
A Additional Related Work

In this section we provide further discussion of the related works.

Convergence of FedAvg. The convergence of FedAvg, also known as Local SGD, has been the
subject of intense study in recent years due to the algorithm’s effectiveness combined with the
difficulties of analyzing it. In homogeneous data settings, local updates are easier to reconcile with
solving the global objective, allowing much progress to be made in understanding convergence rates in
this case [2–4, 62–66]. In the heterogeneous case multiple works have shown that FedAvg with fixed
learning rate may not solve the global objective because the local updates induce a non-vanishing bias
by drifting towards local solutions, even with full gradient steps and and strongly convex objectives
[5–9, 16, 20, 67, 68]. As a remedy, several papers have analyzed FedAvg with learning rate that
decays over communication rounds, and have shown that this approach indeed reaches a stationary
point of the global objective, but at sublinear rates [5, 14–17] that can be strictly slower than the
convergence rates of D-SGD [5, 18]. Sublinear convergence rates to stationary points of the global
objective have also been shown for gossip algorithms that generalize FedAvg when operating on
time-varying communication graphs [69–71], but these rates have exponential dependence on M and
τ .

Another line of work has shown that in overparameterized settings with strongly convex losses,
FedAvg achieves linear convergence to the global optimum [15, 17]. We consider more challenging
nonconvex losses, and our setting is not overparameterized in the same sense (in these works
overparameterized implies that the model class contains a single model that achieves zero loss for all
clients). Lastly, like our work, [72] empirically observed that FedAvg learns strong representations,
but relative to local-only training (i.e., without any communication), thus they did not study the role
of local updates between communication rounds in learning representations, nor did they provide
theoretical analysis.

Multi-task representation learning. Multiple works have studied the multi-task linear representa-
tion learning setting [39] in recent years. [41] and [42] give statistical rates for a method-of-moments
estimator for learning the representation and [45] analyze a projection and eigen-weighting based
algorithm designed for the case in which ground-truth representation is unknown. Other works have
studied alternating minimization procedures for learning col(B∗) in the context of meta-learning [43],
federated learning [11], and differentially private optimization [46]. However, these methods require
a unique head for each client, which greatly simplifies the analysis since head diversity is guaranteed
prior to local updates and is not applicable to some cross-device FL settings which cannot tolerate
stateful clients. Outside of the multi-task linear regression setting, [73] and [74] have demonstrated
the necessity of task diversity to learning generalizable representations from a learning theoretic
perspective, and [40] considered the statistical rates of representation learning by solving an ERM
with unique heads per task.

16



B Proof of Theorem Main Results

B.1 Proof of Theorem 1

In this section we provide the proof of Theorem 1. We make use of the notations in Table 1.

Table 1: Notations.
Notation Definition

µ λ0.5min

(
1
M

∑M
i=1(w∗,i − w̄∗)(w∗,i − w̄∗)

>
)

Lmax maxi∈[M ] ‖w∗,i‖2, note that Lmax := L
√
k where L is defined in Assumption 1

κmax
Lmax/µ, note that κmax := κ

√
k where κ is defined in Assumption 2

w̄∗
1
M

∑M
i=1 w∗,i

w̄∗,t
1
m

∑
i∈It w∗,i

Bt,i,s,wt,i,s the results of s local updates of the global model at round t by the i-th client
Bt,i,0,wt,i,0 Bt,wt, respectively
et,i,s Bt,i,swt,i,s −B∗w∗,i, i.e. product error for s-th local update for task i, round t
Gt,i,s (Bt,i,s+1 −Bt,i,s)/α, such that Bt,i,s+1 = Bt,i,s − αGt,i,s

Gt (Bt+1 −Bt)/α, such that Bt+1 = Bt − αGt

∆t Ik − αB>t Bt

∆̄t Id − αBtB
>
t

distt dist(Bt,B∗)
δ0 dist0
E0 1− dist20
col(B), col(B)⊥ column space of B, orthogonal complement to column space of B, respectively

Here the local updates are given by

Bt,i,s+1 = Bt,i,s − α(Bt,i,swt,i,s −B∗w∗,i)w
>
t,i,s

wt,i,s+1 = wt,i,s − αB>t,i,s(Bt,i,swt,i,s −B∗w∗,i)

= ∆t,i,swt,i,s + αB>t,i,sB∗w∗,i

and the global updates are given by

Bt+1 = 1
m

∑
i∈It

Bt,i,τ

wt+1 = 1
m

∑
i∈It

wt,i,τ .

First we control the ground-truth heads sampled on each round.

Lemma 1. Suppose m ≥ min(M, 20((γ/L)2 + (H/L)4)(αL
√
k)−4 log(kT )). Then the event

A0 :=

{∥∥∥∥ 1
m

∑
i∈It

w∗,i − w̄∗

∥∥∥∥ ≤ 4α2L3
max,

∥∥∥∥ 1
m

∑
i∈It

w∗,iw
>
∗,i − 1

M

M∑
i′=1

w∗,i′w
>
∗,i′

∥∥∥∥ ≤ 4α2L4
max ∀t ∈ [T ]

}

occurs with probability at least 1− 4(kT )−99, where Lmax := L
√
k.

Proof. If m = M then A0 holds almost surely. Otherwise, first let W∗,i := diag(w∗,i) ∈ Rk×k,
and let W̄∗ := 1

M

∑M
i=1 diag(w∗,i). For any t ∈ [T ], {W∗,i}i∈It is a set of Hermitian matrices

sampled uniformly without replacement from {W∗,i}i∈[M ], ‖W∗,i‖ ≤ L
√
k almost surely, and
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∥∥∥ 1
M

∑M
i=1(W∗,i − W̄∗)

2
∥∥∥ ≤ 1

M

∑M
i=1 ‖w∗,i − w̄∗‖2 = γ2k by the triangle and Cauchy-Schwarz

inequalities and Definition 1. Thus, we can apply Theorem 1 in [75] to obtain

P

(∥∥∥∥∥∑
i∈It

W∗,i − W̄∗

∥∥∥∥∥ > t

)
≤ 2k exp( −t

2

4mγ2k ) (7)

as long as t ≤ 2mγ2
√
k/L. Choose t = 4mα2L3k1.5. Note that indeed t ≤ 2mγ2

√
k since

γ2 = 1
k

∑k
l=1

1
M

∑M
i=1 u>l (w∗,i − w̄∗)(w∗,i − w̄∗)

>ul ≥ µ2, where ul is the l-th standard basis
vector, and α ≤ µ2/(2L4k2). Thus we obtain

P

(∥∥∥∥∥∑
i∈It

W∗,i − W̄∗

∥∥∥∥∥ > 4mα2L3k1.5

)
≤ 2k exp

(
−4mα4L6k2

γ2

)
=⇒ P

(∥∥∥∥∥ 1
m

∑
i∈It

W∗,i − W̄∗

∥∥∥∥∥ > 4α2L3k1.5

)
≤ 2k exp (−100 log(kT ))

sincem ≥ 20( γ
2

L2 )(α
4L4k2)−1 log(kT ). An analogous argument, without needing to lift the matrices

to higher dimensions, yields

P

(∥∥∥∥∥ 1
m

∑
i∈It

(
w∗,iw

>
∗,i − 1

M

M∑
i′=1

w∗,i′w
>
∗,i′

)∥∥∥∥∥ > 4α2L4k2

)
≤ 2k exp (−100 log(kT ))

Union bounding, we obtain that
∥∥ 1
m

∑
i∈It W∗,i − W̄∗

∥∥ ≤ 4α2L3k1.5 and∥∥∥ 1
m

∑
i∈It

(
w∗,iw

>
∗,i − 1

M

∑M
i′=1 w∗,i′w

>
∗,i′
)∥∥∥ ≤ 4α2L4k2 with probability at least

1 − 4k exp(−100 log(kT )) = 1 − 4k−99T−100. Union bounding over all t ∈ [T ] completes the
proof.

Next we state and prove the version of Theorem 1 with explicit constants. Note that the constants are
not optimized.

Theorem 2 (FedAvg Representation Learning). Consider the case that each client takes gradient
steps with respect to their population loss fi(B,w) := 1

2‖Bw − B∗w∗,i‖2 and all losses are
weighted equally in the global objective. Suppose Assumptions 1 and 2 hold, the number of clients
participating each round satisfies m ≥ min(M, 20((γ/L)2 + (H/L)4)(αL

√
k)−4 log(kT )), and

the initial parameters satisfy (i) δ0 := dist(B0,B∗) ≤
√
1−E0 for any E0 ∈ (0, 1], (ii) ‖I −

αB>0 B0‖2 ≤ α2τL2κ2k2 and (iii) ‖w0‖2 ≤ α2.5τL3k1.5. Choose step size α ≤ 1−δ0
4800

√
τLκ2k1.5

.
Then for any ε ∈ (0, 1), the distance of the representation learned by FedAvg with τ ≥ 2 local
updates satisfies dist(BT ,B∗) < ε after at most

T ≤ 25
α2τµ2E0

log(1/ε)

communication rounds with probability at least 1− 4(kT )−99.

Proof. In this proof we use the notation Lmax := L
√
k and κmax := κ

√
k. First we condition on

the event A0, which occurs with probability at least 1 − 4(kT )−99 by Lemma 1. Conditioned on
this event, we will show that that the following two sets of inductive hypotheses hold for all s ∈ [τ ],
i ∈ It, and t ∈ [T ]. The first set of inductive hypotheses controls local behavior. We apply the below
local induction in parallel for each client i ∈ [M ] at every communication round t ≥ 0, starting from
the base case s = 1.

1. A1,t,i(s) := {‖wt,i,s′ − αB>t,i,s′−1B∗w∗,i‖2 ≤ 4c3α
2.5τL3

maxκ
2
maxE

−1
0 ∀s′ ∈

{1, . . . , s}}

2. A2,t,i(s) := {‖wt,i,s′‖2 ≤ 2α0.5Lmax ∀s′ ∈ {1, . . . , s}}

3. A3,t,i(s) := {‖∆t,i,s′‖2 ≤ 2c3α
2τL2

maxκ
2
maxE

−1
0 ∀s′ ∈ {1, . . . , s}}
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4. A4,t,i(s) := {dist(Bt,i,s′ ,B∗) ≤ 1.1 dist(Bt,B∗) ∀s′ ∈ {1, . . . , s}}

The second set of inductions controls the global behavior, starting from t = 1 as the base case:

1. A1(t) := {‖wt′ − α(Ik + ∆t′)B
>
t′B∗w̄∗,t′‖2 ≤ 91α2.5τL3

max ∀t′ ∈ {1, . . . , t}}

2. A2(t) := {‖wt′‖2 ≤ 2α0.5Lmax ∀t′ ∈ {1, . . . , t}}

3. A3(t) := {‖∆t′‖2 ≤ c3α2τL2
maxκ

2
maxE

−1
0 ∀t′ ∈ {1, . . . , t}}

4. A4(t) := {‖B>∗,⊥Bt′‖2 ≤ (1− 0.04α2τµ2E0)‖B>∗,⊥Bt′−1‖2 ∀t′ ∈ {1, . . . , t}}

5. A5(t) := {distt ≤ (1− 0.04α2τµ2E0)
t−1 ∀t′ ∈ {1, . . . , t}}

where c3 = 4800. Without loss of generality let α ≤ 1−δ0
c3
√
τLmaxκ2

max
. For ease of presentation we

refer to c3 symbolically rather than by its value throughout the proof.

The above inductions are applied in the following manner. First, the global initialization at t = 0
implies that the local inductive hypotheses hold after one local update (the base case). Then, by the
local inductive argument, these conditions continue to hold for all subsequent local updates. This
in turn implies that the global inductive hypotheses hold after the first global averaging step, i.e.
A1(1), A2(1) and A3(1) hold. Next, the global hypotheses holding at t = 1 implies that the local
inductions hold in their base case at t = 1 (after one local update, i.e. s = 1), which implies they
continue to hold for all subsequent local updates. Again, this implies the global hypotheses hold at
t = 2, which implies the base case for the local inductions at t = 2, and so on. In summary, the
ordering of the inductions is:

Initialization at t=0 =⇒Local inductions at t=0 =⇒ Global inductions at t=1

=⇒ Local inductions at t=1 =⇒ . . .

We start by showing that the base case s = 1 holds for the local inductions. The proof is identical for
all i ∈ [M ] and t ≥ 0.

• If t = 0: initial conditions =⇒ A1,t,i(1), else A2(t) ∩A3(t) =⇒ A1,t,i(1).

Note that at initialization, ‖∆0w0‖ ≤ ‖∆0‖‖w0‖ ≤ α2.5τL3
maxκ

2
max ≤

4c3α
2.5τL3

maxκ
2
maxE

−1
0 . Likewise, at arbitrary t, ‖∆twt‖ ≤ 4c3α

2.5τL3
maxκ

2
maxE

−1
0

due to A2(t) and A3(t). Thus, since wt,i,1 = ∆twt + αB>t B∗w∗,i, we have

‖wt,i,1 − αB>t B∗w∗,i‖ = ‖∆twt‖ ≤ ‖∆t‖‖wt‖ ≤ 4c3α
2.5τL3

maxκ
2
maxE

−1
0

as desired (recall that Bt,i,0 ≡ Bt).

• If t = 0: initial conditions ∩ A1,t,i(1) =⇒ A2,t,i(1), else A3(t) ∩ A1,t,i(1) =⇒
A2,t,i(1).

For any t ≥ 0, we have ‖∆t‖ ≤ c3α
2τL2

maxκ
2
maxE

−1
0 due to either the initialization

(t = 0) or A3(t) (t > 0). This implies that ‖Bt‖ ≤
√

1+c3α
2τL2

maxκ
2
maxE

−1
0

α ≤ 1.1√
α

since

α is sufficiently small (noting that (1−δ)2
E0

= (1−δ)2
1−δ2 ≤ 1 . Now we use A1,t,i(1) and the

triangle inequality to obtain:

‖wt,i,1‖ ≤ ‖wt,i,1 − αB>t B∗w∗,i‖+ ‖αB>t B∗w∗,i‖
≤ 4c3α

2.5τL3
maxκ

2
maxE

−1
0 + α‖Bt‖‖w∗,i‖

≤ 2
√
αLmax.

as desired.

• If t = 0: initial conditions =⇒ A3,t,i(1), else A2(t) ∩A3(t) =⇒ A3,t,i(1).
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We have

∆t,i,1 = Ik − αB>t,i,1Bt,i,1

= ∆t + α2B>t (Btwt −B∗w∗,i)w
>
t

+ α2B>t (Btwt −B∗w∗,i)w
>
t − α3wtw

>
t ‖Btwt −B∗w∗,i‖22 (8)

By the initial conditions and by inductive hypotheses A1(t) and A2(t), for any t ≥ 0 we
have ‖wt‖2 ≤ 2

√
αLmax, ‖∆t‖ ≤ c3α2τL2

maxκ
2
maxE

−1
0 , and ‖Bt‖2 ≤ 1.1√

α
. This implies

‖Btwt−B∗w∗,i‖2 ≤ ‖Bt‖‖wt‖+ ‖B∗w∗,i‖ ≤ 3.2Lmax. Therefore using (8), we obtain

‖∆t,i,1‖2 ≤ ‖∆t‖2 + 2α2‖B>t (Btwt −B∗w∗,i)w
>
t ‖2 + α3‖wt‖22‖Btwt −B∗w∗,i‖22

≤ ‖∆t‖2 + 15α2L2
max + 41α4L4

max

≤ 2c3α
2τL2

maxκ
2
maxE

−1
0 (9)

as desired.

• If t = 0: initial conditions =⇒ A4,t,i(1), else A3,t,i(1) ∩A2(t) ∩A3(t) =⇒ A4,t,i(1).

Note that

‖B>∗,⊥Bt,i,1‖2= ‖B>∗,⊥Bt(Ik−αwtw
>
t )‖2 ≤ ‖B>∗,⊥Bt‖‖Ik−αwtw

>
t ‖2 ≤ ‖B>∗,⊥Bt‖2

as α‖wt‖2 ≤ 1 by either the initialization (if t = 0) or A2(t) (if t ≥ 1) and the choice of
α sufficiently small. Thus, letting B̂t,i,1Rt,i,1 = Bt,i,1 denote the QR-decomposition of
Bt,i,1, we have

dist(Bt,i,1,B∗) = ‖B>∗,⊥B̂t,i,1‖2
≤ 1

σmin(Bt,i,1)
‖B>∗,⊥Bt,i,1‖2

≤ 1
σmin(Bt,i,1)

‖B>∗,⊥Bt‖2

≤ ‖Bt‖
σmin(Bt,i,1)

dist(Bt,B∗)

≤
√

1+c3α
2τL2

maxκ
2
maxE

−1
0

1−2c3α2τL2
maxκ

2
maxE

−1
0

distt (10)

≤ 1.1 dist(Bt,B∗) (11)

where the (10) follows by A3,t,i(1) and either the initial condition on ‖∆t‖ (if t = 0) or
A3(t) (if t > 0), and (11) follows as α is sufficiently small.

Now we show that the global inductions hold at global round t = 1 following the local updates at
round t = 0.

• Initialization ∩
(
∩i∈I0 A1,0,i(τ)∩A2,0,i(τ)∩A3,0,i(τ)

)
=⇒ A1(1)∩A2(1)∩A4(1)∩

A5(1).

To show each of these hypotheses hold we can apply the proofs of Lemmas 6, 7 9 and 11
respectively, since they only rely on inductive hypotheses A1,0,i(τ), A2,0,i(τ) and A3,0,i(τ)
and appropriate scaling of ‖B0‖ and ‖w0‖, which is guaranteed by the initialization. In
particular, the proof of these inductive hypotheses is identical for all t ≥ 1.

• Initialization ∩
(
∩i∈I0 A2,0,i(τ) ∩A3,0,i(τ)

)
=⇒ A2(1).

In the proof ofA2(t) for t ≥ 2 (Lemma 9) we leverage the fact that wt−1 is close to a matrix
times the average of the w̄∗,t−1. Our initialization cannot guarantee that this holds for w0.
Instead, we show that ‖∆1‖ may increase from ‖∆0‖ at a large rate that would cause ‖∆t‖
to blow up if continued indefinitely, but since it only grows at this rate for the first round,
this is ok. In particular, let G0 = 1

α (B0 −B1) such that B1 = B0 − αG0. Then

∆1 = ∆0 + α2B>0 G0 + α2G>0 B0 − α3G>0 G0
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Moreover,

‖G0‖ =

∥∥∥∥∥ 1

m

∑
i∈I0

τ−1∑
s=0

(B0,i,sw0,i,s −B∗w∗,i)w
>
0,i,s

∥∥∥∥∥ ≤ 7
√
ατL2

max

by the initialization and A2,0,i(τ) and A3,0,i(τ), thus

‖B>0 G0‖ ≤ 8τL2
max, ‖G>0 G0‖ ≤ 49ατ2L4

max

which implies that ‖∆1‖ ≤ ‖∆0‖+ 10α2τL2
max ≤ c3α2τL2

maxκ
2
maxE

−1
0 , as desired.

Assume that the inductive hypotheses hold up to time t and local round s ≥ 1. We first show that the
local inductive hypotheses hold for local round s+ 1. Then, we show that the global inductions hold
at time t+ 1. This is achieved by the following lemmas.

Local inductions.

• A2,t,i(s) ∩A3,t,i(s) =⇒ A1,t,i(s+ 1). This is Lemma 2.

• A1,t,i(s+ 1) ∩A2,t,i(s) ∩A3,t,i(s) =⇒ A2,t,i(s+ 1). This is Lemma 3.

• A2,t,i(s) ∩A3,t,i(s) =⇒ A3,t,i(s+ 1). This is Lemma 4.

• A2,t,i(s) ∩A3,t,i(s+ 1) ∩A3(t) =⇒ A4,t,i(s+ 1). This is Lemma 5.

Global inductions.

• ∩i∈It
(
A1,t,i(τ − 1) ∩ A3,t,i(τ − 1)

)
∩ A1(t) ∩ A2(t) ∩ A3(t) =⇒ A1(t + 1). This is

Lemma 6.

• ∩i∈ItA2,t,i(τ) =⇒ A2(t+ 1). This is Lemma 7.

• ∩i∈It
(
∩4h=1 Ah,t,i(τ)

)
∩A1(t)∩A2(t)∩A3(t)∩A5(t) =⇒ A3(t+ 1). This is Lemma

9.

• ∩i∈It
(
A1,t,i(τ) ∩A2,t,i(τ) ∩A3,t,i(τ)

)
∩A2(t) ∩A3(t) =⇒ A4(t+ 1). This is Lemma

10.

• A3(t+ 1) ∩A4(t+ 1) ∩A5(t) =⇒ A5(t+ 1). This is Lemma 11.

These inductions complete the proof.

Lemma 2. A2,t,i(s) ∩A3,t,i(s) =⇒ A1,t,i(s+ 1).

Proof. Since wt,i,s+1 = ∆t,i,swt,i,s + αB>t,i,sB∗w∗,i, we have

‖wt,i,s+1 − αB>t,i,sB∗w∗,i‖ = ‖∆t,i,swt,i,s‖2
≤ ‖∆t,i,s‖‖wt,i,s‖2
≤ 4c3α

2.5τL3
maxκ

2
max (12)

where the last inequality follows by A2,t,i(s) and A3,t,i(s).

Lemma 3. A1,t,i(s+ 1) ∩A3,t,i(s) =⇒ A2,t,i(s+ 1).

Proof. Note that by the triangle inequality,

‖wt,i,s+1‖ ≤ ‖wt,i,s+1 − αB>t,i,sB∗w∗,i‖+ ‖αB>t,i,sB∗w∗,i‖
≤ 4c3α

2.5τL3
maxκ

2
maxE

−1
0 + ‖αB>t,i,sB∗w∗,i‖ (13)

≤ 4c3α
2.5τL3

maxκ
2
maxE

−1
0 + 1.1

√
αLmax (14)

≤ 2
√
αLmax

where (13) follows by A1,t,i(s) and (14) follows by the fact that ‖Bt,i,s‖ ≤ 1.1√
α

by A3,t,i(s), and
choice of α ≤ (1− δ0)(c3

√
τLmaxκ

2
max)

−1.
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Lemma 4. A2,t,i(s) ∩A3,t,i(s) =⇒ A3,t,i(s+ 1).

Proof. Let et,i,s := Bt,i,swt,i,s −B∗w∗,i and Gt,i,s := et,i,swt,i,s. We have

∆t,i,s+1 = ∆t,i,s + α2B>t,i,sGt,i,s + α2G>t,i,sBt,i,s − α3G>t,i,sGt,i,s

We use A2,t,i(s) and A3,t,i(s) throughout the proof. Recall that A3,t,i(s) directly implies ‖Bt,i,s‖ ≤
1.1√
α

. This bound as well as the bound on ‖wt,i,s‖ from A2,t,i(s) and the Cauchy Schwarz inequality
implies ‖et,i,s‖ ≤ 3.2Lmax and ‖Gt,i,s‖2 ≤ 7

√
αL2

max, thus ‖α3G>t,i,sGt,i,s‖ ≤ 49α4L4
max. Next,

B>t,i,sGt,i,s = B>t,i,set,i,sw
>
t,i,s

= αB>t,i,set,i,sw
>
∗,iB

>
∗ Bt,i,s−1 + B>t,i,set,i,sw

>
t,i,s−1∆t,i,s−1

= αB>t,i,set,i,sw
>
∗,iB

>
∗ Bt,i,s + αB>t,i,set,i,sw

>
∗,iB

>
∗ (Bt,i,s−1 −Bt,i,s)

+ B>t,i,set,i,sw
>
t,i,s−1∆t,i,s−1

where, by the Cauchy-Schwarz inequality and A2,t,i(s) and A3,t,i(s)

‖αB>t,i,set,i,sw
>
∗,iB

>
∗ (Bt,i,s−1 −Bt,i,s)‖ = α2‖B>t,i,set,i,sw>∗,iB>∗ et,i,s−1w

>
t,i,s−1‖ ≤ 23α2L4

max,

‖B>t,i,set,i,sw>t,i,s−1∆t,i,s−1‖ ≤ 15c3α
2τL4

maxκ
2
maxE

−1
0 , (15)

and

‖αB>t,i,set,i,sw
>
∗,iB

>
∗ Bt,i,s‖

= ‖α2B>t,i,sBt,i,sB
>
t,i,s−1B∗w∗,iw

>
∗,iB

>
∗ Bt,i,s − αB>t,i,sB∗w∗,iw

>
∗,iB

>
∗ Bt,i,s

+ α2B>t,i,sBt,i,s∆t,i,s−1wt,i,s−1w
>
∗,iB

>
∗ Bt,i,s‖

= ‖ − α∆t,i,sB
>
t,i,sB∗w∗,iw

>
∗,iB

>
∗ Bt,i,s

+ α2B>t,i,sBt,i,s(Bt,i,s−1 −Bt,i,s)
>B∗w∗,iw

>
∗,iB

>
∗ Bt,i,s

+ α2B>t,i,sBt,i,s∆t,i,s−1wt,i,s−1w
>
∗,iB

>
∗ Bt,i,s‖

≤ α‖∆t,i,sB
>
t,i,sB∗w∗,iw

>
∗,iB

>
∗ Bt,i,s‖

+ α2‖B>t,i,sBt,i,swt,i,s−1e
>
t,i,s−1B∗w∗,iw

>
∗,iB

>
∗ Bt,i,s‖

+ α2‖B>t,i,sBt,i,s∆t,i,s−1wt,i,s−1w
>
∗,iB

>
∗ Bt,i,s‖

= 7c3α
2τL4

maxκ
2
maxE

−1
0 + 9α2L4

max. (16)

Thus,

‖∆t,i,s+1‖2 ≤ ‖∆t,i,s‖2 + 2α2‖B>t,i,sGt,i,s‖+ α3‖G>t,i,sGt,i,s‖
≤ ‖∆t,i,s‖2 + 46c3α

4τL4
maxκ

2
maxE

−1
0 + 81α4L4

max

...

≤ ‖∆t‖2 + 46c3α
4τ2L4

maxκ
2
maxE

−1
0 + 81α4τL4

max

≤ c3α2τL2
maxκ

2
maxE

−1
0 + 46c3α

4τ2L4
maxκ

2
maxE

−1
0 + 81α4τL4

max

≤ 2c3α
2τL2

maxκ
2
maxE

−1
0 (17)

by choice of c3 and α sufficiently small.

Lemma 5. A2,t,i(s) ∩A3,t,i(s+ 1) ∩A3(t) =⇒ A4,t,i(s+ 1).

Proof. Note that

‖B>∗,⊥Bt,i,s+1‖2 = ‖B>∗,⊥Bt,i,s(Ik − αwt,i,sw
>
t,i,s)‖2

≤ ‖B>∗,⊥Bt,i,s‖2
...

≤ ‖B>∗,⊥Bt‖2 (18)
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where the first inequality follows since ‖wt,i,s‖ ≤ 2
√
αLmax (by A2,t,i(s)) and α is sufficiently

small, and the last inequality follows by recursively applying the first inequality for all local iterations
leading up to s. Thus

distt,i,s ≤
‖Bt‖2

σmin(Bt,i,s)
distt ≤

√
1+c3α

2τL2
maxκ

2
maxE

−1
0

1−2c3α2τL2
maxκ

2
maxE

−1
0

distt ≤ 2 distt .

Lemma 6. ∩i∈It
(
A2,t,i(τ − 1) ∩A3,t,i(τ − 1)

)
∩A2(t) ∩A3(t) =⇒ A1(t+ 1).

Proof. Expanding wt+1 yields

wt+1 = 1
m

∑
i∈It

wt,i,τ

= 1
m

∑
i∈It

∆t,i,τ−1wt,i,τ−1 + αB>t,i,τ−1B∗w∗,i

= αB>t B∗w̄∗,t +
1
m

∑
i∈It

∆t,i,τ−1wt,i,τ−1 + α(Bt,i,τ−1 −Bt)
>B∗w∗,i

=
1

n

∑
i∈It

α(Bt,i,τ−1 −Bt)
>B∗w∗,i + α∆t,i,τ−1B

>
t,i,τ−2B∗w∗,i

+ α∆t,i,τ−1∆t,i,τ−2wt,i,τ−2 + αB>t B∗w̄∗,t

= αB>t B∗w̄∗,t + α∆tB
>
t B∗w̄∗,t

+ 1
m

∑
i∈It

α(Bt,i,τ−1 −Bt)
>B∗w∗,i + α(∆t,i,τ−1B

>
t,i,τ−2 −∆tB

>
t )B∗w∗,i

+ ∆t,i,τ−1∆t,i,τ−2wt,i,τ−2

= αB>t+1B∗w̄∗,t+1 + α∆t+1B
>
t+1B∗w̄∗,t+1

+ αB>t+1B∗(w̄∗,t − w̄∗,t+1) + α∆t+1B
>
t+1B∗(w̄∗,t − w̄∗,t+1)

+ α(Bt −Bt+1)
>B∗w̄∗,t + α(∆tBt −∆t+1Bt+1)

>B∗w̄∗,t

+ 1
m

∑
i∈It

α(Bt,i,τ−1 −Bt)
>B∗w∗,i + α(∆t,i,τ−1B

>
t,i,τ−2 −∆tB

>
t )B∗w∗,i

+ ∆t,i,τ−1∆t,i,τ−2wt,i,τ−2 (19)

The remainder of the proof lies in bounding the error terms, which are all terms in the RHS of (19)
besides the terms in the first line. First, by A0 and the triangle inequality, we have

‖w̄∗,t − w̄∗,t+1‖ ≤ ‖w̄∗,t − w̄∗‖+ ‖w̄∗,t+1 − w̄∗‖ ≤ 8α2L3
max

Thus, by A3(t+ 1), we have

‖αB>t+1B∗(w̄∗,t − w̄∗,t+1)‖ ≤ 1.1
√
α‖w̄∗,t − w̄∗,t+1‖ ≤ 9α2.5L3

max

‖α∆t+1B
>
t+1B∗(w̄∗,t − w̄∗,t+1)‖ ≤ 1.1

√
α‖∆t+1‖‖w̄∗,t − w̄∗,t+1‖ ≤ 18c3α

4.5τL5
maxκ

2
maxE

−1
0

Next, we can bound the difference between the locally-updated representation and the global repre-
sentation as follows, for any s ∈ {1, . . . , τ}

‖Bt,i,s −Bt‖2 ≤
s∑
r=1

‖Bt,i,r −Bt,i,r−1‖2 ≤ α
s∑
r=1

‖et,i,r−1w>t,i,r−1‖2 ≤ 7α1.5sL2
max (20)
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using A2(t), A3(t), A2,t,i(τ − 1) and A3,t,i(τ − 1) to control the norms of wt,i,s−1 and Bt,i,s−1.
From (20) it follows that

‖Bt+1 −Bt‖2 ≤ 1
m

∑
i∈It

‖Bt,i,τ −Bt‖2 ≤ 7α1.5τL2
max

‖Bt,i,τ−2∆t,i,τ−1 −Bt∆t‖2 ≤ ‖Bt,i,τ−2 −Bt‖2 + α‖Bt,i,τ−2B
>
t,i,τ−1Bt,i,τ−1 −BtB

>
t Bt‖2

≤ ‖Bt,i,τ−2 −Bt‖2 + α‖(Bt,i,τ−2 −Bt)B
>
t,i,τ−1Bt,i,τ−1‖2

+ α‖Bt(Bt,i,τ−1 −Bt)
>Bt,i,τ−1‖2

+ α‖BtB
>
t (Bt,i,τ−1 −Bt)‖2

≤ ‖Bt,i,τ−2 −Bt‖2 + α‖Bt,i,τ−2 −Bt‖‖B>t,i,τ−1Bt,i,τ−1‖2
+ α‖Bt‖‖Bt,i,τ−1 −Bt‖‖Bt,i,τ−1‖2
+ α‖BtB

>
t ‖‖Bt,i,τ−1 −Bt‖

≤ 31α1.5τL2
max

‖Bt∆t −Bt+1∆t+1‖2 ≤ 31α1.5τL2
max (21)

Also, we have by A2,t,i(τ − 1) and A3,t,i(τ − 1),

‖∆t,i,τ−1∆t,i,τ−2wt,i,τ−2‖2 ≤ 8c23α
4.5τ2L5

maxκ
4
maxE

−2
0 . (22)

Thus, using these bounds with (19), we obtain

‖wt+1 − α(Ik + ∆t+1)B
>
t+1B∗w̄∗,t+1‖2 ≤ 82α2.5τL3

max + (8c23 + 12c3)α
4.5τ2L5

maxκ
4
maxE

−2
0

≤ 91α2.5τL3
max

to complete the proof, where we have used that α is sufficiently small in the last inequality.

Lemma 7. ∩i∈ItA2,t,i(τ) =⇒ A2(t+ 1)

Proof. By the triangle inequality and ∩i∈ItA2,t,i(τ), we have

‖wt+1‖ =
∥∥∥∥ 1
m

∑
i∈It

wt,i,τ

∥∥∥∥ ≤ 1
m

∑
i∈It

‖wt,i,τ‖ ≤ 2
√
αLmax

as desired.

Lemma 8. A3(t) ∩A4(t) =⇒ σ2
min(B

>
t B∗) ≥ 0.1

α E0.

Proof. First note that

σ2
min(B

>
t B∗) ≥ σ2

min(Rt)σ
2
min(B̂

>
t B∗)

≥ 0.9
α σ

2
min(B̂

>
t B∗) (23)

= 0.9
α (1− ‖B̂>t B∗,⊥‖22)

= 0.9
α (1− dist2t ) (24)

where B̂tRt = Bt is the QR factorization of Bt. Next, we would like to show the RHS is at most
(2 + δ0)/3. Using A3(t) and A4(t), we obtain

distt = ‖B>∗,⊥B̂t‖2
≤ 1

σmin(Bt)
‖B>∗,⊥Bt‖2

...

≤ 1
σmin(Bt+1)

(1− 0.04α2τE0µ
2)t‖B>∗,⊥B0‖2

≤ σmax(B0)
σmin(Bt)

(1− 0.04α2τE0µ
2)tδ0

≤
√

1+‖∆0‖2/
√
α√

1−‖∆t‖2/
√
α
δ0

24



Next we use that ‖∆0‖ ≤ α2τL2
maxκ

2
max ≤ 0.1(1− δ0)2 by choice of initialization and choice of α,

and similarly ‖∆t‖ ≤ α2τL2
maxκ

2
maxE

−1
0 ≤ 0.1(1− δ0)2/(1− δ20). Let c := 0.1. Then we have

√
1+‖∆0‖2/

√
α√

1−‖∆t‖2/
√
α
δ0 ≤

√
1+c(1−δ0)2√

1−c(1−δ0)2/(1−δ20)
δ0

=

√
1+c(1−δ0)2√

1−c(1−δ0)/(1+δ0)
δ0

=

√
1+δ0+c(1−δ0)2(1+δ0)√

1−c+(1+c)δ0
δ0

Now, observe that
√

1+δ0+c(1−δ0)2(1+δ0)√
1−c+(1+c)δ0

δ0 ≤ 2+δ0
3

⇐⇒ 1+δ0+c(1−δ0)2(1+δ0)
1−c+(1+c)δ0

δ20 ≤
4+4δ0+δ

2
0

9

⇐⇒ (1 + c)δ20 + δ30 − cδ40 + cδ50 ≤ (4− 4c+ 8δ0 + 8δ20 + (1 + c)δ30)/9

⇐⇒ cδ50 − cδ40 + 8−c
9 δ30 +

1+9c
9 δ20 − 8

9δ0 −
4−4c
9 ≤ 0 (25)

where (25) holds for all δ0 ∈ [0, 1) and c = 0.1, therefore we have

distt ≤
√

1+‖∆0‖2/
√
α√

1−‖∆t‖2/
√
α
δ0 ≤ 2+δ0

3 . (26)

Thus, using (24), we obtain

σ2
min(B

>
t B∗) ≥ 0.9

α

(
1− 4+4δ0+δ

2
0

9

)
≥ 0.9

α

(
1− 8+δ20

9

)
= 0.9

9αE0

= 0.1
α E0

as desired.

Lemma 9. ∩i∈It
(
∩4h=1 Ah,t,i(τ)

)
∩A1(t) ∩A2(t) ∩A3(t) ∩A5(t) =⇒ A3(t+ 1).

Proof. We aim to write ∆t+1 = 1
2 (Ik −Pt)∆t +

1
2∆t(Ik −Pt) +Zt for a positive definite matrix

Pt and a perturbation matrix Zt. This will yield the inequality ‖∆t+1‖2 ≤ (1− λmin(Pt))‖∆t‖2 +
‖Zt‖2. Assuming λmin(Pt) and ‖Zt‖2 scale appropriately (defined later), this inequality combined
with inductive hypothesis A5(t) will give the desired upper bound on ‖∆t+1‖2 (this is because
the upper bound on ‖Zt‖2 scales with distt, so A5(t) contributes to controlling ‖Zt‖2). The proof
therefore relies on showing the existence of appropriate Pt and Zt.

First recall ∆t := I−αB>t Bt and ∆̄t := Id−αBtB
>
t . Let Gt :=

1
α (Bt−Bt+1), i.e. Gt satisfies

Bt+1 = Bt − αGt. Then

∆t+1 = Ik − αB>t+1Bt+1 = ∆t + α2B>t Gt + α2G>t Bt − α3G>t Gt (27)

The key is showing that α2B>t Gt = − 1
2∆tPt+Z′t for appropriate Pt and Z′t. Then, by (27), we will

have ∆t+1 = 1
2 (Ik−Pt)∆t+

1
2∆t(Ik−Pt)+Zt as desired, where Zt = Z′t+(Z′t)

>−α3G>t Gt.

Notice that Gt is the average across clients of the sum of their local gradients on every local update.
In particular, we have

Gt = (Btwt −B∗w̄∗,t)w
>
t + 1

m

∑
i∈It

τ−1∑
s=1

(Bt,i,swt,i,s −B∗w∗,i)w
>
t,i,s (28)

We will unroll the gradients for the first two local updates only, in order to obtain a negative term that
will contribute to the contraction of ‖∆t‖ (i.e. Pt will be extracted from the gradients for the first
two local updates). The remaining terms will belong to Zt and must be upper bounded (i.e. ‖∆t+1‖
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can grow due to local updates beyond the second local update, but we will show that it can’t grow too
much). In particular, we have

Gt = (Btwt −B∗w̄∗,t)w
>
t + 1

m

∑
i∈It

(Bt,i,1wt,i,1 −B∗w∗,i)w
>
t,i,1

+ 1
m

∑
i∈It

τ−1∑
s=2

(Bt,i,swt,i,s −B∗w∗,i)w
>
t,i,s

= (Btwt −B∗w̄∗,t)w
>
t − α∆̄tB∗

1
m

∑
i∈It

w∗,iw
>
∗,iB

>
∗ Bt − ∆̄tB∗w̄∗,tw

>
t ∆t

+ 1
m

∑
i∈It

α2(Btwt −B∗w∗,i)w
>
t B>t B∗w∗,iw

>
t,i,1

+ 1
m

∑
i∈It

(Bt − α(Btwt −B∗w∗,i)w
>
t )∆twtw

>
t,i,1

+ 1
m

∑
i∈It

τ−1∑
s=2

(Bt,i,swt,i,s −B∗w∗,i)w
>
t,i,s

Multiplying both sides by B>t , and using the fact that B>t ∆̄t = ∆tB
>
t , we obtain

B>t Gt = B>t (Btwt −B∗w̄∗,t)w
>
t − α∆tB

>
t B∗

1
m

∑
i∈It

w∗,iw
>
∗,iB

>
∗ Bt −∆tB

>
t B∗w̄∗,tw

>
t ∆t

−B>t
1
m

∑
i∈It

α2(Btwt −B∗w∗,i)w
>
t B>t B∗w∗,iw

>
t,i,1

+ B>t
1
m

∑
i∈It

(Bt − α(Btwt −B∗w∗,i)w
>
t )∆twtw

>
t,i,1

+ B>t
1
m

∑
i∈It

τ−1∑
s=2

(Bt,i,swt,i,s −B∗w∗,i)w
>
t,i,s

= −α∆tB
>
t B∗

1
m

∑
i∈It

w∗,iw
>
∗,iB

>
∗ Bt + Nt (29)
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where the first term is a negative term that helps ‖∆t+1‖ stay small, and the remaining terms are
given by

Nt := B>t (Btwt −B∗w̄∗,t)w
>
t −∆tB

>
t B∗w̄∗,tw

>
t ∆t

−B>t
1
m

∑
i∈It

α2(Btwt −B∗w∗,i)w
>
t B>t B∗w∗,iw

>
t,i,1

+ B>t
1
m

∑
i∈It

(Bt − α(Btwt −B∗w∗,i)w
>
t )∆twtw

>
t,i,1

+ B>t
1
m

∑
i∈It

τ−1∑
s=2

(Bt,i,swt,i,s −B∗w∗,i)w
>
t,i,s

= B>t (Btwt −B∗w̄∗,t)w
>
t + B>t Bt∆twt

1
m

∑
i∈It

w>t,i,1

−B>t
1
m

∑
i∈It

α2(Btwt −B∗w∗,i)w
>
t B>t B∗w∗,iw

>
t,i,1

−B>t
1
m

∑
i∈It

α(Btwt −B∗w∗,i)w
>
t ∆twtw

>
t,i,1

−∆tB
>
t B∗w̄∗,tw

>
t ∆t + B>t

1
m

∑
i∈It

τ−1∑
s=2

(Bt,i,swt,i,s −B∗w∗,i)w
>
t,i,s

= B>t (Btwt −B∗w̄∗,t)w
>
t + αB>t Bt∆twtw̄

>
∗,tB

>
∗ Bt︸ ︷︷ ︸

=:E1

− 1
m

∑
i∈It

αB>t (Btwt −B∗w∗,i)w
>
t wt,i,1w

>
t,i,1︸ ︷︷ ︸

=:E2

+ ∆tB
>
t (Btwt −B∗w̄∗,t)w

>
t ∆t︸ ︷︷ ︸

=:E3

+B>t
1
m

∑
i∈It

τ−1∑
s=2

(Bt,i,swt,i,s −B∗w∗,i)w
>
t,i,s︸ ︷︷ ︸

=:E4

(30)

To get from the first to the second equation we expanded the fourth term in the first equation. Now
we need to upper bound the spectral norm of each of the terms Ei. The matrices E2 and E3 are
straightforward to control; we will take care of them shortly. For now we are concerned with E1. In
order to control this matrix, we must use the fact that wt is close to a matrix times w̄∗,t. This will
allow us to subsume the dominant term from E1 into the negative term in (29). In particular, note
that by A1(t), we have wt = αB>t B∗w̄∗,t + α∆tB

>
t B∗w̄∗,t + ht, where ‖ht‖2 ≤ 91α2.5τL3

max.
This implies that

B>t (Btwt −B∗w̄∗,t) = B>t (αBtB
>
t B∗w̄∗,t −B∗w̄∗,t) + α∆tB

>
t BtB

>
t B∗w̄∗,t + B>t Btht

= −∆tB
>
t B∗w̄∗,t + α∆tB

>
t BtB

>
t B∗w̄∗,t + B>t Btht

= −∆2
tB
>
t B∗w̄∗,t + B>t Btht (31)

Making this substitution in E1, we obtain,

E1 = −∆2
tB
>
t B∗w̄∗,tw

>
t + B>t Bthtw

>
t + αB>t Bt∆twtw̄

>
∗,tB

>
∗ Bt

= −∆2
tB
>
t B∗w̄∗,tw

>
t + B>t Bthtw

>
t −∆2

twtw̄
>
∗,tB

>
∗ Bt + ∆twtw̄

>
∗,tB

>
∗ Bt

= −∆2
tB
>
t B∗w̄∗,tw

>
t + B>t Bthtw

>
t −∆2

twtw̄
>
∗,tB

>
∗ Bt

+ ∆t(α∆tB
>
t B∗w̄∗,t + ht)w̄

>
∗,tB

>
∗ Bt + α∆tB

>
t B∗w̄∗,tw̄

>
∗,tB

>
∗ Bt. (32)
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The dominant term in (32) is the last term. Specifically, we have,

‖E1−α∆tB
>
t B∗w̄∗,tw̄

>
∗,tB

>
∗ Bt‖

≤ ‖∆2
tB
>
t B∗w̄∗,tw

>
t ‖+ ‖B>t Bthtw

>
t ‖+ ‖∆

2
twtw̄

>
∗,tB

>
∗ Bt‖

+ ‖∆t(α∆tB
>
t B∗w̄∗,t + ht)w̄

>
∗,tB

>
∗ Bt‖

≤ ‖∆2
tB
>
t B∗w̄∗,tw

>
t ‖+ ‖∆

2
twtw̄

>
∗,tB

>
∗ Bt‖+ α‖∆2

tB
>
t B∗w̄∗,tw̄

>
∗,tB

>
∗ Bt‖

+ ‖B>t Bthtw
>
t ‖+ ‖∆thtw̄

>
∗,tB

>
∗ Bt‖

≤ 5.5c23α
4τ2L6

maxκ
4
maxE

−2
0 + 2.2× 91α2τL4

max + 1.1× 91c3α
4τ2L6

maxκ
2
maxE

−1
0 (33)

≤ (206 + 101/c3)α
2τL4

max (34)

where (33) follows by applying the Cauchy-Schwarz inequality to each of the terms in the previous
inequality, and using A2(t), A3(t), and our bound on ht (from A1(t)), and (34) follows as α is
sufficiently small. The last first term term can be subsumed by completing a square as follows.
Combining (29), (30) and (32) yields

B>t Gt = −α∆tB
>
t B∗

1
m

∑
i∈It

w∗,iw
>
∗,iB

>
∗ Bt + E1 −E2 + E3 + E4

= −α∆tB
>
t B∗

1
m

∑
i∈It

w∗,iw
>
∗,iB

>
∗ Bt + α∆tB

>
t B∗w̄∗,tw̄

>
∗,tB

>
∗ Bt

+ (E1 − α∆tB
>
t B∗w̄∗,tw̄

>
∗,tB

>
∗ Bt)−E2 + E3 + E4

= −α∆tB
>
t B∗

1
m

∑
i∈It

(w∗,i − w̄∗,t)(w∗,i − w̄∗,t)
>B>∗ Bt

+ (E1 − α∆tB
>
t B∗w̄∗,tw̄

>
∗,tB

>
∗ Bt)−E2 + E3 + E4

= − 1
2α2 ∆tPt +

1
α2 Z′t (35)

where Pt = 2α3B>t B∗
1
m

∑
i∈It(w∗,i − w̄∗,t)(w∗,i − w̄∗,t)

>B>∗ Bt and

Z′t := α2(E1 − α∆tB
>
t B∗w̄∗,tw̄

>
∗,tB

>
∗ Bt)− α2E2 + α2E3 + α2E4

we have performed the desired decomposition; it remains to show that λmin(Pt) and ‖Z′t‖2 scale
appropriately. First we lower bound λmin(Pt).

λmin(Pt) = λmin

(
2α3B>t B∗

1
m

∑
i∈It

(w∗,i − w̄∗,t)(w∗,i − w̄∗,t)
>B>∗ Bt

)

≥ 2α3σmin(B
>
t B∗)

2λmin

(
1
m

∑
i∈It

(w∗,i − w̄∗,t)(w∗,i − w̄∗,t)
>

)

≥ 0.2α2E0λmin

(
1
m

∑
i∈It

(w∗,i − w̄∗,t)(w∗,i − w̄∗,t)
>

)
(36)

≥ 0.2α2E0λmin

(
1
M

M∑
i=1

(w∗,i − w̄∗)(w∗,i − w̄∗)
>

)

− 0.2α2E0

∥∥∥∥ 1
m

∑
i∈It

w∗,iw
>
∗,i − 1

M

M∑
i′=1

w∗,i′w
>
∗,i′

∥∥∥∥
− 0.2α2E0

∥∥w∗,tw>∗,t − w̄∗w̄
>
∗
∥∥

≥ 0.15α2E0µ
2 − 6α4E0L

4
max (37)

≥ 0.15α2E0µ
2 (38)

where (36) follows by Lemma 8, (37) follows by Assumption 2 and A0, and (38) follows as
α2 ≤ 1

120κ2
∗L

2
max

. Now we upper bound ‖Z′t‖2. We have already upper bounded ‖E1 −
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α∆tB
>
t B∗w̄∗,tw̄

>
∗,tB

>
∗ Bt‖ in (34). We next upper bound ‖E2‖2 and ‖E3‖2 by A2(t), A3(t),

and A2,i,t(1). We have
‖α2E2‖2 ≤ 32α4L4

max

‖α2E3‖2 ≤ 28c23α
6τ2L6

maxκ
2
maxE

−2
0

using the triangle and Cauchy-Schwarz inequalities. Now we turn to ‖α2E4‖2. Recall that E4 is
the sum of local gradients across all clients and all local updates beyond the first local update. We
show that these gradients are sufficiently small such that ‖∆t+1‖2 cannot grow beyond the desired
threshold.

Recall that E4 =
∑τ−1
s=2 B>t et,i,sw

>
t,i,s. To bound this sum it is critical to control the evolution of

et,i,s. The idea is to split et,i,s into its projection onto col(Bt,i,s−1) ≈ col(Bt) and its projection
onto col(Bt,i,s−1)

⊥ ≈ col(Bt)
⊥. Then, we can show that the magnitude of the projection onto

col(Bt,i,s−1) is going to zero very fast (the head is quickly learned, meaning it fits the product as
much as it can with what it has to work with, i.e. col(Bt,i,s−1)). On the other hand, the magnitude
of the projection onto col(Bt,i,s−1)

⊥ is slowly going to zero, since this reducing this error requires
changing the representation and the representation changes slower than the head. The saving grace is
that this error is proportional to dist(Bt,i,s−1,B∗), which for all s is linearly converging to zero with
t.

To show this, pick any i ∈ It and let B̂t,i,s,Rt,i,s denote the QR-factorization of Bt,i,s. De-
fine ∆̃t,i,s−1 := B̂t,i,s−1B̂

>
t,i,s−1 − αBt,i,s−1B

>
t,i,s−1 and ωt,i,s−1 := αw>t,i,s−1∆t,i,s−1wt,i,s +

α2w>t,i,s−1B
>
t,i,s−1B∗w∗,i. By expanding et,i,s, we find

et,i,s

= (Id − αBt,i,s−1B
>
t,i,s−1 − αw>t,i,s−1∆t,i,s−1wt,i,sId − α2w>t,i,s−1B

>
t,i,s−1B∗w∗,iId)et,i,s−1

= (Id − B̂t,i,s−1B̂
>
t,i,s−1)et,i,s−1 +

(
∆̃t,i,s−1 − ωt,i,s−1Id

)
et,i,s−1

= (Id − B̂t,i,s−1B̂
>
t,i,s−1)et,i,s−1 +

(
∆̃t,i,s−1 − ωt,i,s−1Id

)
(Id − B̂t,i,s−2B̂

>
t,i,s−2)et,i,s−2

+
(
∆̃t,i,s−1 − ωt,i,s−1Id

)(
∆̃t,i,s−2 − ωt,i,s−2Id

)
et,i,s−2 (39)

Therefore,
B>t et,i,s = B>t (Id − B̂t,i,s−1B̂

>
t,i,s−1)et,i,s−1

+ B>t
(
∆̃t,i,s−1 − ωt,i,s−1Id

)
(Id − B̂t,i,s−2B̂

>
t,i,s−2)et,i,s−2

+ B>t
(
∆̃t,i,s−1 − ωt,i,s−1Id

)(
∆̃t,i,s−2 − ωt,i,s−2Id

)
et,i,s−2 (40)

For the first term, we have
‖B>t (Id−B̂t,i,s−1B̂

>
t,i,s−1)et,i,s−1‖2

≤ ‖B>t,i,s−1(Id − B̂t,i,s−1B̂
>
t,i,s−1)et,i,s−1‖2

+ ‖(Bt −Bt,i,s−1)
>(Id − B̂t,i,s−1B̂

>
t,i,s−1)et,i,s−1‖2

= ‖(Bt −Bt,i,s−1)
>(Id − B̂t,i,s−1B̂

>
t,i,s−1)et,i,s−1‖2 (41)

≤ ‖(Id − B̂t,i,s−1B̂
>
t,i,s−1)et,i,s−1‖2

s−1∑
r=1

‖Bt,i,r −Bt,i,r−1‖2 (42)

≤ 7‖(Id − B̂t,i,s−1B̂
>
t,i,s−1)B∗w∗,i‖2α1.5τL2

max (43)

≤ 8α1.5τL3
max distt (44)

where (41) follows since B>t,i,s−1(Id − B̂t,i,s−1B̂
>
t,i,s−1) = 0, (42) follows using the Cauchy-

Schwarz and triangle inequalities, (43) follows using that (Id − B̂t,i,s−1B̂
>
t,i,s−1)Bt,i,s−1 = 0

and applying A2,t,i(τ) and A3,t,i(τ), (44) follows by the fact that ‖(Id − B̂t,i,s−1B̂
>
t,i,s−1)B∗‖ =

dist(Bt,i,s,B∗) ≤ 1.1 distt by A4,t,i(τ). For the second term in (40), note that

|ωt,i,s−1| ≤ α|w>t,i,s−1∆t,i,s−1wt,i,s−1|+ α2|w>t,i,s−1B>t,i,s−1B∗w∗,i|
≤ 8c3α

4τL4
maxκ

2
maxE

−1
0 + 2.2α1.5L2

max

≤ 3α2L2
max (45)
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As a result, we have

‖B>t
(
∆̃t,i,s−1 − ωt,i,s−1Id

)
(Id − B̂t,i,s−2B̂

>
t,i,s−2)et,i,s−2‖2

≤ ‖B>t ∆̃t,i,s−1(Id − B̂t,i,s−2B̂
>
t,i,s−2)et,i,s−2‖2

+ |ωt,i,s−1|‖B>t (Id − B̂t,i,s−2B̂
>
t,i,s−2)et,i,s−2‖2

≤ ‖B>t ∆̃t,i,s−1(Id − B̂t,i,s−2B̂
>
t,i,s−2)et,i,s−2‖2

+ 3.3α1.5L2
max‖(Id − B̂t,i,s−2B̂

>
t,i,s−2)B∗w∗,i‖2

≤ ‖B>t ∆̃t,i,s−1(Id − B̂t,i,s−2B̂
>
t,i,s−2)et,i,s−2‖2

+ 3.7α1.5L3
max distt (46)

where (46) follows by A4,t,i(τ), and

‖B>t ∆̃t,i,s−1(Id − B̂t,i,s−2B̂
>
t,i,s−2)et,i,s−2‖2

≤ ‖B>t B̂t,i,s−1B̂
>
t,i,s−1(Id − B̂t,i,s−2B̂

>
t,i,s−2)et,i,s−2‖2

+ α‖B>t Bt,i,s−1B
>
t,i,s−1(Id − B̂t,i,s−2B̂

>
t,i,s−2)et,i,s−2‖2

= ‖B>t B̂t,i,s−1(R
−1
t,i,s−1)

>B>t,i,s−1(Id − B̂t,i,s−2B̂
>
t,i,s−2)et,i,s−2‖2

+ α‖B>t Bt,i,s−1B
>
t,i,s−1(Id − B̂t,i,s−2B̂

>
t,i,s−2)et,i,s−2‖2

= α‖B>t B̂t,i,s−1(R
−1
t,i,s−1)

>wt,i,s−2e
>
t,i,s−2(Id − B̂t,i,s−2B̂

>
t,i,s−2)et,i,s−2‖2

+ α2‖B>t Bt,i,s−1wt,i,s−2e
>
t,i,s−2(Id − B̂t,i,s−2B̂

>
t,i,s−2)et,i,s−2‖2 (47)

≤ 44α1.5L3
max distt (48)

where (47) follows since Bt,i,s−2(Id − B̂t,i,s−2B̂
>
t,i,s−2) = 0 and (48) follows using the Cauchy-

Schwarz inequality, A3(t), A2,t,i(τ), A3,t,i(τ), and A4,t,i(τ). Next, recalling that B̂t,i,sRt,i,s is the
QR-factorization of Bt,i,s, we have, for any s,

‖∆̃t,i,s−1‖ = ‖B̂t,i,s−1B̂
>
t,i,s−1 − αBt,i,s−1B

>
t,i,s−1‖

≤ ‖B̂t,i,s−1(Ik − αRt,i,s−1R
>
t,i,s−1)B̂

>
t,i,s−1‖

≤ ‖Ik − αRt,i,s−1R
>
t,i,s−1‖

≤ max(|1− ασ2
min(Bt,i,s−1)|, |1− ασ2

max(Bt,i,s−1)|) (49)

≤ max(|1− α 1−‖∆t,i,s−1‖
α |, |1− α 1+‖∆t,i,s−1‖

α )|)
= ‖∆t,i,s−1‖
≤ 2c3α

2τL2
maxκ

2
maxE

−1
0 (50)

where (49) follows by Weyl’s inequality and (50) follows by A3,t,i(s− 1). Furthermore, ‖∆̃t,i,s−1 +

ωt,i,s−1Id‖ ≤ 2c3α
2τL2

maxκ
2
maxE

−1
0 +3α2L2

max ≤ 3c3α
2τL2

maxκ
2
maxE

−1
0 for any s. Thus, for the
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third term in (40), for any s > 2,

‖B>t
(
∆̃t,i,s−1 − ωt,i,s−1Id

)(
∆̃t,i,s−2 − ωt,i,s−2Id

)
et,i,s−2‖2

= ‖B>t
(
∆̃t,i,s−1 − ωt,i,s−1Id

)(
∆̃t,i,s−2 − ωt,i,s−2Id

)
(∆̃t,i,s−3 − ωt,i,s−3Id)et,i,s−3‖2

+ ‖B>t
(
∆̃t,i,s−1 − ωt,i,s−1Id

)(
∆̃t,i,s−2 − ωt,i,s−2Id

)
(Id − B̂t,i,s−3B̂

>
t,i,s−3)et,i,s−3‖2

≤ ‖B>t
(
∆̃t,i,s−1 − ωt,i,s−1Id

)(
∆̃t,i,s−2 − ωt,i,s−2Id

)
(∆̃t,i,s−3 − ωt,i,s−3Id)et,i,s−3‖2

+ 10c23α
3.5τ2L5

maxκ
4
maxE

−2
0 distt

...

≤
∥∥∥∥B>t s∏

r=1

(
∆̃t,i,s−r − ωt,i,s−rId

)
et,i,s−r

∥∥∥∥
2

+ 10c23α
3.5τ2L5

maxκ
4
maxE

−2
0 distt

s∑
r=0

(3c3)
rα2rτ rL2r

maxκ
2r
maxE

−r
0

≤
∥∥∥∥B>t s∏

r=1

(
∆̃t,i,s−r − ωt,i,s−rId

)
et,i,s−r

∥∥∥∥
2

+
10c23α

3.5τ2L5
maxκ

4
maxE

−2
0 distt

1− 3c3α2τL2
maxκ

2
maxE

−1
0

≤ 3.5× (3c3)
sα2s−0.5τsL2s+1

max κ
2s
maxE

−s
0 + 15c23α

3.5τ2L5
maxκ

4
maxE

−2
0 distt (51)

and for s = 2 we have
‖B>t

(
∆̃t,i,s−1 − ωt,i,s−1Id

)(
∆̃t,i,s−2 − ωt,i,s−2Id

)
et,i,s−2‖2

≤ 3.5× (3c3)
2α3.5τ2L5

maxκ
4
maxE

−2
0 . (52)

Thus, using ‖wt,i,s‖2 ≤ 2
√
αLmax with (40), (44), (46), (48), (51), and (52), we have

‖α2E4‖2 ≤ 2α2.5Lmax

τ−1∑
s=2

(
3.5× (3c3)

2α2s−0.5τsL2s+1
max κ

2s
maxE

−2s
0

+ 15c23α
3.5τ2L5

maxκ
4
max distt+(8τ + 48)α1.5L3

max distt

)
≤ 63c23α

6τ2L6
maxκ

4
maxE

−2
0

1− 3csα2τL2
maxκ

2
maxE

−1
0

+ (30c23α
6τ3L6

maxκ
4
maxE

−2
0 + 66α4τ2L4

max) distt

≤ 90c23α
6τ2L6

maxκ
4
maxE

−2
0 + 94α4τ2L4

max distt
where the last inequality follows by choice of α. Combining all terms, we obtain
‖∆t+1‖2 ≤ (1− 0.15α2E0µ

2)‖∆t‖2 + (206 + 101/c3)α
4τL4

max + 32α4L4
max

+ 118c23α
6τ2L6

maxκ
4
maxE

−2
0 + 94α4τ2L4

max distt

≤ (1− 0.15α2E0µ
2)‖∆t‖2 + (340 + 101/c3)α

4τL4
max + 94α4τ2L4

max distt (53)
...

≤ (1− 0.15α2E0µ
2)t‖∆0‖2

+

t∑
t′=1

(1− 0.15α2E0µ
2)t−t

′(
(340 + 101/c3)α

4τL4
max + 94α4τ2L4

max distt′
)

≤ ‖∆0‖2 + (340 + 101/c3)α
4τL4

max

t∑
t′=1

(1− 0.15α2E0µ
2)t−t

′

+ 94α4τ2L4
max

t∑
t′=1

(1− 0.04α2τE0µ
2)t
′

(54)

≤ ‖∆0‖2 + (7(340 + 101/c3) + 25× 94)α2τL2
maxκ

2
maxE

−1
0

≤ α2τL2
maxκ

2
max + (4730 + 101/c3)α

2τL2
maxκ

2
maxE

−1
0

≤ c3α2τL2
maxκ

2
max (55)

31



where (53) follows by choice of α ≤ 1−δ0
c3
√
τL2

maxκ
2
max
≤ E0

c3
√
τL2

maxκ
2
max

, (54) follows from A5(t), and
the last inequality is due to c3 = 4800.

Lemma 10. ∩i∈It
(
A1,t,i(τ) ∩A2,t,i(τ) ∩A3,t,i(τ)

)
∩A2(t) =⇒ A4(t+ 1).

Proof. We have

Bt+1 = Bt

(
1

m

∑
i∈It

τ−1∏
s=0

(Ik − αwt,i,sw
>
t,i,s)

)

+ B̂∗

(
α

m

∑
i∈It

w∗,i

τ−1∑
s=0

w>t,i,s

τ−1∏
r=s+1

(Ik − αwt,i,rw
>
t,i,r)

)
which implies

B>∗,⊥Bt+1 = B>∗,⊥Bt(I− αwtw
>
t )

(
1

m

∑
i∈It

τ−1∏
s=1

(Ik − αwt,i,sw
>
t,i,s)

)
(56)

We can expand the right product of Bt(I− αwtw
>
t ) using the binomial expansion as follows:

1

m

∑
i∈It

τ−1∏
s=1

(Ik − αwt,i,sw
>
t,i,s) = Ik −

α

m

∑
i∈It

τ−1∑
s=1

wt,i,sw
>
t,i,s

+
α2

m

∑
i∈It

τ−1∑
s=1

τ−1∑
s(1)=s+1

wt,i,sw
>
t,i,swt,i,s(1)w

>
t,i,s(1)

− · · ·+ sign(τ)
ατ

m

∑
i∈It

τ−1∏
s=1

wt,i,sw
>
t,i,s

Recall that each ‖wt,i,s‖2 ≤ 2
√
αLmax. Thus, after the identity, the spectral norm of the first

set of summations has spectral norm at most 4α2τL2
max, the second set has specral norm at most

16α4τ2L4
max, and so on. We in fact use the first set of summations as a negative term, and bound

all subsequent sets of summations as errors, exploiting the fact that their norms are geometrically
decaying. In particular, we have:∥∥∥∥∥ 1

m

∑
i∈It

τ−1∏
s=1

(Ik − αwt,i,sw
>
t,i,s)

∥∥∥∥∥
2

≤

∥∥∥∥∥Ik − α

m

∑
i∈It

τ−1∑
s=1

wt,i,sw
>
t,i,s

∥∥∥∥∥
2

+

τ−1∑
z=2

(4α2τL2
max)

z

≤

∥∥∥∥∥Ik − α

m

∑
i∈It

τ−1∑
s=1

wt,i,sw
>
t,i,s

∥∥∥∥∥
2

+
4α4τ2L4

max

1− 4α2τL2
max

≤

∥∥∥∥∥Ik − α

m

∑
i∈It

τ−1∑
s=1

wt,i,sw
>
t,i,s

∥∥∥∥∥
2

+ 5α4τ2L4
max (57)

Next, we use ‖wt,i,s − αB>t,i,s−1B∗w∗,i‖ ≤ 4c3α
2.5τL3

maxκ
2
maxE

−1
0 for all s ≥ 1 to obtain∥∥∥∥∥Ik − α

m

∑
i∈It

τ−1∑
s=1

wt,i,sw
>
t,i,s

∥∥∥∥∥
2

≤

∥∥∥∥∥Ik − α3

m

∑
i∈It

τ−1∑
s=1

B>t,i,s−1B∗w∗,iw
>
∗,iB

>
∗ Bt,i,s−1

∥∥∥∥∥
2

+ 13c3α
4τ2L4

maxκ
2
maxE

−1
0 (58)
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Next, we have for any s− 1 ∈ {1, . . . , τ − 1},

‖Bt,i,s−1 −Bt‖2 = ‖Bt,i,s−1 −Bt,i,0‖2 ≤
s−1∑
r=1

‖Bt,i,r −Bt,i,r−1‖2

≤ α
s−1∑
r=1

‖et,i,r−1‖2‖wt,i,r−1‖2

≤ 7α1.5(s− 1)L2
max

Thus,

∥∥∥∥Ik − α3

m

∑
i∈It

τ−1∑
s=1

B>t,i,s−1B∗w∗,iw
>
∗,iB

>
∗ Bt,i,s−1

∥∥∥∥
2

≤

∥∥∥∥∥Ik − α3

m

∑
i∈It

τ−1∑
s=1

B>t B∗w∗,iw
>
∗,iB

>
∗ Bt

∥∥∥∥∥
2

+

∥∥∥∥∥α3

m

∑
i∈It

τ−1∑
s=1

(Bt −Bt,i,s−1)
>B∗w∗,iw

>
∗,iB

>
∗ Bt,i,s−1

∥∥∥∥∥
2

+

∥∥∥∥∥α3

m

∑
i∈It

τ−1∑
s=1

B>t B∗w∗,iw
>
∗,iB

>
∗ (Bt −Bt,i,s−1)

∥∥∥∥∥
2

≤

∥∥∥∥∥Ik − α3

m

∑
i∈It

τ−1∑
s=1

B>t B∗w∗,iw
>
∗,iB

>
∗ Bt

∥∥∥∥∥
2

+ 16α4(τ − 1)2L4
max. (59)

Furtheromre,

∥∥∥∥∥Ik − α3

m

∑
i∈It

τ−1∑
s=1

B>t B∗w∗,iw
>
∗,iB

>
∗ Bt

∥∥∥∥∥
2

=

∥∥∥∥∥Ik − α3(τ−1)
m

∑
i∈It

B>t B∗w∗,iw
>
∗,iB

>
∗ Bt

∥∥∥∥∥
2

≤

∥∥∥∥∥Ik − α3(τ−1)
M

M∑
i=1

B>t B∗w∗,iw
>
∗,iB

>
∗ Bt

∥∥∥∥∥
2

+ α3(τ − 1)‖B>t B∗‖22

∥∥∥∥∥ 1
m

∑
i∈It

(
w∗,iw

>
∗,i − 1

M

M∑
i=1

w∗,iw
>
∗,i

)∥∥∥∥∥
2

≤

∥∥∥∥∥Ik − α3(τ−1)
M

M∑
i=1

B>t B∗w∗,iw
>
∗,iB

>
∗ Bt

∥∥∥∥∥
2

+ 6α4(τ − 1)L4
max, (60)

33



noting that (60) follows since we are conditioning on the event A0. Finally,∥∥∥∥∥Ik − α3(τ−1)
M

M∑
i=1

B>t B∗w∗,iw
>
∗,iB

>
∗ Bt

∥∥∥∥∥
2

≤ 1− α3(τ − 1)σ2
min(B

>
t B∗)σmin

(
1
M

M∑
i=1

w∗,iw
>
∗,i

)

≤ 1− α3(τ − 1)σ2
min(B

>
t B∗)σmin

(
1
M

M∑
i=1

w∗,iw
>
∗,i − w̄∗w̄

>
∗

)

= 1− α3(τ − 1)σmin(B
>
t B∗)

2σmin

(
1
M

M∑
i=1

(w∗,i − w̄∗)(w∗,i − w̄∗)
>

)
≤ 1− 0.1α2(τ − 1)E0µ (61)

≤ 1− 0.05α2τE0µ (62)

where (61) follows by Lemma 8 and Assumption 2, and (62) follows since τ ≥ 2. Combining (62),
(60), (59), (58), (57), and (56), we obtain

‖B>∗,⊥Bt+1‖2 ≤
(
1− 0.05α2τE0µ

2 + 6α4(τ − 1)L4
max + 16α4(τ − 1)2L4

max

+ 13c3α
4τ2L4

maxκ
2
maxE

−1
0 + 5α4τ2L4

max

)
‖B>∗,⊥Bt‖2

≤
(
1− 0.05α2τE0µ

2 + (24/c23)α
2τE0µ

2 + (13/c3)α
2τE0µ

2
)
‖B>∗,⊥Bt‖2

≤ (1− 0.04α2τE0µ
2)‖B>∗,⊥Bt‖2 (63)

using α2τ ≤ (1−δ0)2
c23τκ

4
maxL

2
max
≤ E2

0

c33τκ
4
maxL

2
max

and c3 > 1305.

Lemma 11. A3(t+ 1) ∩A4(t+ 1) ∩A5(t) =⇒ A5(t+ 1)

Proof. We use the contraction of ‖B>∗,⊥Bs‖2 (A4(t)) and the fact that ‖∆s‖2 is small for all s ∈ [t]

(A5(t)), as in Lemma 8, to obtain

distt+1 = ‖B>∗,⊥B̂t+1‖2
≤ 1

σmin(Bt+1)
‖B>∗,⊥Bt+1‖2

≤ 1
σmin(Bt+1)

(1− 0.04α2τE0µ
2)‖B>∗,⊥Bt‖2

...

≤ 1
σmin(Bt+1)

(1− 0.04α2τE0µ
2)t‖B>∗,⊥B0‖2

≤ σmax(B0)
σmin(Bt+1)

(1− 0.04α2τE0µ
2)tδ0

≤
√

1+‖∆0‖2/
√
α√

1−‖∆t+1‖2/
√
α
(1− 0.04α2τE0µ

2)tδ0

Now, we argue as in (26) (with ‖∆t‖ replaced by ‖∆t+1 without anything changing in the analysis)

to find
√

1+‖∆0‖2/
√
α√

1−‖∆t+1‖2/
√
α
δ0 ≤ 2+δ0

3 ≤ 1. Thus distt+1 ≤ (1− 0.04α2τE0µ
2)t as desired.

B.2 Proof of Proposition 1

Proposition 2 (Distributed GD lower bound). Suppose we are in the setting described in Sec-
tion 3 and d > k > 1. Then for any set of ground-truth heads {w∗,i}Mi=1, full-rank initializa-
tion B0 ∈ Rd×k, initial distance δ0 ∈ (0, 1/2], step size α > 0, and number of rounds T ,
there exists B∗ ∈ Od×k satisfying dist(B0,B∗) = δ0 and dist(BD-GD

T ,B∗) ≥ 0.7δ0, where
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BD-GD
T ≡ BD-GD

T (B0,B∗, {w∗,i}Mi=1, α) is the result of D-GD with step size α and initialization B0

in the setting with ground-truth representation B∗ and ground-truth heads {w∗,i}Mi=1.

Proof. Recall that BD-GD
T (B0,B∗, {w∗,i}Mi=1, α) is the result of D-GD with step size α and initial-

ization B0 on the system with ground-truth representation B∗ and ground-truth heads {w∗,i}Mi=1.

There are two disjoint cases: (1) for all B∗ ∈ B := {B ∈ Od×k : dist(B0,B) = δ0,Bw̄∗ ∈
col(B0)}, dist(BD-GD

T (B0,B∗, {w∗,i}Mi=1, α),B∗) ≥ 0.7δ0, or (2) there exists some B∗ ∈ B such
that dist(BD-GD

T (B0,B∗, {w∗,i}Mi=1, α),B∗) < 0.7δ0. If case (1) holds then the proof is complete.
Otherwise, let B∗ ∈ B such that dist(BD-GD

T (B0,B∗, {w∗,i}Mi=1, α),B∗) < 0.7δ0. We will show
that there exists another B∗′ ∈ B such that dist(BD-GD

T (B0,B∗′ , {w∗,i}Mi=1, α),B∗′) ≥ δ0, so D-GD
cannot guarantee to recover the ground-truth representation, completing the proof.

Consider case (2). Without loss of generality we can write B0 = 1
‖w̄∗‖B∗w̄∗v

>
0 + B̃0Ṽ

>
0 for some

v0 ∈ Rk : ‖v0‖ = 1, B̃0 ∈ Od×k−1 : B̃>0 B∗w̄∗ = 0, Ṽ0 ∈ Ok×k−1 : Ṽ>0 v0 = 0 using the
SVD, since B∗w̄∗ ∈ col(B0). Likewise, we can write B∗ =

1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ + B̃∗Ṽ

>
∗ for some

B̃∗ ∈ Od×k−1 : B̃>∗ B∗w̄∗ = 0, Ṽ∗ ∈ Ok×k−1 : Ṽ>∗ w̄∗ = 0. Using these decompositions, we can
see that

B∗B
>
∗ =

(
1

‖w̄∗‖2 B∗w̄∗w̄
>
∗ +B̃∗Ṽ

>
∗
)(

1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ +B̃∗Ṽ

>
∗ )
>

= 1
‖w̄∗‖4 B∗w̄∗w̄

>
∗ w̄∗w̄

>
∗ B>∗ + 1

‖w̄∗‖2 B∗w̄∗w̄
>
∗ Ṽ∗B̃

>
∗ + 1

‖w̄∗‖2 B̃∗Ṽ
>
∗ w̄∗w̄

>
∗ B>∗

+ B̃∗Ṽ
>
∗ Ṽ∗B̃

>
∗

= 1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ B>∗ + B̃∗B̃

>
∗

and

δ0 := dist(B0,B∗)

:= ‖(Id −B∗B
>
∗ )B0‖

=
∥∥(Id − 1

‖w̄∗‖2 B∗w̄∗w̄
>
∗ B>∗ − B̃∗B̃

>
∗
)(

1
‖w̄∗‖B∗w̄∗v

>
0 +B̃0Ṽ

>
0

)∥∥
=
∥∥(Id − 1

‖w̄∗‖2 B∗w̄∗w̄
>
∗ B>∗ − B̃∗B̃

>
∗
)

1
‖w̄∗‖B∗w̄∗v

>
0

+
(
Id − 1

‖w̄∗‖2 B∗w̄∗w̄
>
∗ B>∗ − B̃∗B̃

>
∗
)
B̃0Ṽ

>
0

∥∥
=
∥∥(Id − 1

‖w̄∗‖2 B∗w̄∗w̄
>
∗ B>∗ − B̃∗B̃

>
∗
)
B̃0Ṽ

>
0

∥∥
=
∥∥(Id − B̃∗B̃

>
∗
)
B̃0Ṽ

>
0

∥∥
=
∥∥(Id − B̃∗B̃

>
∗
)
B̃0

∥∥
= dist(B̃0, B̃∗). (64)

Next, let B∗′ =
1

‖w̄∗‖2 B∗w̄∗w̄
>
∗ + (2B̃0B̃

>
0 B̃∗ − B̃∗)Ṽ

>
∗ . We first check that B∗′ ∈ Od×k:

B>∗′B∗′ =
(

1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ + (2B̃0B̃

>
0 B̃∗ − B̃∗)Ṽ

>
∗
)>( 1

‖w̄∗‖2 B∗w̄∗w̄
>
∗ + (2B̃0B̃

>
0 B̃∗ − B̃∗)Ṽ

>
∗
)

= 1
‖w̄∗‖2 w̄∗w̄

>
∗ + Ṽ∗(2B̃0B̃

>
0 B̃∗ − B̃∗)

>(2B̃0B̃
>
0 B̃∗ − B̃∗)Ṽ

>
∗ (65)

= 1
‖w̄∗‖2 w̄∗w̄

>
∗ + Ṽ∗(4B̃

>
∗ B̃0B̃

>
0 B̃0B̃

>
0 B̃∗ − 4B̃>∗ B̃0B̃

>
0 B̃∗ + B̃>∗ B̃∗)Ṽ

>
∗

= 1
‖w̄∗‖2 w̄∗w̄

>
∗ + Ṽ∗Ṽ

>
∗

= [Ṽ∗,
1
‖w̄∗‖w̄∗][Ṽ∗,

1
‖w̄∗‖w̄∗]

>

= Ik (66)
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as desired, where (65) follows since B̃>∗ B∗w̄∗ = B̃>0 B∗w̄∗ = 0, and (66) follows since
[Ṽ∗,

1
‖w̄∗‖w̄∗] ∈ O

k×k by the definition of the SVD. Furthermore,

dist(B0,B∗′) = ‖(Id −B0B
>
0 )B∗′‖

= ‖(Id− 1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ B>∗ −B̃0B̃

>
0 )
(

1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ + (2B̃0B̃

>
0 B̃∗ − B̃∗)Ṽ

>
∗
)
‖

= ‖(Id − 1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ B>∗ − B̃0B̃

>
0 )

1
‖w̄∗‖2 B∗w̄∗w̄

>
∗

+ (Id − 1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ B>∗ − B̃0B̃

>
0 )(2B̃0B̃

>
0 B̃∗ − B̃∗)Ṽ

>
∗ ‖

= ‖(Id − 1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ B>∗ − B̃0B̃

>
0 )(2B̃0B̃

>
0 B̃∗ − B̃∗)Ṽ

>
∗ ‖

= ‖(Id − B̃0B̃
>
0 )(2B̃0B̃

>
0 B̃∗ − B̃∗)Ṽ

>
∗ ‖

= ‖(Id − B̃0B̃
>
0 )B̃∗Ṽ

>
∗ ‖

= ‖(Id − B̃0B̃
>
0 )B̃∗‖

= dist(B̃∗, B̃0)

= δ0 (67)

where (67) follows from (64). Moreover, B∗′w̄∗ = B∗w̄∗ ∈ col(B0), thus B∗′ ∈ B. Next,

dist(B∗,B∗′) = ‖(Id −B∗B
>
∗ )B∗′‖

= ‖(Id− 1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ B>∗ −B̃∗B̃

>
∗ )
(

1
‖w̄∗‖2 B∗w̄∗w̄

>
∗ + (2B̃0B̃

>
0 B̃∗ − B̃∗)Ṽ

>
∗
)
‖

= ‖(Id−B̃∗B̃
>
∗ )(2B̃0B̃

>
0 B̃∗−B̃∗)‖

= 2‖(Id−B̃∗B̃
>
∗ )B̃0B̃

>
0 B̃∗‖

≥ 2‖(Id−B̃∗B̃
>
∗ )B̃0‖σmin(B̃

>
0 B̃∗)

= 2 dist(B̃0, B̃∗)

√
1− dist2(B̃0, B̃∗) (68)

= 2δ0
√
1− δ0

where (68) follows since σ2
min(B̃

>
1 B̃2) + σ2

max((Id−B̃1B̃
>
1 )B̃2) = 1 for any B̃1, B̃2 ∈ Od,k−1.

Note that for D-GD the global update for the representation is

Bt+1 = Bt −
α

M

M∑
i=1

∇Bfi(Bt,wt) = Bt − α(Btwt −B∗w̄∗)w
>
t , (69)

and similarly, the update for the head is wt+1 = wt − αB>t (Btwt −B∗w̄∗). Thus, the behavior of
D-GD is indistinguishable in the settings with ground-truth representations B∗′ ,B∗ since B∗′w̄∗ =
B∗w̄∗. In particular, BD-GD

T (B0,B∗, {w∗,i}Mi=1, α) = BD-GD
T (B0,B∗′ , {w∗,i}Mi=1, α) Using this

equality along with the triangle inequality yields

dist(BD-GD
T (B0,B∗′ , {w∗,i}Mi=1, α),B∗′) = dist(BD-GD

T (B0,B∗, {w∗,i}Mi=1, α),B∗′)

≥ dist(B∗,B∗′)− dist(dist(BD-GD
T (B0,B∗, {w∗,i}Mi=1, α),B∗)

≥ 2δ0

√
1− δ20 − 0.7δ0 (70)

≥ (
√
3− 0.7)δ0 (71)

≥ δ0
as desired, where (70) follows by the definition of case (2) and (68), and (71) follows by δ0 ∈
(0, 1/2].
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Figure 6: FedAvg with partial participation (m = 10, M = 40) learns the ground-truth representation
at a linear rate.

C Experimental Details

C.1 Multi-task linear regression

The multi-task linear regression experiments consist of two stages: training and fine-tuning. During
training, we track dist(Bt,B∗) in Figure 1 and the Frobenius norm of the gradient of (6), i.e.
(‖B>t (Btwt−B∗w̄∗)‖22 + ‖(Btwt−B∗w̄∗)w

>
t ‖2F )1/2, in Figure 3(left). For fine-tuning, we track

the squared Euclidean distance of the post-fine-tuned model from the ground-truth in Figure 3(right)
for various numbers of fine-tuning samples n.

Each training trial consists of first sampling M ground truth heads w∗,i ∼ N (0, Ik) and a ground
truth representation B̌∗ ∈ Rd×k such that each element is i.i.d. sampled from a standard Gaussian
distribution. Then, B∗ is formed by computing the QR factorization of B̌∗, i.e. B∗R∗ = B̌, where
R∗ ∈ Rk×k is upper triangular and B∗ ∈ Od×k has orthonormal columns. To initialize the model
we set w0 = 0 ∈ Rk and sample B̌0 ∈ Rd×k such that each element is i.i.d. sampled from a standard
Gaussian distribution, then compute B0 = 1√

α
B̂0 where B̂0 ∈ Od×k is the matrix with orthonormal

columns resulting from the QR factorization of B̌0. Then we run FedAvg with τ = 2 and D-SGD on
the population objective 6, with both sampling m =M clients per round and using step size α = 0.4.
The training plots show quantities averaged over 10 independent trials.

For each fine-tuning trial, we similarly draw a new head w∗,M+1 ∼ N (0, Ik), and data xM+1,j ∼
N (0, Ik), yM+1,j = 〈B∗w∗,i,xM+1,j〉 + ζM+1,j where ζM+1,j ∼ N (0, 0.01). Then we run GD
on the empirical loss 1

2n

∑n
j=1(〈Bw,xM+1,j〉 − yM+1,j)

2 for τ ′ = 200 iterations with step size
α = 0.01. The fine-tuning plot shows average results over 10 independent, end-to-end trials (starting
with training), and the error bars give standard deviations.

Remark 1 (Full participation). Although the aforementioned experiments used full participation
(m =M ), this condition is not required for FedAvg to learn the ground-truth representation. Figure
6 plots the representation learning error in the same setting as Figure 1 but with m = 10 (and
M = 40) and one can see that FedAvg again learns the representation.

Remark 2 (Convergence to stationary point of the global objective). The literature has thus far
focused on analyzing the rates at which FedAvg converges to a stationary point of the global objective
(1), which prior works have shown requires step size diminishing with T to achieve at-best sublinear
convergence in nonconvex data heterogeneous settings. In contrast, Theorem 1 and Figure 4 show
that FedAvg with fixed step size converges linearly to the ground-truth representation despite not
converging to a stationary point of the global objective.
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C.2 Image classification

The CNN used in the image classification experiments has six convolutional layers with ReLU
activations and max pooling after every other layer. On top of the six convolutional layers is a 3-layer
MLP with ReLU activations.

All models are trained with a step size of α = 0.1 after tuning in {0.5, 0.1, 0.05, 0.01, 0.005} and
selecting the best α that yields the smallest training loss. In all cases, m = 0.1M . We use the SGD
optimizer with weight decay 10−4 and momentum 0.5. We train all models such that Tτ = 125000.
Thus, D-SGD trains for T = 125000 rounds, since τ = 1 in this case. Likewise, for FedAvg
with τ = 50, T = 2500 training rounds are executed. The batch size is 10 in all cases. We also
experimented with larger batch sizes for D-SGD but they did not improve performance.

Each client has 500 training samples in all cases. Thus, FedAvg with τ = 50 is equivalent to FedAvg
with one local epoch. For the experiments with C classes per client for all clients, each client has
the same number of images from each class. For the experiment testing fine-tuning performance on
new classes from the same dataset, the first 80 classes for CIFAR100 are used for training, while
classes 80-99 are reserved for new clients. For fine-tuning, 10 epochs of SGD are executed on the
training data for the new client. For fine-tuning on CIFAR10, each new client has images from all 10
classes, and equal numbers of samples per class for training. For fine-tuning on CIFAR100, each new
client has images from all 20 classes, with equal numbers of samples from each class for training
when possible, and either 2 or 3 samples from each class otherwise (when the number of fine-tuning
samples equals 50). Accuracies are top 1 accuracies evaluated on 2000 test samples per client for
CIFAR10 and 400 test samples per client for the last 20 classes of CIFAR100.

To compute the layer-wise similarities in Figure 2, we use the Centered Kernel Alignment (CKA)
similarity metric, which is the most common metric used to measure the similarity between neural
networks [13]. CKA similarity between model layers is evaluated by feeding the same input through
both networks and computing the similarity between the outputs of the layers. The similarity metric
is invariant to rotations and isotropic scaling of the layer outputs [13]. We use the code from [76] to
compute CKA similarity.

For Figure 4, the cosine similarity is evaluated by first feeding n images from class c through the
trained network and storing the output of the network layer before the final linear layer to obtain the
features {f c1 , . . . , f cn}, where each f ci ∈ R512. Then, to obtain the average cosine similarity between

features from classes c and c′, we compute 1
n

∑n
i=1

|〈fci ,f
c′
i 〉|

‖fci ‖‖fc
′
i ‖

. We use n = 25.

All experiments were performed on two 8GB NVIDIA GeForce RTX 2070 GPUs.
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