
A Proof of Theorem 1

Proof. We mainly use Hoeffding’s inequality to prove Theorem 1. Notice that the Integral Probability
Metrics (IPM) is defined as dH(Di,Dj) = suph2H

��LDi(h)� LDj (h)
��. For 8h 2 H and client
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For the loss function l, let {X1, . . . , Xm1} be the random variables which take on values
↵i1M
m1

l(h(x), y) for the m1 examples (x, y) 2 S1 with respect to h 2 H. Random variables
{Xm1+1, . . . , XM} are defined analogously. Then the weighted empirical risk
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Then the following result holds for every h 2 H according to Hoeffding’s inequality:
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By the definition of growth function ⇧H(·) and according to union bound, the following result holds
for 8h 2 H:
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Substituting � for the probability gives the following result:
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Note that h?
i = argmin

h2H

LDi(h) and ĥ↵i = argmin
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result holds with probability at least 1� �:
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B Proof of Theorem 2

Proof. The learning bound in Theorem 1 suggests minimizing the following objective with respect to
↵i for client Ci.
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To minimize the objective, the following Karush-Kuhn-Tucker (KKT) condition holds:
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Since ↵ij⌘j = 0, 8j 2 {1, . . . , N}, we discuss the following two cases:
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Thus we sort the clients according to dH(Di,Dj). For convenience, we denote ⌅
j
i = dH(Di,Dj)

for client Ci where j 2 {1, . . . , N}, 8i 2 {1, . . . , N}. Sort {⌅1
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The discriminant of Eq.(11) should satisfy the following property:
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where qi is the largest index that makes Eq.(12) hold. Thus ⇣ is the larger solution of Eq.(11). In
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Notice that 1>↵i = 1, thus we have
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Thus we get the required result
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where [·]+ = max(·, 0).

C Proof of Theorem 3 and Lemma 2

First we prove that maximizing Eq.(6) is equivalent to maximizing Eq.(7).

Lemma 4. Maximizing the objective
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Proof. Note that
P
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Mij = 0, thus P =
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Thus maximizing these two objective is equivalent.

Then we prove Lemma 2.

Proof. Suppose G = {G1, . . . , GK} is the group partition returned by Algorithm 1. Let Q(G) be
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Assume there are xk bad client in group Gk, which will yield xk(Nk � xk) weak edge in group Gk.
Thus we have

Zin >
KX

k=1

xk(Nk � xk) > x1(Nmin � x1).
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Since Nmin >
p
2Zin, we have x1 6 Nmin�
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To prove Theorem 3, we first provide the following supporting lemma.
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Thus x > ⌧ > 1
N . Since 1 >PN
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We use the above lemma to prove Theorem 3.
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D Proof of Theorem 4 and Lemma 3

First we prove Lemma 3.
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Proof. When {↵?
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Then we prove Theorem 4.
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Let ↵Pk be the average collaboration vector that Algorithm 2 uses to train model h↵Pk
for group Pk.

Then we get the required result
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E Proof of the relationships between two divergences

We begin by proving some useful lemmas.

Let (X ,A) be a measurable space. Let P and Q be two probability measures on (X ,A). Suppose
that ⌫ is a �-finite measure on (X ,A) satisfying P ⌧ ⌫ and Q ⌧ ⌫. Define p = dP/d⌫, and
q = dQ/d⌫. The total variation distance between P and Q is defined as follows:
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we will often write for brevity
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Proof. Denote A0 = {x 2 X : q(x) � p(x)}. Then we get
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0 is the complement of A0. Then V (P,Q) = Q (A0) � P (A0) implies the required

result.

Lemma 7. Z
min(p, q)d⌫ �

1

2

✓Z p
dPdQ

◆2

.

Proof. By noticing that
R
max(p, q) +

R
min(p, q) = 2, we obtain

✓Z
p
pq

◆2

=

✓Z p
min(p, q)max(p, q)

◆2



Z
min(p, q)

Z
max(p, q)

=

Z
min(p, q)


2�

Z
min(p, q)

�
 2

Z
min(p, q)

which proves the required inequality.

Lemma 8. Z
min(p, q)d⌫ �

1

2
exp(�dKL(PkQ)).

where dKL(PkQ) is the Kullback–Leibler (KL) divergence.

Proof. It is sufficient to assume that dKL(PkQ) < +1. Using the Jensen inequality we get
✓Z

p
pq

◆2

= exp

✓
2 log

Z

pq>0

p
pq

◆
= exp

✓
2 log

Z

pq>0
p

r
q

p

◆

� exp

✓
2

Z

pq>0
p log

r
q

p

◆
= exp(dKL(PkQ)).

By comparing this result with that in Lemma 7, we yield the required result.

Now we prove the result in our paper.

Proof. When the hypothesis space H is the class of functions taking values in [�1, 1], the Integral
Probability Metrics (IPM) dH(Di,Dj) = suph2H

��LDi(h)� LDj (h)
�� can also be viewed as the

total variation distance. According to Pinsker’s inequality we have

dH(Di,Dj) 6
r

dKL(DikDj)

2
,

where dKL(Di,Dj) is the Kullback–Leibler (KL) divergence. We can get the following result by notic-
ing that dJS(DikDj) =

1
2dKL(DikDj) +

1
2dKL(DjkDi) where dJS(DikDj) is the Jensen–Shannon

(JS) divergence

2dH(Di,Dj)
2 6 dKL(DikDj)

2
+

dKL(DjkDi)

2
() dH(Di,Dj) 6

r
dJS(DikDj)

2
.
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By combining Lemma 6 and Lemma 8, we can easily obtain that

dH(Di,Dj)  1�
1

2
exp(�dKL(DikDj)).

Notice that
� log (2� 2dH(Di,Dj)) 6

dKL(DikDj)

2
+

dKL(DjkDi)

2

() dH(Di,Dj)  1�
1

2
exp(�dJS(DikDj)).

Thus we get the required result

dH(Di,Dj) 6 min

(
1�

1

2
e
�dJS(DikDj),

r
dJS(DikDj)

2

)
.
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