3, K2 <

— max rnax
desa®PTL3, K2 Eo . Likewise, at arbitrary t, [|Aywy| < 4eza®7L3 w2, Eyt

due to Ay (t) and A3 (t). Thus, since wy ;1 = Ayw; + aB/ B,w, ;, we have

QQTLS

max m ax

||wt,i,1 — OLB;I—B

E_
as desired (recall that B, ; o = By).

o If ¢ = 0: initial conditions N A; ;;(1) = A2..:(1), else A3(t) N A14,(1) =
As (1),

For any ¢ > 0, we have ||A|| < c3a?TL2 Ey*! due to either the initialization

max de

(t = 0) or As(t) (t > 0). This implies that ||B;| < \/HCW TL“{‘;" a0 | < \l/—é since
« is sufficiently small (noting that (1;3((?) (175) < 1. Now we use A ;(1) and the

triangle inequality to obtain:

[Weinll < |wii1 — aB{ Bow. z|| + [laB; B.w, |
S 463042 5TL&mmx 111'1xE + a”Bt H ||W* 1”
< 2\/aLmax~
as desired.

* If ¢ = 0: initial conditions =—> A3 (1), else Ay(t) N A3(t) = Asz:(1).
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We have
Ay =TI — OlBtT,i,lBt,i,l
= At + OZQB:(BtWt - B*W*,Z)W:
+a’B/ (Biw; — Buw.))w, — o’wiw/ [Biw, — Bow, 5 (8)

By the initial conditions and by inductive hypotheses A;(t) and Ax(t), for any ¢ > 0 we
have [|[wl|2 < 2y/QLmax, [| A < csa?7L2,, k%, Ey ', and |By||2 < 4L, This implies

max'"max NS
IBiw; — Baw, ill2 < ||Bel|||wel| + |IBawWa i|| < 3.2Lpax. Therefore using (B), we obtain

[A¢iallz < A2 + 207 B (Biwy — Bow, )W/ [l2 + o | w3 Bew; — Bow, |3

< || A2 + 1502 L2, + 41a* L2

max max

< 2c3a’TL2 K2 EO_1 )]

max’ "max

as desired.

* If t = O: initial conditions —> A, ;(1),else A3, (1) N Az(t) N A3(t) = Ass4(1).
Note that
B, 1 Beialla= B, Be(Ix—awew/ )2 < B, Bef[[Tr—aww; |2 < B, | Byl
as af|w;||? < 1 by either the initialization (if t = 0) or Ay(t) (if ¢ > 1) and the choice of

a sufficiently small. Thus, letting Em,lRt,m = By ;,1 denote the QR-decomposition of
B, 1, we have

dist(Be,i1,B.) = |B]  Brill
-
< o'min(}l-)’t,i,l) HB*’J—Bt’i’l

T
< ”u’xin(}?’t‘i,l) HB*vLBt H2

2

B .
< Gl dist(B;, B.)

1+C3a2’rL[2nax;{r2naxE*1 .
= \/1_2630‘27L3mm2nax£01 disty (10)
< 1.1dist(By, By) (11

where the follows by As ;;(1) and either the initial condition on || A (if ¢ = 0) or
As(t) (if t > 0), and (TI)) follows as « is sufficiently small.

Now we show that the global inductions hold at global round ¢ = 1 following the local updates at
round ¢ = 0.

« Initialization ﬂ( miEIo Al,O,i(T) N A2,0,i(7-) N A3,0,i(7-)) — Al(l) N Ag(l) N A4(1) N
As(1).

To show each of these hypotheses hold we can apply the proofs of Lemmas [6] [7][9] and [IT]
respectively, since they only rely on inductive hypotheses A; o,;(7), A2,0:(7) and Az ¢ ;(T)
and appropriate scaling of ||By|| and ||wg||, which is guaranteed by the initialization. In
particular, the proof of these inductive hypotheses is identical for all £ > 1.

 Initialization ﬂ( Niez, A2707i(7') N A3707i(7')) - Ag(l).

In the proof of A5 (t) fort > 2 (Lemma@) we leverage the fact that w;_; is close to a matrix
times the average of the W, ;1. Our initialization cannot guarantee that this holds for wy.
Instead, we show that || A1 || may increase from ||Ag]| at a large rate that would cause || A;||
to blow up if continued indefinitely, but since it only grows at this rate for the first round,
this is ok. In particular, let Gy = é(BO — Bj) such that B; = By — aGg. Then

A = Ag+a’B] Go + a’GJ By — a*G{ Gy
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Moreover,

1Goll =

ZZBO'LSWO’LS Bw*l)wolg

zEIo s=0

by the initialization and Az ¢ ;(7) and As ¢ ;(7), thus
IBg Goll <87L%. Gy Goll < 49ar?Ly,,.

which implies that ||Aq]] < ||Ag|| + 10a27L?

< TVaTLy

2

max Hl ax

< c3aTL? Ey ! as desired.

max —

Assume that the inductive hypotheses hold up to time ¢ and local round s > 1. We first show that the
local inductive hypotheses hold for local round s + 1. Then, we show that the global inductions hold
at time ¢ + 1. This is achieved by the following lemmas.

Local inductions.

© Ag1i(s) N Asyi(s) = Augi(s+1). This is Lemma[2]
e Ar1i(s+1)NAzsi(s)NAssi(s) = Aayi(s+1). Thisis Lemma
© As1i(s) N Asyi(s) = Asyi(s+1). This is Lemmad]
© Ag1i(s) M Aspi(s+1)NAs(t) = Asyi(s+ 1). This is Lemmal[d]
Global inductions.
* Niez, (A1ei(T7 — 1) N Agei(m — 1)) N AL (t) N Ax(t) N Ag(t) = Ay(t + 1). This is
Lemmal6l
* Niez, A21:(T) = Az(t +1). This is Lemma
° mqjezt ( ﬂ;ﬁ:l Ah,t,z’ (T)) N Al(t) N A2 (t) n A3 (t) N A5 (t) — Ag(t + 1) This is Lemma

o ﬂiEIt (Al,tyi(’r) N AQ,M(T) n Agyt’i(’r)) N Ag(t) N Ag(t) — A4(t + 1) This is Lemma
110

o As(t+1)NAs(t+1) N As(t) = As(t+ 1). This is Lemmal[l1]

These inductions complete the proof. O

Lemma 2. A27t,z’(s) N A37t71‘(8) — Al,t,i(s + 1)

Proof. Since Wy ; s41 = Ay sWiis + oBJ B.w. ;, we have

t,i,s
Baw.ill = [[Asi,sWiis|2
< NAvisllweisl2

< 4esa?S7L3 K2 (12)

max max

||Wt7i78+1 aB;rz s

where the last inequality follows by Ay ; ;(s) and Ag ¢ ;(s). O
Lemma 3. Al,t,i(s -+ 1) n A3,t,i(5) et AQ,t’i(S -+ 1)

Proof. Note that by the triangle inequality,

Wt sl < [IWeise1 — aBl Bawei|| + [aB; Baw. |
< Ae30 0T LG chiman By |+ 0B Baw | (13)
<deza® L3 k2 Byt 4 11y aLnax (14)
< 2V/@Linax
where (T3) follows by A; . ;(s) and (T4) follows by the fact that || By ; s < T by As+(s), and
choice of a < (1 — 6)(c3v/T LinaxkZax) - -
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Lemma 4. A27m(s) n A3$t7¢(8) — Ag’t’i(s + 1)

Proof. Lete,; s =By ; Wi — B.w,;and Gy s == e ; sWy ;. We have
Atzs—&-l—Atzs"'O‘BtléGtzs"'aG Btzs O‘G Gtzs

We use Az ;(s) and As ; ;(s) throughout the proof. Recall that As ¢ ;(s) directly implies || By ; 5| <
%. This bound as well as the bound on ||w ; || from As ; ;(s) and the Cauchy Schwarz inequality

implies ||€; s|| < 3.2Lmax and [|Gyi 5|2 < Tv/aL? ., thus |0G/, Gy sl < 49a* L2 .. Next,
B/, .Giis =B/,

t,4,s t,4,s

max’ t,1,s

T
et2§wt75

T
aBt i, s€t,i, Sw B Bt ,i,8—1 + Bt Ji, set-,i,Swt i sflAtyi,Sfl

aBt i, s€t,1, SW B Bt 1,8 + aBt i, s©€t.,i, sW B (Bt,i,sfl - Bt,i,s)
+B/

T
t,1 set%swt}i,silAt:i,S*l

where, by the Cauchy-Schwarz inequality and Az ¢ ;(s) and As 4 :(s)

HO‘Bt 1i,5Cti,s Wy BT(Bt is—1— Bris)| = 2HBt 1,5, SW B Ct,i,5— IW;rz sl < 230‘2Lfnaxa
B/ et Wi o 1Aismill < 1530 T Ly maXE g (15)
and
laB/; serisw, BIB .l
= [l®B, i th,i,sB:i_s_lB*W*,iWT'BTBt is — B/ i SB*W*,Z-W*T_’iB*TBm-,S
+a2Btszt25Atzs 1We s 1W B!B..
=| - el B/, B.w,;w/ Bl BHS
+ CYQBt isBtis(Bris—1 — By, s) B*W* iWT‘B*TBt,i,s
+a’B/; Byis
< afA eBt i sB*W*,iW*JB* Bt,i,s”
+a? HBt i th,i,sWt,i,sf
+0?|B, BrisAis1Wei 1w, BBy
= Tes®TLE K fnaXE +9a%L% . (16)
Thus,
1Az stz < 2||Bm,c;mu+oﬁ||c;,mc;m\|
<| maxfimax 20+ 810" Loy
< || A2 + 46030447'21/;1“&,( w2 ot + 8la TLfnax
< ezd®TLE K maxE + 46¢c3a T2 L | K maXE + 8la*rLd
< 2¢302 TLmaX maXE_ (17)
by choice of c3 and « sufficiently small. O
Lemma5. Ay, (s)NAs;i(s+1)NAs(t) = Assi(s+1).
Proof. Note that
IB) 1 Bristilla =B Bris(e — awyi oW/, ()l
< B, 1 Beisl-
< [IB)  Bll2 (18)
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where the first inequality follows since ||W¢ ;|| < 2v/aLmax (by A2 :(s)) and « is sufficiently
small, and the last inequality follows by recursively applying the first inequality for all local iterations
leading up to s. Thus

max'Vmax

B 2 2 2 —1
disty ;s < ”f”2) dist; < \/ Les0 T hnaxmmas e gist, < 2 dist, .

— _ 272 2 —1
Umin( tis 1—2c3a?7L K Eg

O
Lemma 6. Niez, (A2,t’i(7— — 1) N Ag’t’i(T — 1)) n Ag(t) n A3(t) — A (t + 1).
Proof. Expanding w,; yields
Wit1 = % Z Wi,
i€,
= % Z At,i,‘rflwt,i,'rfl + aBIi,Tle*W*ﬂ'
i€T,
= OéB;rB*V_V*,t + % Z At,i,f—lwt,i,‘r—l + a(Bt,i,T—l - Bt)TB*W*,i
i€,
1
= Z a(By; -1 —By) ' Buw,; + aAt,i,T—lBZiﬂ—_gB*W*,i
€Ly
+ a1 A oW o+ aB/ Bow.
= aB/ B,W.; +aA,;B/ B,W.,
+ 23 a(Briro1 — B) ' Buw. i+ (A, 1B/, — AB/)Buw.;
i€l
F AL 1A oW 2
=aB/, | B.W. 111 + a1 B BoW. i1
+ OéBtTHB*(W*,t — Witt1) + OéAt+1B:+1B*(V_V*,t — Wi t41)
+a(B; — Bt+1)TB*V_V*,t +a(AB; — At+1Bt+1)TB*V_V*,t
+ 23 a(Brir—1 — B) ' Buw. i+ (A, 1B/, — AB/)Buw.;
€Ly
F AL 1A oW 2 (19)

The remainder of the proof lies in bounding the error terms, which are all terms in the RHS of (I9)
besides the terms in the first line. First, by A( and the triangle inequality, we have

Wt = Wt || < ([ We = W[ 4 [ W1 — W || < 8P L

Thus, by As(t + 1), we have

[aBy 1 Bu(Wap = W) || < LIV Wy — W] < 90> L

max

A 1B Bu(Wap — Wopi1)]| < LIV Appr |[[Wae — Wopg || < 18c3a 7L k2 Eg

max’ "max

Next, we can bound the difference between the locally-updated representation and the global repre-
sentation as follows, forany s € {1,...,7}

S S
IBeis —Bila <D IBrir —Briroilla <@ llewir Wi, 1lla < 7aPsL2,.  (20)

r=1 r=1
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using A (t), A3(t), Aai(7 — 1) and Ag ¢ (7 — 1) to control the norms of wy; s—1 and By ; 1.
From (20) it follows that

IBis1 =Bl < 2> By — Bylla < 70! L2

max
€Ly

IB¢,i,r—2 — Bell2 + Oé||Bt,i,r—thT,i,T—lBt,i,T—l - BB/ B2
<||Btir—2 — Bill2 + of[(Beir—2 — Bt)BZi,T_lBt,i,T—1||2
+a|B¢(Byir—1 — Bt)TBt,z‘,rAHz
+a|B:B/ (Brir-1 — Bl
< |Btir—2 — Bil2 + @ Brir—2 — Be[|[| B/ ir—1Btir—1l2
+ a|Bel|Bti,r—1 — Bell[[Bei,r—1ll2
+a|/BB/ [[[Brir—1 — Bl
< 3la'’rL32

max

||BtAt - Bt+1At+1H2 S 31041 57’L2

max

Also, we have by Ay, ;(7 — 1) and Az, ;(7 — 1),
A1 oWt i o2 < 8c3a*ST2LY E2. (22)

max III dX

IBtir—2l¢ir—1—BiAy|2

IN

2y

Thus, using these bounds with (T9), we obtain

[West = a(ls + Apy1)BL BuWa piall2 < 820°57L7 , + (8¢5 + 12¢3)0" T2 L, Ko Bg
<91a®57L3
to complete the proof, where we have used that « is sufficiently small in the last inequality. O

Lemma 7. miGItAQ,t,i (T) — A2 (t + 1)
Proof. By the triangle inequality and N;ez, A2 4,:(7), we have

Wil = Hm S Wi € 2 weir ]l < 2Vl

€T, €Ty
as desired. -
Lemma 8. A3(t) N Ay(t) = 02,;,(B/B.) > %LE,,

Proof. First note that

min Jr2ni min
> 09,2 (B/B,) (23)
= 591 — B B. L|3)
09(1 — dist}) (24)

where B;R; = B, is the QR factorization of B;. Next, we would like to show the RHS is at most
(24 60)/3. Using A3(t) and A4(t), we obtain

diStt = HBIlBtHQ
55 IBI LB,

O'mln(Bf

< m(l — 0.040’7Eop®)!| B, | By
< Zmax(Bol (1 — 0,040 Eop?)'do

LH[Aoll2/va g
VioAdz/va O
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Next we use that ||Ag|| < a?7L2
and similarly ||A;|| < o?7L2

. ax max < 0.1(1 — dp)? by choice of initialization and choice of a,
2 Fra Byt < 0.1(1—80)2/(1 — 82). Let ¢ := 0.1. Then we have

V1A /Va s < V1He(1=80)%
V- I\Atll2/f = /1-c(1-60)%/(1-62)

_ T+c(1—00)2

V1—c(1=80)/(1+30) °
_ \/14+80+c(1-80)2(1+40)
- \/175+(1+c)50

0

0

Now, observe that

V/1+80+c(1—80)2(1+80)
\/lfc+(1+c)60

14+804c(1—80)> (1+50)62 4+460+383
1—c+(14c)do 9

= (14+¢)85 + 05 — cdg + cdfy < (4 — dc+ 850 + 853 + (1 +¢)53)/9

o
IN

2+3d¢
3

S

I A

= by — by + B8 + P05 — §d0 — € <0 (25)
where (23) holds for all 6y € [0,1) and ¢ = 0.1, therefore we have
\/1+||Ao /f 2460

disty \/W/\F 0o < = (26)

Thus, using (24), we obtain

B/B.)

v
o

InlIl (

79 (1 _ 4+4590+5§>
22 (1 246)

0.9
9o £20
L5,

as desired. L]
Lemma 9. Nicz, ( ﬂ%,:1 Ah,t,i(7)> N Al(t> n Ag(t) n Ag(t) n A5(t) - A3<t + 1).

v
(=)

Proof. We aim to write A; 1 = (Ik —-PHA, +1 5A¢(Ix —Py) + Z; for a positive definite matrix
P, and a perturbation matrix Z;. Thls will yield the 1nequahty A1z < (1 = Amin(Pe) | A2 +
|Z¢||2. Assuming Apin (P¢) and ||Z;||2 scale appropriately (defined later), this inequality combined
with inductive hypothesis A5(t) will give the desired upper bound on ||A;1]|2 (this is because
the upper bound on ||Z;|| scales with dist;, so A5(¢) contributes to controlling ||Z¢||2). The proof
therefore relies on showing the existence of appropriate P, and Z;.

First recall A; :==I—aB/ B, and A; :=I; — aB;B/. Let G; := 1 (B; — B;11), i.e. G satisfies
Bt+1 = Bt — aGt. Then

Ai =1y —aB/, By = Ay + B/ Gy + o°G/ B, — ¢*’G/ G, (27)
The key is showing that o’B,| G; = —1 AP+ Z] for appropriate P; and Z;. Then, by (7)), we will
have A1 = %(Ik —P)A+ %At(Ik —P,) +Z; as desired, where Z; = Z, + (Z})" — *G/ G.

Notice that G, is the average across clients of the sum of their local gradients on every local update.
In particular, we have

G, = (B,w, — B,w.,)w/ + Z Z By sWiis — Bawy )Wy, (28)
i€Zy s=1

We will unroll the gradients for the first two local updates only, in order to obtain a negative term that
will contribute to the contraction of || A|| (i.e. P; will be extracted from the gradients for the first
two local updates). The remaining terms will belong to Z; and must be upper bounded (i.e. || A1
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can grow due to local updates beyond the second local update, but we will show that it can’t grow too
much). In particular, we have

— T 1 T
G = (Biw; —Buw. )W) + 5 > (Briiwein — Bawa i)W,
i€l

T—1
1 T
+ E § (Bt,i,sWiis — Buws i)Wy,

€Ly s=2

= T A 1 § TRT A — T
= (BtWt — B*W*,t)wt — CVAtB*E W*J'VV*J-B,'< Bt — AtB*W*tht At
1€T

1 2 TRT T
+ E a”(Biwy — Buw, ;)w, B, B.w. iw, ;|
i€,

Multiplying both sides by B, , and using the fact that B/ A; = A;B/, we obtain

T T — T T 1 E TRT T = T
Bt Gt = Bt (Btwt — B*W*’t)Wt — OéAtBt B*E W*’iw*’iB* Bt — AtBt B*W*’twt At
i€Ly
T1 2 TRpT T
-B, - E a”(Biwy — Buw, ;) )w, B, Baw, iw, ;|
1€Ty

+ B:% Z(Bt —a(Byw, — B*WM-)W;F)A,gw,gWIL1
icZ,

T—1
T1 T
+B; o E E (Bii,sWieis — Bawa i)Wy ;
I€T; 5=2

-aAB/B, L Z w,iw, BB, + N, (29)
€Ly
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where the first term is a negative term that helps ||A,1] stay small, and the remaining terms are
given by

N; = B/ (Byw; — B.%.)w, — A;B/B.w. ,w/ A,

T1 2 TrT T
-B, a”(Biw; — Buw, i)w, B, B.w. ;w;
€Ty
T1 T T
+B, o § :(Bt —a(Biwy — Baw,i)w, ) Awiw,
ie€T,
T7—1
T1 T
+ Bt m E E (Bt,i,swt,i,s - B*W*,i)wt%s
i€Ty s=2
T — T T 1 T
=B, (Biw; — B.W.)w, +B, BiAyw, - E Wil
€Ly
T1 2 TRT T
-B; . E a”(Byw; — Buw, ;)w, B, Buw, ;w,;
1€Ty
T1 T T
-B, E a(Biw; — Buw, i) w, Aywyw, ;g
1€Ty

T—1
T — T T1 § : § : T
- AtBt B*w*,twt At + Bt m (Bt,i,swt,i,s - B*W*,i)wtms

1€Ly s=2
T = T T =1 pT
= Bt (Btwt - B*W*,t)wt + OéBt BtAtth*,tB* Bt

=E;
1 T T T
~m E aB; (Bywi — Buw., i)W, WeiaW, ;)
1€Ty
=:E>

T—1
+AB! (Biw; - B.W.)w, A +B/ LN (B owiis — Buowaa)w/, o (30)

i€Ly s=2

::E3

::E4

To get from the first to the second equation we expanded the fourth term in the first equation. Now
we need to upper bound the spectral norm of each of the terms E;. The matrices Eo and E3 are
straightforward to control; we will take care of them shortly. For now we are concerned with E;. In
order to control this matrix, we must use the fact that w; is close to a matrix times W, ;. This will
allow us to subsume the dominant term from E; into the negative term in (29). In particular, note
that by A; (t), we have w; = aB/ B, W, ; + aA;B; B.W. ; + hy, where [[hy||2 < 91a?57L3 .
This implies that

B, (B;w; — B,W. ) = B, (aB;B/ B.w. ; — B.W. ;) + aA;B/ B,B/ B,w., + B/ B;h;
= -A,B/B.%., +aAB/B,B/B.w,, + B/ B:h,
= -A/B/B.w.; + B/ Bh; (31)

Making this substitution in E;, we obtain,

E, = —-A;B/B.w.,w, + B/Bhyw, +aB/B,A,w,w, ,B]B,
=—-A7B,/B.w,,w/; + B/ Bhyw, — Ajw,w,/,B/B, + Aw,w,,B/B,
=-AB/B.w,,w/ + B/ Bhyw, — Ajw,w/ B/B,

+ A(aAB/B,W,; + h))w/ BB, + aA,B/ B.w,,w, ,B/B,. (32)
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The dominant term in @I) is the last term. Specifically, we have,
|E;—aA,B) B.w. W, BB,
< |AB]B.w. ;w/ | +[|B; Bihyw/ | + | Afw,w ], BIB|
+ [|Ai(aAB/B.W.; + h))w/] BB,
< ||AIB;B.w. ,w/ || + |Afw,w,] B/B,| + o|AB/B,w, W, ,B]B,|
+ B/ Bihyw, || + || Ahyw, BBl
<5528, kE L Eo? 2.2 x 91a?rLE 4 1.1 x 91lczat LS

max maxE_ (33)
< (206 4 101/c3)aTLE . (34)
where (33) follows by applying the Cauchy-Schwarz inequality to each of the terms in the previous

inequality, and using As(t), A3(t), and our bound on h; (from A;(t)), and (34) follows as « is
sufficiently small. The last first term term can be subsumed by completing a square as follows.

Combining (29), (30) and (32) yields

B/G;=—AB/B.L Y w. w/,B/B,+E —Ey;+E; + E,
1€Ly
=—aAB/B.2 Y w,,w],B/B, +aA,B/B.w, %, BB,
€Ly
+ (E; — aAB/B,w.,w,,B/B;) — E; + E3 + E4

= _aAtB;rB*% Z(W*z - V_V*,t)(w*,i - W*,t)TBIBt

1€Ly
(E1 - aAB/B,w. W ,B/B)—E; +E; + E4
— 5z AP+ 57 (35)

where Py = 20°B/ B Y7 (Wayi — Woy)(Wa s — Way) ' B] By and
Z, = o’ (E; — aAB; B,w, ;W ,B/B;) — ¢’E; + o’E3 + o’E4

we have performed the desired decomposition; it remains to show that Ay, (P;) and ||Z; || scale
appropriately. First we lower bound A, (P4).

>\min(Pt) - )\min (2043B;FB*7; Z(W*,L - W*,t)(w*,i - W*,t)TBIBt>

€Ty

Z Zago'min(B;rB*)QAmin (72 Z(W*,z - V_V*,t)(w*,i - V_V*,t)T>

€Ly

> 0.20{2E0Amin <'nl'7, Z(W*’Z - W*,t)(w*,i - W*,t)T> (36)

i€y

i=1

M
> 0~2a2E0)\min <J&I Z(W*,z - W*)(W*,z - W*)T>

—0.20%E,

M
1 T 1 T
m § :W*7iw*,i - M E Wi Wiy it

i€Ty /=1

— 0.2042E0Hw* twjt — v_v*v_v;rH

> 0.15a%FEop® — 6 Eg L (37
> 0.150°% Eop? (38)
where (36) follows by Lemma [§] (37) follows by Assumption [2] and Ay, and (38) follows as
a? < W' Now we upper bound ||Z||2. We have already upper bounded |E; —

max
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aAB/ B.w, ;w],B]B,| in (34). We next upper bound |Ez||2 and ||Es||2 by Aa(t), Az(t),
and Ay ; +(1). We have

[a®Eql2 < 32a*L2,

||O[2E3H2 < 28620[0T2L?nax maxE_
using the triangle and Cauchy-Schwarz inequalities. Now we turn to ||[a?Ey||2. Recall that Ey is
the sum of local gradients across all clients and all local updates beyond the first local update. We
show that these gradients are sufficiently small such that || A; 1|2 cannot grow beyond the desired
threshold.

Recall that E4, = Z:;zl BtT et,i,swz ise To bound this sum it is critical to control the evolution of
et,i,s- The idea is to split e, ; 5 into its projection onto col(B; ; s—1) ~ col(B;) and its projection
onto col(Btyiys_l)J- ~ col(Bt)J-. Then, we can show that the magnitude of the projection onto
col(By ; s—1) is going to zero very fast (the head is quickly learned, meaning it fits the product as
much as it can with what it has to work with, i.e. col(B; ; s_1)). On the other hand, the magnitude

of the projection onto col(Bm,S_l)l is slowly going to zero, since this reducing this error requires
changing the representation and the representation changes slower than the head. The saving grace is
that this error is proportional to dist(B; ; s—1, B.), which for all s is linearly converging to zero with
t.

To show this, plck any ¢ € 7Z; and let Bt .5, Reis denote the QR-factorization of B, ; ;. De-
ﬁneAtzs 1:—Bt7,s lBt15 1 aBtzs lB
o?w/, . B/, . B.w. ;. By expanding e ; ;, we find

. T
ti,s—1 and Wtyi,s—1 = awt,z,é—lAtﬂ’S*lwtﬂ»S +

€t.i,s

=(I;— aBt,i,s—lBZi7S_1 - aWtT,i,s_1At,i,s—1Wt,z‘,sId — OCQWZI‘,S_1B,Ii7s_1B*W*,iId)et,i,s—1
=(Ig— Bt,i,sfllg;lji,sfﬂet,i,sfl + (At,i,sfl —wiis—11d)eris—1

= (Id - Et,i,s—lﬁzi7s_1)et,i,s—l + (At,i,s—l - wt,i,s—lld) (Id - Et,i,s—QEL,sQ)et,i,s—2

+ (At,i,sfl - Wt,i,sflId) (At,i7572 - Wt,i,sf21d)et,i,572 (39)
Therefore,
T T A 5T
B, etis =B, (Is - Btai75—1Bt,i,s—1)efqiw‘?—l

+ B/ (Atis1 —wris—11a) (Lo — BrisaBl . )eriso
+ B/ (Atis—1 — wiis—114) (At,i,s—Q — wyis—2ld)er i s—2 (40)
For the first term, we have
||B2—(Id_]’3t,i,371]§;¢‘,571)et,i,sfl||2
< B/ o1 (Ta —Briw1Bl, o 1)ewis 1l
+ (Bt = Byis-1) (Ig— Bt,i,s—IB;i,s—l)et,i,s—l||2

= (Bt = Byis1) (Ig— Bt,i,sflﬁzi’sfl)et,i,sflH2 (41)
s—1

< |I(Ig — Bt,i,s—leiys_l)et,i,s—l l|2 Z IBtir —Biirill2 (42)
r=1

< 7(Ta = Bris 1B, o 1)Buwaillaa! 97L7 43)

< 8al 5TLI3MX disty (44)

where @) follows since B/, , (14 — B S,lBt is—1) = 0, [@2) follows using the Cauchy-
Schwarz and triangle inequalities, (@3) follows using that (I; — ]§t i,5— 1]3;1 s—1)Btis—1 =0
and applying Ay, ;(7) and As ; ;(7), @) follows by the fact that ||(I; — By 1Bt is—1)Bsll =
dist(By;,5, B«) < 1.1dist, by Ay . ;(7). For the second term in (@0), note that

|wt18 1‘<a|wtzs 1Atzs 1Wti,s— 1|+a2‘wtzs—lBtzs lB*W*ﬂ"

< 8czatrTLE K mde +2.2a1°L2
< 3aL?,, (45)
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As a result, we have

HB: (At,i,s—l - wt,i,s—lld) (Id - Bt,i,s—ZBILS_Q)et,i,s—QH2
<|IBf Ayiso1(Ly — Bt,i,s—QEZi,s—Q)et,i,s—QHQ
+ |wi i1 ||B/ (Tg — Bt,i,572BIi’572)et,i,572H2
< ||BtTAt,i,s—1(Id - Bt,i,s—zﬁ;,s_g)et,i,s—zHz
+33a" L7 (Ta = By s oB/; o) Baw. il2
< ”B;rAt,i,sfl(Id - Bt,z‘,sfzﬁ;,sfz)et,i,sfzHz

+3.7aM° L3 disty (46)

where (@6) follows by A4 ;(7), and

IBS Ayio1(Tg— Bt,i,s—QBIi,s—Z)et,i,s—QHQ
< ||B2—Bt,i,371]§;,571(1d - Bt,i,372]’3;|:i,572)et,i,sf2||2
+ QHB;rBt,i,s—le,—Ls_l(Id — Bt,i,s—QBILS_Q)et,i,s—QH2
=[B! Bris-1(R;} 1) B, o 1(Ta—BrioB/, , o)eri2ll2
+ OKHB;I—Bt,i,s—lBILs_l(Id — Bt,i,s—2BZ¢,s_2)et,i,s—2Hz

=a|B!Bris1(Ry} 1) "Weis2el, o o(Ta—BrioB/,  s)eris 2l

+ 042||B:Bt,i,s—1Wt,i,s—2ezl‘75_2(Id — Et,z‘,s—zﬁzm_g)et,i,s—z||2 47
< 44013 dist, (48)

where @7) follows since By ; s—2(Ig — Byis—2B/, ,_,) = 0 and (@) follows using the Cauchy-

Schwarz inequality, A3(t), Az:(7), As1:(7), and Ag ¢ (7). Next, recalling that Bt7i,th,i7s is the
QR-factorization of By ; s, we have, for any s,

AL s—1]l = IBris—1Bl 1 — oBris—1B],; . 4]

< ||Bt,i,sfl(1k - aRt,iysflRIi,s—l)EIi,s—lH

< |Ig — aRt,i,s—lRL,sqn

< max(|1 — ao;, (Beis—1)], |1 — aoh, (Bris—1)|) (49)
< max(|1 — aWL 1- O‘M)D

= ||A¢is—1]l

< 203a2TL§r1axH12naxE(;l (50)

where [@J) follows by Wey!’s inequality and (B0} follows by A3 ; ;(s — 1). Furthermore, || A; ;. 1 +
Wi is—1Lall < 2e302TL2 K20 Eo t 30212, < 3csa’TL2, k2. Ey " forany s. Thus, for the

max — max’ "max
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third term in (@0), for any s > 2,
||B;r (At,i,sfl - Wt,i,sflId) (At,i,572 - Wt,i,sf21d)et,i,572H2
= ||BtT(At,i,s—1 — Wi s—114) (At,i,s—Q - wt,i,s—QId)(At,i,s—B —wyis—sla)er s s—3ll2
+ B/ (At,i,s—l — wyis—114) (At,i,s—2 —wiis—2la) (Ta — Et,i,s—3B,Ii,s_3)et,i,s—3H2
< ||BT(Ati s—1 — Wti,s— 1Id) (At,i,s—2 — wt,z‘,s—QId)(At,i,s—3 —wyis—sla)er s s—3ll2

+10c3a3572 L3 Kk maxEO dist,

s
T -
S HBt H (At,i,s—r - Wt,i,s—rId)et,i,s—r

r=1 2

S

=+ 1062@3 5 2L§nax maxE’i2 dist, Z(ch)TOﬂTTTerrrax maxEO
r=0

10c3a3572L5 , K maXE 2 dist,
) 1 — 3c3a?7L2 Ejt

max max

S HB: H (At,i,sf'r - Wt,i,sfr]:d)et,i,sf'r
r=1
< 3.5 % (3c3)* OB L2 g2 Bos 4 15c2ad LD kh By 2 disty (51

and for s = 2 we have
|B; (Atis—1 = wiis—11a) (Aris—2 — wiis—2Ld) et i s—2ll2

< 3.5 % (3¢3)?a*P 205 kb B (52)
Thus, using ||[wW¢; s||2 < 2v/@Lmax with @0), @), @6), @8), (1), and (52), we have
T—1
”042]34”2 < 2042'5Lmax Z (3 5 x (303)2 25—0.5 SLIZ‘IIS:)_Cl r2nsaxE_2S
5=2
+15c3a3572 L3 ki disty +(87 + 48)a P L3, distt>
63387208 Kt Fy?
max Pmax +(30c2a®T3L8 Kk Eg? +66atm2 LA ) dist
1 3Csa2Tlenax maxla_1 ( ° * * ) !

<90c2a’72L8 K maXE + 94072 L2 | dist,
where the last inequality follows by choice of . Combining all terms, we obtain
Atz < (1= 0.1502Eou®)|| A2 + (206 + 101/c3)a* T Ly . + 320" Ly o

+118c2a°72 L8 kit Ey? +94a’r?LA | dist;
< (1 = 01502 FEop®)||A¢l2 + (340 + 101 /c3)a* T LA+ 94?72 LE  dist;  (53)

< (1 —0.15a2Eop®) || Aol
t
+ ) (1= 01502 Eop®) " (340 + 101 /c3)a* T Lk, + 940" 72 Ly, distys )
t'=1
t
< [[Aoll2 + (340 + 101 /e5)a* Ly, Y (1= 0.150° Eop®)' ™
t'=1
t
+94a* 7Ly Y (1 - 0.040’ T Eop®)! (54)
t'=1

< || Aoz + ( (340 4 101 /c3) + 25 x 94)a’7 L2, k2, Ey!
< a?7L? + (4730 + 101 /c3) 0T L2, K2 0 Eo

max de

2 (55)

< c3x 7-I’ma.x max
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where (53) follows by choice of o < ﬁng,iiﬂﬁ,ax <o Lmax'ﬁﬁ,ax (34) follows from As(t), and

the last inequality is due to c3 = 4800.

O
Lemma 10. Njcz, (A1,4,:(7) N Agpi(7) N Az4i(7)) N Ax(t) = As(t+1).
Proof. We have
1 T—1
B =B, <m Z H(Ik - awt,z}swz,—i,s))
i€Zy s=0
- T—1
< Z Wi Z wt H (I — awt,i,rWZim))
€Ly s=0 r=s+1
which implies
BILBHl = B* lBt(I — awtwt Z H E— QWy ; sWth 5) (56)

’LGIt s=1

We can expand the right product of B;(I — aw;w, ) using the binomial expansion as follows:

T—1
1 z T Z Z
E H(Ik - Oth7i7SWt7i s Iy — — Wi i wa 11,8

1€Zy s=1 zEZt s=1

2 T—1 T—1
—|—a— E E E Wi sW, . W, w,
m ti,8 Wt i,sVWt,i,s(1) t,i,s(1)

1€Ly s=1 s(1)=g+41

-+ sign(7 g l_Iw“SwtZS

zEIt s=1

Recall that each ||wy; 5|2 < 2v/@Lmax. Thus, after the identity, the spectral norm of the first
set of summations has spectral norm at most 4a?7L2,, _, the second set has specral norm at most
16a*72 L2 ., and so on. We in fact use the first set of summations as a negative term, and bound
all subsequent sets of summations as errors, exploiting the fact that their norms are geometrically
decaying. In particular, we have:

1 T—1 a T—1 T—1
T T 2
% E H(Ik - awt,i,SWt,i,s) < Ik - E § E WtJ,SWt,i,s + E (40é TLmax)Z
i€y s=1 2 i€y s=1 9 z=2
214
« da*m2L
SI%m S wiiwl T datrL2,,
i€, s—1 9 max
<L -2 § 5air2Li 57
= k_a théwtlé + aT max ( )
€T, s=1 2

Next, we use ||w;; s — aB,

2573
tis—1BxWail| < deza™ 7L

max max

Ey ! forall s > 1 to obtain

Ik——ZZW“SWHS < Ik_izz tzsle*W*lW B Btzs 1

1€y s=1 9 1€y s=1 9
+ 13c3a*r? LA Ejt (58)

max max
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Next, we have forany s — 1 € {1,...,7 — 1},

s—1
IBiis—1— Bill2 = |Btis—1 — Briollz < E IBtir —Biir1ll2
r=1
s—1
< O‘Z letir—1ll2lweir—1ll2
r=1
< 7041.5(8 - 1)L12nax
Thus,
a3 T7—1
T T T
‘ I — E § : § Bt,i,sle*w*,iW*,iB* Bt,i,sfl
ieZ, s=1 2
ag T—1
Z Z T T T
S Ik — E Bt B*W*,iw*viB* Bt
€Ly s=1 2
0(3 T—1
T TpT
+ g E g (Bi = Btis—1) Baiwi,w, B, By
€7y s=1 2
a3 T—1
T T T
i > > B/B.w.,w]B/(B,~By. 1)
i€l s=1 2
ag T—1
T T T 4 274
<||Tx — poos E E B, B.w. ;w, B, By|| +16a" (7 —1)" L.
1€Zy s=1 2
Furtheromre,
T7—1
3 T TRT
I, — 2 E E B, B.w. ;w, B, B;
€Ly s=1 2
— |, - =0 N"BTB,w,,w BB
— k — m t *W*,ZW*,i x 2t
1€l 2
, M
a”(t—1 T T T
< |- 52> B/ Bow.iw/] BB,
i=1 2
M
3 T 21 T 1 T
+a’(1 = 1)|B; B.llz||5: E W iWe i = W E Wi i W i
€Ly i=1 2
, M
a’(rt—1 T T T 4 4
< |- 52N B Buw. ;w BIB,| +6a’(r —1)Li,,,

i=1 2
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noting that (60) follows since we are conditioning on the event A. Finally,

M
3(r—
I, - “5-05N "B/ B.w. ,w, BB,
i=1 2
M
i=1

M
<1-a®(r—1)02,,(B! B.)omin (Al/[ ZW*,,-W,L — V_V*W*T>

i=1
M
=1-0%(7 — 1)0min(B/ B,)*0min (1\14 Z(W*z — W) (Was — V_V*)T>
i=1
<1-0.10%(1 — 1)Eop (61)
<1—0.0502TEou (62)
where (61) follows by Lemma [8]and Assumption 2] and (62) follows since 7 > 2. Combining (62)),

0D, G9)., G8), (57, and (56)), we obtain

IB) B2 < (1 —0.050%7Egp® 4 6a* (1 — 1) L2 . + 16a* (T — 1)*L2

max max

+ 13czatr2 LA

max max

EO + 50[47—2'[’311&)() ||B;F,J_Bt||2

< (1—0.0502TEop® + (24/c3)a*TEop® + (13/c3)a*TEop®) | B, 1Btz

< (1-0.040*7Eop?)||B, | Byl2 (63)
2
using a27 < et < P and e > 1305, -

Lemma 11. A5(t+1)N A4t +1)NAs5(t) = As(t+1)

Proof. We use the contraction of ||B B2 (A4(t)) and the fact that || A2 is small for all s € [t]
(A5(t)), as in Lemma to obtain

disty41 = HB»T,J_BtJrIHZ

A

= mHBILBHﬂb
(1—0.040>7Eou?)| B/ | Byl2

IN

Umm(Bt+1)

1 - 0.040*7Egp®)!|B] | Bol|o

%(
Omin(Bt41)
L(Bo)(l — 0.04a*7 Eg i) 5o

Omin (Bt4+1)

V1+[Aoll2/va (
T V1i-lAgallz/Ve

Now, we argue as in (26) (with || A¢|| replaced by || A1 without anything changing in the analysis)

to find \/7%“/ /ff Jo < ZE% < 1. Thus diste1 < (1 — 0.04a>TEgp?)" as desired. 0
t+1]l

B.2  Proof of Proposition ]

IN

1 — 0.04a%7 Eou?)t 6o

Proposition 2 (Distributed GD lower bound). Suppose we are in the setting described in Sec-
tion|3|and d > k > 1. Then for any set of ground-truth heads {w. ;}M |, full-rank initializa-

tion By € Rk initial distance &y € (0,1/2], step size « > 0, and number of rounds T,
there exists B, € OF satisfying dist(Bo, B.) = o and dist(B?JGD,B*) > 0.76g, where
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B2:6P = B2:6D(By, B, {w.. i}, «) is the result of D-GD with step size  and initialization B

in the setting with ground-truth representation B, and ground-truth heads {w ; f” 1-

Proof. Recall that B2CP (B, B.,, {w. ;}},, a) is the result of D-GD with step size « and initial-
ization By on the system with ground-truth representation B, and ground-truth heads {w., ; }}Z,.

There are two disjoint cases: (1) for all B. € B = {B € 0% : dist(By,B) = dy, BW. €
col(Bo)}, dist(BRCP (B, B., {w.;}4,,a), B.) > 0.78, or (2) there exists some B, € B such
that dist(B2P (B, B., {w.;}M,,a),B.) < 0.78. If case (1) holds then the proof is complete.
Otherwise, let B, € B such that dist(B2P (B, B.., {w.;}}1,,a), B.) < 0.75;. We will show
that there exists another B, € B such that dist(B2SP(Bg, B, {w..; }4,, a), B./) > &, so D-GD
cannot guarantee to recover the ground-truth representation, completing the proof.

Consider case (2). Without loss of generality we can write By = MB*W*VJ + EOVJ for some
vo € R* : |jvo| = 1, By € Odxk-1 . ]~3TB Wy = 0, \70 € (9’”’“’1 : VOTVO = 0 using the
SVD, since B,w. € col(By). Likewise, we can write B, = . H B.w.w,] + B,V for some

B, € O*-1.BIB,w, =0,V, € O"*%~1. VT, = 0. Using these decompositions, we can
see that

B.B! = (epB.w. %/ +B.V]) (gpB.w. %/ +B. V)T
= B %W W%/ B + FeB.w.w/V.B] + G pB.Vw.w[B]
+B.V]V.B/
= rmpB.%.w/B] + B.B]
and
8o = dist(By, B,)
== | (Ts — B.B])By|
= ||(1¢ - epeB-%.w,B] - B.B]) (g B.W.vg +BoVy )|
= ||(1s - mEB-%. %, B, - B.B]) g B.%.vg
+(Ia— WB*V_V*V_VIBT —B.B])B,V/{ |
= ||(1a - mpB-%.w,/B, - B.B])ByV, ||
= ||(1s — B.B])BoV{ |
= (1 - B.BT)By|
= dlSt(Bo,B*). (64)
Next, let B, = WB*V_V*WI + (2]§0BOT]§* — B*)\?I We first check that B, € O%%F:
BB. = (B w.w) + (2BoB] B, - B.)V]) ' (ieB.w.w! + (2BB] B. — B,)V])
= e W.w/] + V.(2BoBy B. - B.)(2B,Bj B. - B.)V/ (65)
e W.w. + V.(4B/BoB| BoB| B. — 4B/ B,B(B. + B/B.)V/
= W+ VLV
= Ve, oWl Ve, ]’
=1 (66)
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as desired, where (63) follows since B/ B,w. = BjB.%w. = 0, and (66) follows since
V., 53 L R Ww.] € OF*k by the definition of the SVD. Furthermore,
dist(Bo, B.r) = [[(Ta — BoBo )B.||
= [|(Iq HW IR ;B.w.w,B/] BOBT)(‘ e A (2BOBJB* - B*)VI)”
= [|(Ig — 7Hv_vl*||2B*W*W* B! - ByB/) = HQB Wi W
+ (I — - Baw.w,.B/] - BBy ) (2BoB; B. - B*)VIH
= ||(Li — g B«W. W, B — BB )(2BoB; B, - B.)V/||
= [I(Ia = BoBy ) (2BoBg B. - B.)V/|
= [T = BoBg )B. V]|
= ||(Is — BoBg )B.||
= diSt(]?),k7 Bo)

=& (67)
where follows from (64). Moreover, B, W, = B.W.. € col(By), thus B,. € B. Next,
dist(B,,B,/) = ||(I — B,B])B./|

= |(li— 7 B.w. %) B -B.B]) (e B.w.w/] + (2BoB B. - B.)V])||

— (1~ B.B])(2BoB{ B.—B.)|

|
>2|/(1,-B BT)BoHUmm(BoTB )

= 2dist(]§0,]§*)\/1 — dist?(By, B.) (68)
— 2607/1 — 0o
where (8) follows since 02, (B] By) + 02, ((I;—B1B] )By) = 1 forany B;, By € O%F~1,

Note that for D-GD the global update for the representation is

min max

M
[0 _
By =B — 5 Y VBfi(Bi,wi) = B, — a(Byw; — B,W.)w/ (69)
=1

and similarly, the update for the head is w; 1 = w; — aBtT (Byw; — B,.Ww.,). Thus, the behavior of
D-GD is indistinguishable in the settings with ground-truth representations B/, B, since B, w, =
B.W.. In particular, B2SP(Bg, B, {w.;}M,,a) = B2%P (B¢, B./, {w..}M,, a) Using this
equality along with the triangle inequality yields

diSt(BIIJ“-GD(BOa B., {W*,i}il\ilv O‘)’ B*’) = diSt(BID“_GD(BW B., {W*,i}i\ila a)> B*’)

> dist(B., B.) — dist(dist(B2° (Bg, B., {w.:} X, a), B.)

> 2601/1 — 62 — 0.78, (70)

> (V3 —-0.7)d (71)
> 6o

as desired, where follows by the definition of case (2) and (68), and follows by &y €
(0,1/2]. O
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Representation learning error

—— FedAvg
10 D-GD

0 50 100 150 200 250 300 350 400
Communication rounds

Figure 6: FedAvg with partial participation (m = 10, M = 40) learns the ground-truth representation
at a linear rate.

C Experimental Details

C.1 Multi-task linear regression

The multi-task linear regression experiments consist of two stages: training and fine-tuning. During
training, we track dist(B;, B.) in Figure [I| and the Frobenius norm of the gradient of (), i.e.
(IB] (Byw; — B.w.) |3 + ||(Biw; — Bow.)w,/ [|2)/2, in Figureleft). For fine-tuning, we track
the squared Euclidean distance of the post-fine-tuned model from the ground-truth in Figure 3{right)
for various numbers of fine-tuning samples n.

Each training trial consists of first sampling M ground truth heads w.. ; ~ N(0,I) and a ground
truth representation B, € R** such that each element is i.i.d. sampled from a standard Gaussian
distribution. Then, B, is formed by computing the QR factorization of B,, i.e. B,R, = B, where
R, € RF** is upper triangular and B, € O%** has orthonormal columns. To initialize the model
we set wo = 0 € R* and sample By € R** such that each element is i.i.d. sampled from a standard
Gaussian distribution, then compute By = ﬁﬁo where B € ©%*F is the matrix with orthonormal

columns resulting from the QR factorization of By. Then we run FedAvg with 7 = 2 and D-SGD on
the population objective [6} with both sampling m = M clients per round and using step size o = 0.4.
The training plots show quantities averaged over 10 independent trials.

For each fine-tuning trial, we similarly draw a new head w pr41 ~ N(0,1;), and data XMA1,5 ~
./\/(0, Ik), YM+1,5 = <B*W*7i, XM+17j> + CM-Q—I,j where C]\J.l,_l,]‘ ~ N(O, 0.01). Then we run GD
on the empirical loss 5~ Z?Zl((Bw, XM41,5) — YM+1,5)2 for 7/ = 200 iterations with step size
o = 0.01. The fine-tuning plot shows average results over 10 independent, end-to-end trials (starting
with training), and the error bars give standard deviations.

Remark 1 (Full participation). Although the aforementioned experiments used full participation
(m = M), this condition is not required for FedAvg to learn the ground-truth representation. Figure
[ plots the representation learning error in the same setting as Figure [I| but with m = 10 (and
M = 40) and one can see that FedAvg again learns the representation.

Remark 2 (Convergence to stationary point of the global objective). The literature has thus far
focused on analyzing the rates at which FedAvg converges to a stationary point of the global objective
(I, which prior works have shown requires step size diminishing with T to achieve at-best sublinear
convergence in nonconvex data heterogeneous settings. In contrast, Theorem 1 and Figure[d]show
that FedAvg with fixed step size converges linearly to the ground-truth representation despite not
converging fo a stationary point of the global objective.
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C.2 Image classification

The CNN used in the image classification experiments has six convolutional layers with ReLU
activations and max pooling after every other layer. On top of the six convolutional layers is a 3-layer
MLP with ReLU activations.

All models are trained with a step size of « = 0.1 after tuning in {0.5,0.1,0.05,0.01,0.005} and
selecting the best « that yields the smallest training loss. In all cases, m = 0.1M. We use the SGD
optimizer with weight decay 10~* and momentum 0.5. We train all models such that 77 = 125000.
Thus, D-SGD trains for 7' = 125000 rounds, since 7 = 1 in this case. Likewise, for FedAvg
with 7 = 50, T" = 2500 training rounds are executed. The batch size is 10 in all cases. We also
experimented with larger batch sizes for D-SGD but they did not improve performance.

Each client has 500 training samples in all cases. Thus, FedAvg with 7 = 50 is equivalent to FedAvg
with one local epoch. For the experiments with C' classes per client for all clients, each client has
the same number of images from each class. For the experiment testing fine-tuning performance on
new classes from the same dataset, the first 80 classes for CIFAR100 are used for training, while
classes 80-99 are reserved for new clients. For fine-tuning, 10 epochs of SGD are executed on the
training data for the new client. For fine-tuning on CIFAR10, each new client has images from all 10
classes, and equal numbers of samples per class for training. For fine-tuning on CIFAR100, each new
client has images from all 20 classes, with equal numbers of samples from each class for training
when possible, and either 2 or 3 samples from each class otherwise (when the number of fine-tuning
samples equals 50). Accuracies are top 1 accuracies evaluated on 2000 test samples per client for
CIFAR10 and 400 test samples per client for the last 20 classes of CIFAR100.

To compute the layer-wise similarities in Figure 2] we use the Centered Kernel Alignment (CKA)
similarity metric, which is the most common metric used to measure the similarity between neural
networks [13]]. CKA similarity between model layers is evaluated by feeding the same input through
both networks and computing the similarity between the outputs of the layers. The similarity metric
is invariant to rotations and isotropic scaling of the layer outputs [13]]. We use the code from [76] to
compute CKA similarity.

For Figure ] the cosine similarity is evaluated by first feeding n images from class ¢ through the

trained network and storing the output of the network layer before the final linear layer to obtain the

features {ff, ..., f°}, where each f¢ € R512. Then, to obtain the average cosine similarity between
Ly L(EED)|

features from classes c and ¢/, we compute - > " | AR We use n = 25.
i i

All experiments were performed on two 8GB NVIDIA GeForce RTX 2070 GPUs.
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