Evidently, this result implies that if we can determine a suitable bound for [|e;] A(I — QQT)||? then
we automatically get a proper bound for the element-wise approximations of Algorithm 1. If A
has a fast decaying spectrum and () captures the dominant eigenspace of A we can expect that our
approximations are very accurate, even for small /. For the general case, however, the following
Lemma 3 as well as the optimality of the JL lemma [31] already hint that this is not possible (see also
Appendix II, Limitations of low-rank projections).

Lemma 3. Let A € R"*. For 1 < k < d, it holds that ||e] (A — Ay) |3 < 02, ,(A) < 14xlk,

Proof. Clearly, [le] (A — Ax)|3 < Max||z||=1 =7 (A— Ap)ll3 = U;%H(A). For the second part we
have that o7, (4) < L0 0?(A) = %. o

2.1 Projecting rows on randomly chosen subspaces

To proceed further with the analysis, we show some length-preserving properties of the orthogonal
projector QQ ", which is an orthogonal projector on a random subspace as obtained in line 3 of
Algorithm 1. Note that Corollary 1 is stated for constant factor approximations. Here we provide a
brief proof sketch. For the main result we refer to Lemma 8 in Appendix III.

Corollary 1 (Projection on rowspace(SA ' A)). (Proof in the Appendix) Let § € (0,3), Aj, =
A — Ay, and S be such that

(i) S ~ D, where D is an (1/3,5)-OSE for any fixed k-dimensional subspace;
(i) Sisa (1/3,5,@)-JLT. Fix JLT

L parameter
If Q is a matrix that forms an orthonormal basis for rowspace(SAT A), then, with probability at ~ 2n — n.
least 1 — 26, for all i € [n] simultaneously, it holds that

Fix constants,

— o2 ) A —_ _
lel AT = QQTII? < lle] (Ax) |12 + 0255 el Anlllel Awll < Olle] Allle] Al 35 2 5.

Proof sketch. To prove the result it suffices to find a projector within rowspace(SAT A) with the
desired properties. To do this, we consider the matrix IT, = V. (SV;,3X2)TSAT A, where Vj,, ¥y, origi-
nate from the SVD of Aj, = U, XV, . Clearly, this Iy, is a rank-k matrix within rowspace(SA™ A).
After some algebra, the problem reduces to get a bound for the quantities

for all i € [n]. This is achieved by using Cauchy-Schwarz and by applying the OSE and JLT
propetties of 5} O  Adapt proof-
L sketch to the

corrected
proof (see

Theorem 1. (Proof in the Appendix) Let A € R™ 4 gnd n > d. If we use Algorithm 1 with m  appendix).

matrix-vector queries to estimate the Euclidean lengths of the rows of A, then there exists a global

constant C such that, as long as

Having all pieces in-place, we can finally bound the element-wise approximations of Algorithm 1.

(i) m > 1> O(log(n/d)), such that G satisfies Lemma I and S forms an (1/3,6,®)-JLT, Fix JLT
arameter
(ii) m > O(k +1og(1/9)), such that S forms an (1/3,6)-OSE for a k-dimensional subspace, gn S

then it holds that

~ 1 n 1 n
& — [l AlI?| < O/ 288 e (A — Ap)|lllef All < O/ B | Ayl pllef Al

Sor all i € [n] with probability at least 1 — 3.
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