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Figure 1: Illustrations of the generalized one-shot GAN adaptation task. Target images with the
corresponding binary entity masks are provided to adapt the pre-trained GAN to the domain of similar
style and entity as target images. The first three masks are all zeros and the others have value 1 in
the areas bounded by green lines. Our adapted model is of strong cross-domain correspondence to
realize both style and entity transfer.

Abstract

The adaptation of a Generative Adversarial Network (GAN) aims to transfer a
pre-trained GAN to a target domain with limited training data. In this paper,
we focus on the one-shot case, which is more challenging and rarely explored
in previous works. We consider that the adaptation from a source domain to a
target domain can be decoupled into two parts: the transfer of global style like
texture and color, and the emergence of new entities that do not belong to the
source domain. While previous works mainly focus on style transfer, we propose
a novel and concise framework to address the generalized one-shot adaptation
task for both style and entity transfer, in which a reference image and its binary
entity mask are provided. Our core idea is to constrain the gap between the in-
ternal distributions of the reference and syntheses by sliced Wasserstein distance.
To better achieve it, style fixation is used at first to roughly obtain the exem-
plary style, and an auxiliary network is introduced to the generator to disentangle
entity and style transfer. Besides, to realize cross-domain correspondence, we
propose the variational Laplacian regularization to constrain the smoothness of
the adapted generator. Both quantitative and qualitative experiments demonstrate
the effectiveness of our method in various scenarios. Code is available at https:
//github.com/zhangzc21/Generalized-One-shot-GAN-Adaptation.

1 Introduction

Benefiting from numerous excellent pre-trained GANs (e.g., StyleGAN [16] and BigGAN [6]),
GAN adaptation has become an important research topic, which leverages the knowledge of GANs
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pre-trained on large-scale datasets to mitigate the lack of data and speed up the training on a new
domain. The adaptation can be divided into few-shot, one-shot and zero-shot [11] cases. The few-shot
(usually ≥ 10) case has been extensively studied in the past years [42, 41, 26, 22]. The latest works
[29, 43, 46] seek the cross-domain correspondence that keeps the shapes or contents of syntheses
before and after adaptation invariant. Recently, the more challenging one-shot case has been explored
by several works [47, 55, 20], which mainly focus on adapting GANs to the target domain of similar
style as the given image. By utilizing GAN inversion [45], the adapted models can be applied to
some creative tasks like image style transfer and manipulation [55].

However, we perceive there exist limitations in previous task settings [47, 55, 20], due to the fact that
an exemplar contains rich information more than artistic style including color and texture. As shown
in Fig. 1, the source domain refers to natural faces, and the exemplars of target domains are artistic
portraits with some entities (e.g., hat and accessories). Previous works only concern the artistic style
transfer while the entities are neglected. This may lead to two problems: 1) In some cases, the entities
considered as an important part of domain feature, should be transferred with the style simultaneously.
2) The entities of large size, like the mask in Fig. 1, easily bias the style extraction of face region and
cause undesired artifacts in adapted syntheses. Therefore, we perfect the task settings with the aid
of an extra binary mask, which labels the entities we are interested in and helps to define the target
domain more exactly and flexibly. We name the new task generalized one-shot GAN adaptation. The
scenarios in previous works can be taken as the special case when the binary mask is full of zeros.
We believe the exploration of the novel task is quite meaningful, which not only serves to artistic
creation for more general and complex scenarios, but also facilitates further discovery and utilization
of the knowledge in pre-trained models.

To tackle the new adaptation problem, we propose a concise and effective adaptation framework
for StyleGAN [17], which is a frequent base model in previous works [47, 55, 20]. Firstly, we
modify the architecture of the original generator to decouple the adaptation of style and entity,
where the new generator comprises an additional auxiliary network to facilitate the generation of
entities, and the original generator is dedicated to generating stylized images. Secondly, unlike
previous works using CLIP similarity [55] or GAN loss [47] to learn the domain knowledge, our
framework directly minimizes the divergence of the internal distributions of the exemplar and
syntheses by sliced Wasserstein distance [5] for both style and entity transfer. Combined with the
style fixation that attaches all syntheses with exemplary style by the transformation in latent space,
our framework is efficient and potent enough to obtain compelling results. Thirdly, inspired by
the cross-domain consistency [29] and classic manifold learning [12, 2], we propose the variant
Laplacian regularization that smooths the network changes before and after adaptation to preserve
the geometric structure of the source generative manifold, and prevent the content distortion during
training. We conduct extensive experiments on various references with and without entities. The
results show that our framework can fully exploit the cross-domain correspondence and achieve high
transfer quality. Moreover, the adapted model can handily perform various image manipulation tasks.

2 Related works

GAN adaptation leverages the knowledge stored in pre-trained GANs to mitigate the lack of data
and speed up the training on a new domain. [42] is the first to study and evaluate different adapting
strategies. It shows that transferring both pre-trained generator and discriminator can improve the
convergence time and the quality of the generated images. Since then, more and more adapting
strategies [28, 41, 32, 53] are proposed for various GAN architectures [14, 6, 25]. As StyleGAN
[16] and its variants [17, 15] continue to make breakthrough progress in the generation of various
classes of data, designing the adapted strategies of StyleGAN has gained a lot and sustained attention.
Specifically, [30, 19] have explored the zero-shot GAN adaptation, which transfers StyleGAN into
the target domain defined by the text prompts with the help of CLIP [31]. [22, 29, 21, 43, 46, 18]
study to transfer the StyleGAN to the domain defined by the given few-shot images.

Among the above works, our work has a close relation to FSGA [29], which proposes the cross-
domain consistency (CDC) loss to maintain the diversity of the source generator, and makes the
transferred and source samples have a corresponding relation. Although CDC loss is ineffective for
FSGA when the training data is only one-shot, its mechanism inspires us to consider a more effective
regularization to maintain the relation, which will be discussed in Sec. 4.4.

2



Recently, [55, 20, 9, 47] have explored the one-shot adaptation task. [55, 20] align the adapted
samples and reference image in the CLIP feature space. [9] learns a style mapper by constructing a
substantial paired dataset. [47] introduces the extra latent mapper and classifier to the original GAN.
In contrast, we focus on both style and entity adaptation which has never been studied before. And
we prove that under the decoupling of style and entity, aligning the internal distributions with the
proper regularization is effective for GAN adaptation.

3 Preliminaries

StyleGAN A canonical StyleGAN [17] can be summarized in two parts: Firstly, given a noise
distribution P (z), a mapping network transforms the noise from space Z = {z|P (z) ̸= 0} ⊆ R1×512

into the replicated latent space W = {[F (z); . . . ;F (z)]|z ∈ Z} ⊆ R18×512, where F is a fully-
connected network. Secondly, a synthesis network G composed of convolutional blocks transfers
W space into image space M = {G(w)|w ∈ W} ⊆ RH×W×3. Another important concept is the
extended latent space W+ = {[F (z1); . . . ;F (z18)]|zi ∈ Z}. For ∀ w1,w2 ∈ W , the latent code
manipulation merges their information by the linear combination diag(α1)w1+diag(α2)w2 ∈ W+,
α1,α2 ∈ R18. Empirically, W+ space is inferior to W in generation fidelity and editability, but
superior in GAN inversion that finds a code wref to reconstruct a reference yref ∈ RH×W×3. In
this paper we only focus on tuning G, and fix F for keeping the distribution of source latent spaces.

Manifold learning Considering the sample matrix X = [xT
1 ; . . . ;x

T
n ] from source manifold Ms,

W = [wi,j ]
n
i,j=1 is the weight matrix, where wi,j is the weight of xi and xj usually defined as

e−∥xi−xj∥2/σ . Given a task-specific function f and y = f(x), manifold learning requires the trans-
formed samples Y = [yT

1 ; . . . ;y
T
n ] on the new manifold Mt should preserve the geometric structure

of Ms, which means the data nearby on Ms are also nearby on Mt, and vice versa. The requirement
is mostly realized by minimizing the manifold regularization term [4]

∫
Ms

∥∇Msy∥
2
dP (x), ∇Ms

is the gradient along manifold, and P (x) is the probability measure. If Mt is a submanifold of R, the
former is equalized with

∫
Ms

y∆MsydP (x) by Stokes theorem. ∆ called the Laplace–Beltrami op-
erator, is a key geometric object in the Riemannian manifold, thus the integral is also called Laplacian
regularization. In practice, it is estimated by the discrete form 2tr(Y TLY ) =

∑
i,j wi,j

∥∥yi − yj

∥∥2,
L = D −W is known as the graph Laplacian operator, D is the degree matrix where the diagonal
element di,i =

∑n
j=1 wi,j and other elements are zero. The convergence between L and ∆ can be

found in [3]. Intuitively, the regularization encourages the local smoothness of f . If data distribute
densely in an area, the function should be smooth to avoid local oscillations. If xi and xj are close,
in the discrete form wi,j will impose a strong penalty to the distance between yi and yj .

Task definition The generalized one-shot adaptation can be formally described as: Given a
reference yref , a mask mref ∈ {0, 1}H×W is provided to label the location of entity contained in
yref . The target domain T is defined to contain images of similar style and entities as yref . With the
knowledge stored in a generative model Gs pre-trained on source domain S, a generative model Gt

is learned from yref and mref to generate diverse images belonging to domain T . Note that we can
set mref = 0 when there is no interested entities existed in yref . Moreover, the adaptation should
satisfy the cross-domain correspondence. i.e., ∀ w ∈ W , Gs(w) and Gt(w) should have similar
shape or content in visual. With the correspondence, adapted models can be applied for not only
synthesis, but also the transfer and manipulation of source images.

4 Methodology

4.1 Overall

Our framework for tackling the generalized one-shot GAN adaptation task is illustrated in Fig. 2. For
the sake of description, in the following part we will take the StyleGAN pre-trained on FFHQ as an
example to describe each component of the framework in detail. We will demonstrate our framework
can be applied to various domains in the experiments.

Network architecture Different from previous works [55, 20] that directly adapt the source
generator Gs, our target generator Gt (as Fig. 2 shows) consists of a generator Ĝt inherited from
Gs, and an auxiliary network (aux) trained from scratch. We are inspired by the fact that Gs can
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Figure 2: The proposed framework for generalized one-shot GAN adaptation. The convolutional
blocks are inherited from the original StyleGAN [17]. The black arrows represent the flow of Ĝt, and
the red arrows represent the flow of Gt. For the details please refer to Sec. 4.1.

approximate arbitrary real faces but cannot handle most entities, due to that Gs captures the prevalent
elements (clear natural faces) of FFHQ rather than the tails (faces with entities like hats or ornaments)
of the distribution [49, 27]. The design makes aux serve to entities, and Ĝt just focus on stylizing
clear face to benefit from the prior knowledge stored in Gs. As shown in Fig. 2(d), for each w, its
feature map generated by the convolutional block of StyleGAN is fed into aux, where a UNet [33]
predicts the feature map fent of entity and the mask m that exactly labels the position of the entity,
then they are merged with f in by Eq. (1) to get the feature map of face covered with entity.

aux(f in) = (1−m)⊙ f in +m⊙ fent, (1)

⊙ denotes the Hadamard product. We hope the shape of the entity is only influenced by the content
of synthesis, hence we place aux after the fourth block of StyleGAN, where the 32× 32 resolution
f in contains the most content information and the least style information of synthesis (see Sec.
4.2). Because the global style and local entity are usually independent, the disentangled design also
prevents the style of faces from being contaminated by that of entities (see Sec. 4.3).

Training process Our training process can be divided into three main parts: 1⃝ Style fixation and
exemplar reconstruction. In Fig. 2(a), we get the latent code wref = [wc

ref ;w
s
ref ] of yref by the

GAN inversion technique [39], and train Gt to reconstruct yref with reconstruction loss Lrec. In
Fig. 2(b), each w will be transformed into the style-fixed code w♯ = [wc;ws

ref ] to roughly obtain
the exemplary style. 2⃝ Internal distribution learning. We minimize the divergence of internal patch
distributions between syntheses and exemplar for style and entity transfer. Instead of using GAN
loss that is hard to optimize, we take sliced Wasserstein distance (SWD) [5] as style loss Lstyle and
entity loss Lent to learn internal distribution efficiently. 3⃝ Manifold Regularization. To suppress
the content distortion during training, we propose the variational Laplacian regularization LV lapR to
smooth the change from Gs to Gt by preserving the geometric structure of the source manifold. As
shown in Fig. 2(c), the overall loss is

min
Gt

λ1Lrec + λ2Lstyle + λ3Lent + λ4LV LapR (2)

The details of training process will be illustrated and discussed in the following sections. For
convenience of description and self-consistency, some abbreviations have been taken: y = Gt(w

♯),
ŷ = Ĝt(w

♯), yrec = Gt(wref ), ŷrec = Ĝt(wref ), x = Gs(w
♯), xrec = Gs(wref ).

4.2 Style fixation and exemplar reconstruction

It is well known that StyleGAN is equipped with the disentangled latent spaces W and W+ [1],
where the latter vectors of code mainly determine the style of synthesis whereas the earlier vectors
determine the coarse-structure or content of the synthesis. Taking advantage of this trait, we first
roughly transfer the exemplary style to other syntheses by fixing the style code. The exemplar yref is
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fed into the pre-trained GAN inversion encoder e4e [39] to get the latent code wref = [wc
ref ;w

s
ref ],

where wc
ref ∈ Rl×512 and ws

ref ∈ R(18−l)×512 encode content and style information of exemplar
respectively. For each w ∈ W , it will be transformed to w♯ before fed into networks,

w♯ = diag(α)w + diag(1−α)wref , αi = 1i<=l(i), i = 1, . . . , 18. (3)

The content part of w is reserved and style part is replaced by ws
ref , and we denote the new space

as W♯. Because style fixation should not change the content of the original synthesis, by using the
pre-trained Arcface model [10] to compare the identity similarity before and after style fixation, we
find setting l = 8 is acceptable which gets 65% average similarity and obtains the adequate exemplary
style in visual. In MTG [55], style mixing assists as a post-processing step to improve the style
quality, but the experiments (Fig. 3) show that the style of syntheses is underfitting and not consistent.
In our framework, it is used as a pre-processing step to facilitate the following learning.

Because xrec is just the projection of yref on the source domain, there often exists an obvious
distinction between them in visual as shown in Fig. 2. Hence we adopt the reconstruction loss Lrec

to narrow the gap,

Lrec = dssim(yrec,yref ) + lpips(yrec,yref ) + λ5mse(m↑
rec,mref ). (4)

dssim denotes the negative structural similarity metric [44] and lpips is the perceptual loss [50],
m↑

rec is the upsampled reconstructed mask from aux. It is worth noting Lrec acts on Gt rather than
the vanilla architecture Ĝt. When mref = 0, aux does not work and Gt is equivalent to Ĝt.

4.3 Internal distribution learning

Recent works about internal learning [35, 37, 51, 52] prove that the internal patch distribution of
a single image contains rich meaning. Minimizing the divergence of internal distributions works
out many tasks like image generation, style transfer, and super-resolution. It is usually achieved
by the adversarial patch discriminator [13]. However, it is well known that the training of GAN is
time-consuming, unstable, and requires large GPU memory. Previous few-shot GAN adaptation
works [22, 29] using GAN loss almost have the serious model collapse phenomenon. We find that
slice Wasserstein distance (SWD) [5] can lead to the same destination but with greater efficiency.
For two tensor A,B ∈ RH×W×d, the SWD of their empirical internal distributions is defined as

SWD(A,B) =

∫
Sd

∥sort(proj(A,θ))− sort(proj(B,θ))∥2 dθ, (5)

where Sd = {θ ∈ Rd : ∥θ∥ = 1}, proj : RH×W×d → RH×W that projects each pixel from the d
channels to a scalar by θ, and sort denotes the sort operator ordering all values. SWD can be easily
implemented by convolution of a randomized 1× 1 kernel along with a quick-sort algorithm.

To realize style and entity transfer, we use SWD to minimize the divergence of the empirical internal
distribution of the syntheses and reference. The style loss is defined as

Lstyle =
1

n|Φstyle|
∑

φ∈Φstyle

m∑
i=1

SWD(φ(ŷi), φ(ŷrec)). (6)

Φstyle is a set of convolutional layers from the pre-trained lpips network to extract spatial features.
Note that the generator learns the style of ŷrec rather than that of yref to prevent the style of the
entity from leaking into the other area. The entity loss is defined as

Lent =
1

n|Φent|
∑

φ∈Φent

m∑
i=1

SWD(φ(m↑
i ⊙ yi), φ(m

↑
rec ⊙ yrec)). (7)

Φent is also a set of convolutional layers from the pre-trained lpips net, m↑ is upsampled by m to
get the same resolution as the final synthesis. Taking the reconstructed entity m↑

rec ⊙ yrec as the
target can be viewed as an implicit augmentation technique to avoid overfitting.

4.4 Manifold regularization

The training losses, particularly the style loss, inevitably distort the content of source syntheses
and change their relative relationship. To achieve cross-domain correspondence, we use the variant
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Figure 3: Comparison of our framework with other state-of-the-arts. The source domain contains
natural face images of 1024× 1024. Please zoom in for better visual effects.

Laplacian regularization LV LapR to alleviate the distortion. Since we do not tune the StyleGAN
mapping network, the W space coupled with the source generator Gs does not change, so we define

LV LapR =

∫
W

∥∥∥∇W♯ϕ(Gt(w
♯))−∇W♯ϕ(Gs(w

♯))
∥∥∥2

dP (w), (8)

where ϕ is a pre-trained semantic extractor, here we use the pre-trained CLIP image encoder [31]
that is sensitive to both style and content variation. LV LapR can be interpreted from two perspectives.
The first is the smoothness of the function: Because the integrand also represents the smoothness of
the residual ϕ(Gt(w

♯))−ϕ(Gs(w
♯)), minimizing LV lapR expects syntheses from Gs and Gt across

W have a smooth semantic difference. In the ideal case, the integrand is nearly zero, for various w in
a local area, Gt(w

♯) and Gs(w
♯) have similar differences in terms of style and entity. The second

perspective is the preservation of geometric structure: According to the Laplacian regularization
theory [3], the integral form in Eq. (8) can be estimated in discrete form;

LV LapR =

n∑
i,j=1

wi,j

∥∥ϕ(yi)− ϕ(yj) + ϕ(xj)− ϕj(xi)
∥∥2 (9a)

= 2tr(RTLR), (9b)

where R = [ϕ(y1)
T − ϕ(x1)

T ; . . . ;ϕ(yn)
T − ϕ(xn)

T ], wi,j = e−∥w
♯
i−w♯

j∥/σ , L is the Laplacian
matrix (see Sec. 3). In Eq. (9a), if wi and wj are close in latent space, wi,j will be a large scalar
that encourages

∥∥ϕ(yi)− ϕ(yj)
∥∥ and ∥ϕ(xi)− ϕ(xj)∥ to be the same. This means that the relative

distances of adjacent syntheses before and after adaptation are isometric in the feature space. In
practice, the loss can be efficiently computed using Eq. (9b), the derivation is provided in the
supplementary materials.

Relation between LV lapR and LCDC Recently the influential work FSGA [29] introduces the
cross-domain distance consistency loss LCDC to achieve cross-domain correspondence. For arbitrary
wi and wj , without loss of generality, FSGA defines the conditional probability pj|i and qj|i in Eq.
(10) to form the similarity distributions, then minimizes their Kullback-Leibler divergence Eq. (11)
that encourages the syntheses of Gt to have the same similarity property as that of Gs.

pj|i =
e−∥ϕ(xj)−ϕ(xi)∥2

Σn
j ̸=ie

−∥ϕ(xj)−ϕ(xi)∥2 , qj|i =
e−∥ϕ(yj)−ϕ(yi)∥2

Σn
j ̸=ie

−∥ϕ(yj)−ϕ(yi)∥2 . (10)

LCDC = Σn
i=1KL(p·|i||q·|i) = Σn

i=1Σ
n
j ̸=ipj|i log

pj|i
qj|i

. (11)

In the above equation, ϕ denotes the feature map of the corresponding generator. From the perspective
of manifold learning, p·|i and q·|i depict the neighborhood structure of xi and yi respectively, LCDC

tries to place xi in a new space so as to optimally preserve neighborhood identity. Actually, we find
that this idea is equivalent to the Stochastic Neighbor Embedding [12, 40], which is also a popular
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Table 1: Quantitative results. The target images are shown in Fig. 3. US denotes the user preference.
NME and IS are not counted on the Mask since the masked face cannot be identified by [7] and [10].

Sketch Disney Arcane Hat Zelda Mask
NME↓ IS↑ US↑ NME↓ IS↑ US↑ NME↓ IS↑ US↑ NME↓ IS↑ US↑ NME↓ IS↑ US↑ US↑

FSGA 0.14 0.11 0.09 0.26 0.00 0.09 0.17 0.04 0.09 0.19 0.03 0.10 0.28 0.00 0.09 0.10
MTG 0.08 0.31 0.09 0.19 0.14 0.11 0.08 0.24 0.10 0.09 0.29 0.10 0.15 0.05 0.09 0.10

JoJoGAN 0.09 0.24 0.13 0.11 0.17 0.11 0.10 0.17 0.11 0.08 0.21 0.10 0.09 0.09 0.11 0.10
OSCLIP 0.11 0.20 0.09 0.11 0.19 0.11 0.10 0.19 0.09 0.13 0.23 0.10 0.21 0.13 0.10 0.10

Ours 0.08 0.40 0.60 0.09 0.26 0.58 0.07 0.25 0.61 0.08 0.36 0.60 0.09 0.25 0.61 0.60
w/o Lstyle 0.07 0.45 - 0.07 0.40 - 0.07 0.32 - 0.08 0.40 - 0.08 0.35 - -

w/o LV LapR 0.09 0.35 - 0.10 0.11 - 0.08 0.21 - 0.10 0.29 - 0.12 0.15 - -

method for preserving the manifold structure. LCDC has the following disadvantages. Firstly, a large
batch is almost inacceptable for a high-resolution GAN to estimate p·|i and q·|i. LV LapR directly
constrains the distance and performs well even when the batch is 2. Second, LCDC is non-convex
and hard to optimize, in practice, the loss value is usually around 1e-5, implying that LCDC does not
provide an effective penalty for the differences. Finally, because the softmax form of pj|i and qj|i
is scale-invariant about the inputs, LCDC cannot guarantee the isometric relationship of the source
and adapted syntheses like LV LapR, thus it is hard to avoid mode collapse. In the supplementary
materials, we show that replacing LCDC with LV LapR can greatly remedy the collapse of FSGA.

5 Experiments

Our implementation is based on the official code of StyleGAN1. If mref ̸= 0, the total epoch is
2000. We adopt the Adam optimizer with learning rate 1e − 3, β1 = 0, β2 = 0.999. The cosine
annealing strategy of the learning rate is adopted to reduce the learning rate to 1e− 4 gradually. In
Eq. (2), λ1 = 10, λ2 = 0.2, λ3 = 2, λ4 = 1, and in Eq. (4) λ5 = 100. We use the pre-trained lpips
network with vgg architecture [38] containing five convolutional blocks. In Eq. (6) and Eq. (7),
Φstyle = {vgg1:4, vgg1:5}, Φent = {vgg1:1, vgg1:2, vgg1:3, vgg1:4}, and m = 1. In Eq. (9b), n = 2
including the samples from reconstruction and internal distribution learning. σ for calculating the
graph weights is 128. We use the Monte Carlo simulation that randomly samples 256 vectors on the
unit sphere to compute the integral in Eq. (5). If mref = 0, we change λ2 to 2, λ4 to 0.5, and epoch
to 1000 for speeding up training. The augmentation of the reference only includes the horizontal flip.
More experimental details and results can be found in the supplementary materials.

5.1 Comparison with SOTA methods

We take the few-shot adaptation method FSGA [29], one-shot adaptation methods MTG [55], OSCLIP
[20], and one-shot face style transfer method JoJoGAN [9] for comparison on the commonly studied
face domain. As shown in Fig. 3, since these works cannot deal with the entity yet, for a fair
comparison we select three portraits without entity (Sketch, Disney, Arcane) from previous works
[34, 9] and three portraits with entities (hat, Zelda decorations, and mask) from AAHQ [23]. Their
masks can be obtained via manual annotation, or alternatively by semantic segmentation [54, 24].

Qualitative results Fig. 3 shows the qualitative results. The top row images are the source natural
faces, and they are inverted by e4e [39] to obtain the latent codes. From the results, we can draw
the following conclusions: Firstly, our syntheses are of competitive style as the given references.
Though shown in thumbnails, they have more obvious high-frequency details to look sharp and
realistic, whereas the results of JoJoGAN are very fuzzy. Secondly, our method achieves the strongest
cross-domain correspondence that preserves the content and shape of the source image, which is a
great advance compared with other methods without a doubt. It also implies our method can keep the
diversity of the source model without content collapse. Thirdly, our method can generate high-quality
entities, which are adaptive to the various face shapes and look harmonious with the rest area of the
syntheses. Experiments prove that our method has sufficient visual advantages over competitors.

Quantitative results Previous works mainly conduct user studies to compare the visual quality.
Following them, we survey user preferences for different methods. We first randomly sample 50 latent
codes in W space and feed them into various models. We provide the references, source syntheses,

1https://github.com/NVlabs/stylegan3
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Figure 4: Ablation study. The arrows indicate how the current model has changed from the previous
model. The upper and lower syntheses come from Ĝt and Gt respectively.

and adapted syntheses to volunteers. They consider both style and content and subjectively vote for
their favorite adapted syntheses. Moreover, to objectively evaluate the cross-domain correspondence,
we use the face alignment network [7] to extract facial landmarks and calculate the Normalized Mean
Error (NME) of landmarks between source syntheses and adapted syntheses.

NME(Gs, Gt) =
1

n

n∑
i=1

∥lmk(xi)− lmk(yi)∥
2

√
HW

, (12)

where lmk denotes the 68 points two-dimension landmarks extractor, and n is set to 1000. NME
reflects the face shape difference before and after adaptation. We further report the Identity Similarity
(IS) predicted by the Arcface [10] to metric the preservation of identity information. The model
with lower NME and higher IS shows better cross-domain corresponding property. The quantitative
results have been shown in Table 1. Our method undoubtedly obtains the best scores in terms of
NME and IS. It performs stably and gets similar NME in different domains. FSGA and OSCLIP
obtain relatively worse scores due to overfitting as shown in Fig. 3, their common characteristic is
that the GAN discriminator is used for training. MTG performs very unsteadily especially when
the target domains have strong semantic style like Disney and Zelda. Compared with our approach,
JoJoGAN works well on NME, but poorly on IS. For the user study, we finally collect valid votes
from 53 volunteers, and a user averagely spends 4 seconds on one question. Our method obtains
about 60% of the votes on each adapted model, whereas other methods evenly acquire the rest of the
votes. It proves that our method is much more popular with users.

Training and inference time Our method costs about 12 minutes for mref ̸= 0 and 3 minutes for
mref = 0 on NVIDIA RTX 3090. FSGA, MTG, JoJoGAN, OSCLIP cost about 48, 9, 2, 24 minutes
respectively. All of them take about 30ms to generate an image.

5.2 Ablation study

We start from the basic reconstruction loss Lrec and continuously improve the framework to observe
the qualitative changes of the syntheses. As illustrated in Fig. 4, the target exemplar is a hard case
depicting a man with a beard and cap, and style fixation can bring a rough but remarkable improvement
to the style of synthesis. Although Lstyle can enhance the style of the face, it deteriorates the hair and
introduces noise like the beard to the female face. Lent plays a critical role in the generation of the
entity. Without it, the cap cannot be synthesized. In particular, LV LapR has a significant suppression
of the noise in previous syntheses. Finally, we remove Lstyle and style fixation respectively, then the
syntheses are no longer of the target style. It means that both of them play vital roles in style transfer.
We also provide the quantitative ablation in Table 1 to study the impacts of Lstyle and LV LapR. It
shows that removing Lstyle has a positive effect on NME and IS while removing LV LapR has an
opposite effect. The quantitative results confirm that LV LapR is necessary for preventing content
from being distorted by style loss.

5.3 More results

Adaptation of various domains In addition to the success of the face domain, our framework can
be applied to other source domains. We take StyleGANs pre-trained on the 512× 512 AFHQ dog,
cat data set [8] and the 256× 256 LSUN church dataset [48] as exemplars. As shown in Fig. 5, for
each source domain, we provide images with entities, and without entities, the source images are
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Figure 5: Our framework can transfer various source domains to various target domains.
Age RotationSmileRec/TransferTarget/Source Removing entityStyle Smile

Figure 6: Applying the adapted model to manipulate target image and transferred image, including
semantic editing, style transfer and entity removal.

randomly sampled from the source space. For images without entities, the adapted syntheses are
realistic and have a strong corresponding relationship in visual. In other cases, our approach also
yields satisfactory results. For example, the cartoon eyes of the dogs are in the right place and very
similar to that of the reference. It proves that our framework is valid and has a wide universality.

Image manipulation Because our adapted model retains the geometric structure of the source
generative space, it can efficiently perform semantic editing on the image using the semantic direction
found in the source space. As shown in Fig. 6, since our model is capable of accurately reconstructing
the target exemplar, we can edit both the exemplar and the synthesis. We select three representative
semantic directions [36] to change smile, age, and pose rotation, and the results show that the adapted
generator achieves exact control not only on the face but also on the entity. In addition, our model can
also change the style by altering the style code, which is hard for previous works. Furthermore, our
framework can be applied to remove the entity with Ĝt, and the result can be manipulated similarly.
We consider these functions will be helpful for artistic creation.

6 Conclusion and limitations

In this paper, we construct a new GAN adaptation framework for the generalized one-shot GAN
adaptation task. Because our framework relies heavily on learning of internal distributions, it
inevitably has some limitations. We think the most important one is that it cannot precisely control the
position of the entity, which may lead to failures when the pose changes too much. Another limitation
is that the entity cannot be too complex, otherwise, it is difficult to learn by patch distribution.
However, these extreme cases require additional consideration. In general, our framework is effective
in various scenarios. We believe that the exploration of the novel task and the introduction of manifold
regularization are significant for future work.
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