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(Appendix)

A Potential limitations of our work

One of the key limitations of our work is that our neural models are limited to modeling concave
composed modular functions. However the class of submodular functions are larger. One of the way
to address this problem to model a submodular function using Lovasz extension [54, 85]. Another
key limitation is our approach cannot model weakly submodular functions at large, which is superset
of approximate submodular functions modeled here. We would like to extend our work in this context.
Our differentiable subset selection method does not have access to supervision of set values. Thus
training only from high value subset can lead to high bias towards a specific set of elements. An
interesting direction would be to mitigate such bias.

B Proofs of the technical results for Section 3

B.1 Formal justification of the submodularity of FLEXSUBNET given by Eq. (1)

Proposition 5. Let m(n)
θ : 2V → R+ be a modular function, i.e., m(n)

θ (S) =
∑
s∈Sm

(n)
θ ({s}); φθ

be a monotone concave function. Then, Fθ(S) computed using Eq. (1) is monotone submodular.

Proof. We proof this by induction. Clearly, F (0) is monotone submodular. Now, assume that
F (n−1)(S) is monotone submodular. Then, R(S) = λ ·F (n−1)

θ (S) + (1−λ) ·m(n)
θ (S) is monotone

submodular. Hence, from Proposition 1 (i), we have F (n)
θ (S) = φθ(R(S)) to be submodular.

B.2 Proof of Theorem 2

Theorem 2. Given the functions ϕ : R → R+ and m : V → [0, 1]. Then, the set function
F (S) = ϕ(

∑
s∈Sm({s})) is monotone α-submodular for |S| ≤ k, if ϕ(x) is increasing in x and

∂2ϕ(x)

∂x2
≤ 1

k
log

(
1

α

)
∂ϕ(x)

∂x
(21)

Proof. Since, both ϕ and F is monotone, ϕ ◦ F is monotone. Shifting x to x + y with y > 0, we
have:

∂2ϕ(x+ y)

∂y2
≤ κ(α)

∂ϕ(x+ y)

∂y
(22)

where, κ(α) = 1
k log

(
1
α

)
. Eq. (22) implies that

e−yκ(α) ∂
2ϕ(x+ y)

∂y2
− κ(α)e−yκ(α) ∂ϕ(x+ y)

∂y
≤ 0 =⇒ ∂

∂y

(
e−yκ(α)∂ϕ(x+ y)

∂y

)
≤ 0 (23)

Hence,
e−yκ(α)∂ϕ(x+ y)

∂y
is decreasing function in y. Hence,

e−yκ(α)∂ϕ(x+ y)

∂y
≤ e−yκ(α)∂ϕ(x+ y)

∂y

∣∣∣∣
y=0

=
∂ϕ(x)

∂x
(24)
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Next, we define ϕS(•) = ϕ(•+m(S)) for all S and then we compute
ϕ(m(S ∪ s))− ϕ(m(S))

ϕ(m(T ∪ s))− ϕ(m(T ))
=
ϕ(m(s) +m(S))− ϕ(m(S))

ϕ(m(s) +m(T ))− ϕ(m(T ))
(Since m is modular) (25)

=
ϕS(m(s))− ϕS(0)

ϕT (m(s))− ϕT (0)
(26)

=

∂ϕS(x)

∂x

∣∣∣∣
x=c

∂ϕT (x)

∂x

∣∣∣∣
x=c

(for some c ∈ (0,m(s)); Cauchy’s mean value Theorem)

≥ exp(−κ(α)[m(T )−m(S)]) (Using Eq. (24))
≥ exp(− log(1/α)) (Since |S|, |T | ≤ k) (27)

B.3 Proof of proposition 3

Proposition 3. Given a monotone α-submodular function F (•). Then, φ(F (S)) is monotone α-
submodular, if φ(•) is an increasing concave function.

Proof. Assume S ⊂ T and s ∈ V \T . Since F (•) is monotone, we have F (S) ≤ F (T ) and
F (S ∪ s) ≤ F (T ∪ s). Using concavity of ϕ and comparing the slope of two chords, we have:

ϕ(F (S ∪ s))− ϕ(F (S))

F (S ∪ s)− F (S)
≥ ϕ(F (T ∪ s))− ϕ(F (T ))

F (T ∪ s)− F (T )

=⇒ ϕ(F (S ∪ s))− ϕ(F (S)) ≥ F (S ∪ s)− F (S)

F (T ∪ s)− F (T )
[ϕ(F (T ∪ s))− ϕ(F (T ))] (28)

F is monotone. Hence, the last inequality is obtained by multiply both sides by the positive quantity
F (S ∪ s)− F (S) which keeps the sign of the inequality unchanged.

Now, since ϕ is an increasing function and F is monotone, ϕ(F (T ∪ s)) − ϕ(F (T )) ≥ 0.
Then, since F is monotone α-submodular, we have F (S∪s)−F (S)

F (T∪s)−F (T ) ≥ α. Hence, we have
F (S∪s)−F (S)
F (T∪s)−F (T ) [ϕ(F (T ∪ s))− ϕ(F (T ))] ≥ α[ϕ(F (T ∪ s))− ϕ(F (T ))]. Together with Eq. (28), it
finally gives

ϕ(F (S∪s))−ϕ(F (S)) ≥ F (S ∪ s)− F (S)

F (T ∪ s)− F (T )
[ϕ(F (T ∪ s))− ϕ(F (T ))] ≥ α[ϕ(F (T∪s))−ϕ(F (T ))].

B.4 Proof of Proposition 4

Proposition 4. Given an universal set V , a constant ε > 0 and a submodular function F (S) =
φ(
∑
s∈Sm(zs)) where zs ∈ Rd, S ⊂ V , 0 ≤ m(z) < ∞ for all z ∈ Rd. Note that here, F is

normalized and therefore, F (∅) = φ(0) = 0. Then there exists two fully connected neural networks
mθ1 and hθ2 of width d + 4 and 5 respectively, each with ReLU activation function, such that the
following conditions hold:∣∣∣∣∣F (S)−

∫ a=
∑
s∈Smθ1 (zs)

a=0

∫ b=∞

b=a

hθ2(b) dbda.

∣∣∣∣∣ ≤ ε ∀ S ⊂ V (29)

Proof. Since our functions are normalized, we have F (∅) = 0 = φ(0). Assume dφ(b)/db → 0
as b → ∞. Note that the condition that limb→∞ dφ(b)/db → 0 is not a restriction since the
maximum value of x that goes as input to provide output φ(x) is xmax =

∑
s∈V m(zs) which is

finite. Therefore, one can always define φ(•) outside that regime (x > xmax) as constant zero. Then
we can write:

φ(x) =

∫ a=x

a=0

∫ b=∞

b=a

[
−d

2φ(b)

db2

]
dbda (30)
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To prove the above, one can define the RHS of Eq. (30) as say, φ1(x). We note that φ(0) = 0 because
it is normalized. Thus, we have:

φ1(0) = φ(0) (31)
dφ1(x)

dx
=
dφ(x)

dx
(Since, lim

b→∞
dφ(b)/db→ 0) (32)

These two conditions give us: φ(x) = φ1(x). Now, we can write F (S) as follows:

F (S) =

∫ a=
∑
s∈Sm(zs)

a=0

∫ b=∞

b=a

[
−d

2φ(b)

db2

]
dbda (33)

Let us define h(b) = −d
2φ(b)
db2 . Choose εm > 0 and εh > 0. According to [55, Theorem 1], we can

say that it is possible to find ReLU neural networks mθ1 and hθ2 for widths d+ 4 and 5 respectively,
for which we have, ∫

Rd
|m(z)−mθ1(z)|dz < εm (34)∫

R+

|h(b)− hθ2(b)|db < εh (35)

For continuous functions m, the first condition suggest that there exists ε′m for which |m(z) −
mθ1(z)| ≤ ε′m.

Then we have the following:

F (S)−
∫ a=

∑
s∈Smθ1 (zs)

a=0

∫ b=∞

b=a

hθ2(b) dbda (36)

=

∫ a=
∑
s∈Sm(zs)

a=0

∫ b=∞

b=a

h(b) dbda−
∫ a=

∑
s∈Smθ1 (zs)

a=0

∫ b=∞

b=a

h(b) dbda (37)

+

∫ a=
∑
s∈Smθ1 (zs)

a=0

∫ b=∞

b=a

h(b) dbda−
∫ a=

∑
s∈Smθ1 (zs)

a=0

∫ b=∞

b=a

hθ2(b) dbda (38)

=

∫ a=
∑
s∈Sm(zs)

a=
∑
s∈Smθ1 (zs)

∫ b=∞

b=a

h(b) dbda+

∫ a=
∑
s∈Smθ1 (zs)

a=
∑
s∈Sm(zs)

∫ b=∞

b=a

[h(b)− hθ2(b)] dbda (39)

+

∫ 0

a=
∑
s∈Sm(zs)

∫ b=∞

b=a

[h(b)− hθ2(b)] dbda (40)

This gives us: ∣∣∣∣∣F (S)−
∫ a=

∑
s∈Smθ1 (zs)

a=0

∫ b=∞

b=a

hθ2(b) dbda

∣∣∣∣∣ (41)

≤ |V |ε′m
∫ b=∞

b=0

h(b) dbda+ |V |ε′mεh + +|V |mmaxεh. (42)

Here, mmax = maxs∈V m(zs). One can choose ε• in order to set the RHS to ε.

B.5 Formal result showing that Fθ computed using Eq. (2) is α-submodular

Proposition 6. Let m(n)
θ : 2V → R+ be a modular function, i.e., m(n)

θ (S) =
∑
s∈Sm

(n)
θ ({s});

ϕθ(•) satisfy the conditions of Theorem 2 with α ∈ (0, 1); φθ be a monotone concave function. Then,
Fθ(S) computed using Eq. (2) is a monotone α-submodular function.

Proof. We proof this by induction. From Theorem 2, F (0) is monotone α-submodular. Now, assume
that F (n−1)(S) is monotone α-submodular. Then, we see that R(S) = λ · F (n−1)(S) + (1− λ) ·
m

(n)
θ (S) is monotone. To prove R(S) is α-submodular, we proceed as follows:

R(s |S) = λ · F (n−1)(s |S) + (1− λ) ·m(n)
θ (s)

≥ λα · F (n−1)(s |T ) + α(1− λ) ·m(n)
θ (s) (F (S) is α-submodular, αm(n)

θ (s) < m
(n)
θ (s))

≥ αR(s |T ). (43)
Applying Proposition 3 on the above leads to the final result.
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C Decoupling integrals for α-submodular and non-monotone submodular
functions

— Monotone α-submodular function. In case of monotone α-submodular functions, we first break the
double integral of φθ used in the recursion (2) using the two single integrals described in Eq. (13). In
addition, we need to model ϕθ in Eq. (8) as follows:

ϕθ(x) =

∫ x

0

ϕ′θ(a) da, ϕ′θ(x) =

∫ ∞
x

eaκ(α)gγ(a) da (44)

Then, we apply two regularizers with the loss (12): one for φ′θ similar to Eq. (14)
and the other for the second integral equation in Eq. (44) which is computed as∑
i∈[I] ρ

(
ϕ′θ(m

(0)
θ (Si))−

∫∞
m

(0)
θ (Si)

eaκ(α)gγ(a) da
)2

. Then, we minimize the regularized loss
with respect to θ, β, γ.

— Non-monotone submodular function. In case of non-monotone submodular function models, we
decouple ψθ in Eq. (9) into the following set of intergals:

ψθ(x) =

∫ x

0

ψ′h,θ(a)da−
∫ xmax

xmax−x
ψ′g,θ(a) da (45)

ψ′h,θ(x) =

∫ ∞
x

hβ(b),db, ψ′g,θ(x) =

∫ ∞
x

gγ(b) db (46)

Then, we add the regularizers corresponding to the last two integral equations (46) to the loss (12)
and then minimize it to train θ, β, φ.

D Additional details about experiments on learning from (set, value) pairs

D.1 Additional details about the data generation

As mentioned in Section 5.1, we generate |V | = 104 items. We draw the feature vector zs for each
item s ∈ V uniformly at random i.e., zs ∈ Unif[0, 1]d, where d = 10. Here, we use such a generative
process for the features since our synthetic set functions often require positive input. Then, we
generate subsets S of different sizes by gathering elements from the universal set V as follows. We
randomly shuffle the elements of V to obtain a sequence of elements

{
s1, ..., s|V |

}
. We construct

|V | subsets by gathering top j elements for j = 1, .., |V |, i.e., S = {S} = {{s1, ..., sj} | j ≤ |V |}.

D.2 Implementation details of FLEXSUBNET

We model the integrands hθ of the submodular funcions using one input layer, three hidden layers
and one output layer, each with width 50. Here, the input and hidden layers are built using one linear
and ReLU units and the output layer is an ELU activation unit. For forward and backward passes
under integration, we adapt the code provided by Wehenkel and Louppe [83] in our setup. Moreover
we choose the modular function m(n)

θ ({s}) = θ>mzs. We set the value of maximum number of steps
using cross validation, which gives N = 2 for all datasets. We set the value of weight decay as 1e− 4
and learning rate as 2e− 3.

D.3 Implementation details of the baselines

Set-transformer [51]. Our implementation of Set-transformer has one input layer, two hidden
layers and one output layer. We would like to hightlight that with increased number of parameters,
Set-transformer consumed large GPU memory (max GPU usage > 8GB for even 29 parameters). This
is because of two reasons: (1) the set transformer performs all-to-all attention architecture and (2) the
size of universe in our experiments is |V | = 10000. Set-transformer involves several concatenation
operation which blows up the intermediate tensors.

Deep set [86]. Our implementation of deep set model is similar to the integrand of FLEXSUBNET,
i.e., it consists of one input layer, three hidden layers and one output layer, each with width 50. Here,
the input and hidden layers is built of one linear and ReLU units whereas, the output layer is an ELU
activation unit. Here, we set the value of weight decay as 10−4 and learning rate as 2×10−3.
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Deep submodular function (DSF) [7]. DSF makes no prescription about the choice of network
depth, width, or concave functions. Other researchers commonly make simple choices such as fully-
connected layers with arbitrary concave activation [56]. Similarly, we use the monotone concave
function φθ(x) = log(x+ θ) with trained θ ∈ R+ and the modular function mθ(s) = θ>mzs. Similar
to our method, we use the network depth N = 2 for DSF. In our experiments, we found that not using
the offset gave unacceptably poor predictive performance. We set the value of weight decay as 10−4

and learning rate as 10−3.

Mixture submodular function (SubMix) [77]. Here, we consider Fθ(S) = θ1 log(
∑
s∈S θ

>
mzs) +

θ2 log log(
∑
s∈S θ

>
mzs) + θ3 log log log(

∑
s∈S θ

>
mzs). Note that this design does not make sure

log(
∑
s∈S θ

>
mzs) > 0 or log log(

∑
s∈S θ

>
mzs) > 0. However, with valid initial conditions θm,0

where log(
∑
s∈S θ

>
m,0zs) > 0 and log log(

∑
s∈S θ

>
m,0zs) > 0 and the current learning rate 10−3,

we observed that θm always ensured that log(
∑
s∈S θ

>
mzs) > 0 and log log(

∑
s∈S θ

>
mzs) > 0

throughout our training.

Initially we started with Fθ(S) = θ1 log(1 +
∑
s∈S θ

>
mzs) + θ2 log(1 + log(1 +

∑
s∈S θ

>
mzs)) +

θ3 log(1 + (log(1 + log(1 +
∑
s∈S θ

>
mzs)))), which always would ensure that log(

∑
s∈S θ

>
mzs) > 0

and log log(
∑
s∈S θ

>
mzs) > 0. But we observed that the performance deteriorates than the current

candidate which does not add 1 to each log term.

Moreover, we observed that adding additional component did not improve accuracy. Here, we set the
value of weight decay as 10−4 and learning rate as 10−3.

In all models, we set the initial value of the parameter vector of the modular function to be θm = 1
which ensured that the final trained model θm ≥ 0. In all experiments, we set the batch size as
66. For each model, we train for 400 epochs and choose the training model which shows the best
performance in last 10 epochs. We choose the best initial model based on the performance of final
trained model on the validation set.

D.4 Computation of α in synthetically planted functions

We define the curvature F [81] as:

curvF = 1− min
S,j 6∈S

F (j |S)

F (j | ∅)
(47)

Define zmax = maxs∈V ||zzz||∞, zmin = mins∈V,i∈[d] and assume zmin > e−2.

Log × LogDet. First we consider F (S) = [log(
∑
s∈S 1

>zs)] · [log det(I +
∑
s∈S zsz

>
s )]. Assume

that
f(S) = log(

∑
s∈S

1>zs)

g(S) = log det(I +
∑
s∈S

zsz
>
s ) (48)

Now, we have:
F (S ∪ k)− F (S) = f(S ∪ k) g(S ∪ k)− f(S) g(S)

= f(S ∪ k)(g(S ∪ k)− g(S)) + g(S)(f(S ∪ k)− f(S))

≥ fmin curvg gmin (49)
Similarly,

F (T ∪ k)− F (T ) = f(T ∪ k) g(T ∪ k)− f(T ) g(T )

= f(T ∪ k)(g(T ∪ k)− g(T )) + g(T )(f(T ∪ k)− f(T )) (50)
Now, log det(A) ≤ tr(A− I). Hence, we have:

g(T ∪ k)− g(T ) = log det

I +

(
I +

∑
s∈T

zsz
>
s

)−1

zkz
>
k


≤ z>k

(
I +

∑
s∈T

zsz
>
s

)−1

zk (51)
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Moreover, f(T ∪ k) = log(
∑
s∈T∪k 1

>zs) ≤
∑
s∈T∪k 1

>zs. Hence, f(T ∪ k)(g(T ∪ k)− g(T ))
satisfies:

f(T ∪ k)(g(T ∪ k)− g(T )) ≤ z>k

(
1∑

s∈T∪k 1
>zs

(
I +

∑
s∈T

zsz
>
s

))−1

zk. (52)

Here, we make some crude probabilistic argument. Since zs is iid uniform random variables,∑
s∈T zsz

>
s ≈ |T |

[
I/12 + 11T /4

]
and

f(T ∪ k)(g(T ∪ k)− g(T )) ≤ 24d3z3
max (53)

The second term in Eq. (50) shows that:

g(T )(f(T ∪ k)− f(T )) ≤ log det

(
I +

∑
s∈T

zsz
>
s

)
· log

(
1 +

1>zk∑
s∈T 1>zs

)

≤ tr

(∑
s∈T

zsz
>
s

)
· 1>zk∑

s∈T 1>zs
≤ d2z2

max/z
2
min (54)

Hence, F (S) is α-submodular with

α > α∗ =
fmin max{curvg, curvf} gmin

d2z2
max/z

2
min + 24d3z3

max

Log × Sqrt.Now consider F (S) =
∑
s∈S log

(
1>zs

)√
1>zs. By mean value theorem:

F (S ∪ k)− F (S) = (1>zk)
d

dx
log x

√
x

∣∣∣∣
x∈(

∑
s∈S 1>zs,

∑
s∈S∪k 1>zs)

= (1>zk)
2 + log x

2
√
x

(55)

Similarly F (T ∪ k)− F (T ) = (1>zk) maxy
2+log y

2
√
y where y ∈ (

∑
s∈T 1>zs,

∑
s∈T∪k 1

>zs).

α ≥
2+log x

2
√
x

2+log y
2
√
y

≥ 2 + log zmin

2
√
zmin

(56)

The above is due to the fact that: maxy
2+log y

2
√
y = 1 at y = 1.

E Additional experiments with synthetic data

Log LogDet FL
Decoupling 0.015 ± 0.000 0.013 ± 0.000 0.022 ± 0.000

End-end 0.078 ± 0.001 0.073 ± 0.001 0.078 ± 0.001
Our (N = 1) 0.089 ± 0.001 0.075 ± 0.001 0.089 ± 0.001

Table 3: Variants of our approach.

FLEXSUBNET Set-transformer Deep-set DSF SubMix
0.055 0.119 0.160 2.31 1.770

Table 4: Performance measured in terms of RMSE on synthetically generated examples using F (S) =
min(

∑
s∈S 111>zzzs, b + min(r,

∑
s∈S 111>zzzs), a) We set r =

∑
s∈V 111>zzzs/3 , b =

∑
s∈V 111>zzzs/6,

a =
∑
s∈V 111>zzzs/2. We observe that our model significantly outperforms the baselines.

Ablation study. We compare different variants of our approach: (i) FLEXSUBNET, trained by
decoupling the double integral into independent integrals (Eq. (14)); (ii) FLEXSUBNET, trained
using end-to-end training via backpropagation through double integrals (Section 3.6); and (iii) FLEX-
SUBNET with N = 1, where N is the number of steps of the recursions (1). Table 3 summarizes
the results which reveal the following observations. (1) We achieve substantial performance gain
via decoupling into independent integrals. Although decoupling integrals is an approximation of
end-to-end training, it also provides a more smooth loss surface than the loss on the double integral.
(2) Running FLEXSUBNET for only a single step significantly deteriorates performance.

Performance with additional planted synthetic function. Here, we consider a featurized form of
the function used in the proof of the lower bound [31]:
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F (S) = min(
∑
s∈S 111>zzzs, b + min(r,

∑
s∈S 111>zzzs), a). We set r =

∑
s∈V 111>zzzs/3 , b =∑

s∈V 111>zzzs/6, a =
∑
s∈V 111>zzzs/2.

Table 4 summarizes the results in terms of RMSE. We observe that our method outperforms other
methods by a substantial margin.

Scalability analysis. We report per-epoch training time of different methods in the context of training
by (set, value) pairs.

FLEXSUBNET Deep-set Set-transformer DSF SubMix
7.2649 1.3009 2.2856 1.39 1.329

Table 5: Per epoch time (in second) for different methods.

While our method is slower than the baseline methods (mainly due to the numerical integration), it
offers significantly higher accuracy than other methods.

Variation of the performance of Set-transformer against the number of parameters. Set-
transformer is an excellent neural set function with very high expressive power. This expressive
power comes from its ability to incorporate interaction between elements. However, it consumes
significantly large memory in practice. Our method and all the other baselines do not incorporate
interactions and thus consume lower memory. Thus, we reduced the number of parameters of Set-
transformer so that it consumes similar memory as our method (8–10 GB) for a fair comparison.
Here, we experiment with different batch size (B) and increased number (P) of parameters (as GPU
memory permitted). Results are as follows.

P=29, B=66 P=139, B=40 P=321, B=40 P=321, B=17 P=439, B=17
0.063 0.069 0.056 0.054 0.055

Table 6: RMSE for different configurations of Set transformer for Facility Location dataset

As expected, the performance indeed improves if we increase the number of parameters. However,
even with significantly small batch size, an increased number of parameters (otherwise accuracy
drops) led to large computation graphs with excessive GPU RAM consumption. This is because,
in our problem, maximum set size |V | = 10000 and each instance in our problem is a featurized
tensor of dimension 10 × 10000. We believe that processing batches of such instances leads to
the set-attention-blocks consuming huge memory. As mentioned by Lee et al. [51, Page 16], the
SAB block in Set-transformer admits a maximum size of 2000 elements, in contrast, we have 10000
elements.

F Additional details about experiments on subset selection for product
recommendation

Catgories |U| |V |
∑
|S| E[|S|] minS |S| maxS |S|

Gear 4277 100 16288 3.808 3 10
Bath 3195 100 12147 3.802 3 11
Health 2995 62 11053 3.69 3 9
Diaper 6108 100 25333 4.148 3 15
Toys 2421 62 9924 4.099 3 14
Bedding 4524 100 17509 3.87 3 12
Feeding 8202 100 37901 4.621 3 23
Apparel 4675 100 21176 4.53 3 21
Media 1485 58 6723 4.527 3 19

Table 7: Amazon baby registry statistics.

F.1 Dataset description

As mentioned in Section 5.2, each dataset contains a universal set V and a set of subsets S = {S}.
We summarize the details of the categories of the Amazon baby registry [30] in Table 7. For each
categories, we first filter out those subsets S for which |S| ≥ 3. Moreover, we use the 768 dimensional
BERT embedding of the description of each item s ∈ V to compute zs.

23



F.2 Implementation details

We implemented FLEXSUBNET, DSF and SubMix following the procedure described in the Ap-
pendix D, except that we considered we use Fθ(S) = θ1 log(1 +

∑
s∈S θ

>
mzs) + θ2 log(1 + log(1 +∑

s∈S θ
>
mzs)) + θ3 log(1 + (log(1 + log(1 +

∑
s∈S θ

>
mzs)))). for SubMix. Here, we train each

trainable model for 30 epochs and choose the trained model that gives best mean Jaccard coefficient
on the validation set in these 30 epochs. For maximizing DPP, Facility Location and Disparity Min
baselines, we used the library https://github.com/decile-team/submodlib.

Computing environment. Our code was written in pytorch 1.7, running on a 16-core Intel(R)
Xeon(R) Gold 6226R CPU@2.90GHz with 115 GB RAM, one Nvidia V100-32 GB GPU Card and
Ubuntu 20.04 OS.

F.3 License

We collected Amazon baby registry dataset from https://code.google.com/archive/p/em-for-dpps/
which comes under BSD license.

G Additional experiments on real data

G.1 Replication of Table 2 with standard deviation

Here, we reproduce Table 2 with standard deviation. Table 8 shows the results.
Mean Jaccard Coefficient (MJC)

FLEXSUBNET DSF SubMix FL DPP DisMin
Gear 0.101 ± 0.003 0.099 ± 0.003 0.028 ± 0.002 0.019 ± 0.001 0.014 ± 0.001 0.013 ± 0.001
Bath 0.091 ± 0.004 0.087 ± 0.003 0.038 ± 0.002 0.02 ± 0.002 0.012 ± 0.001 0.01 ± 0.001
Health 0.153 ± 0.005 0.142 ± 0.004 0.022 ± 0.002 0.084 ± 0.004 0.011 ± 0.001 0.015 ± 0.001
Diaper 0.134 ± 0.004 0.115 ± 0.004 0.023 ± 0.001 0.018 ± 0.001 0.013 ± 0.001 0.012 ± 0.001
Toys 0.157 ± 0.006 0.15 ± 0.006 0.025 ± 0.002 0.064 ± 0.003 0.029 ± 0.002 0.029 ± 0.002
Bedding 0.203 ± 0.005 0.191 ± 0.004 0.028 ± 0.002 0.015 ± 0.001 0.043 ± 0.002 0.047 ± 0.002
Feeding 0.1 ± 0.002 0.091 ± 0.002 0.026 ± 0.001 0.023 ± 0.001 0.02 ± 0.001 0.019 ± 0.001
Apparel 0.101 ± 0.003 0.093 ± 0.003 0.036 ± 0.002 0.022 ± 0.001 0.016 ± 0.001 0.016 ± 0.001
Media 0.135 ± 0.006 0.13 ± 0.006 0.029 ± 0.003 0.035 ± 0.003 0.029 ± 0.002 0.025 ± 0.002

Mean Normalized Discounted Cumulative Gain@10 (Mean NDCG@10)
FLEXSUBNET DSF SubMix FL DPP DisMin

Gear 0.539 ± 0.004 0.538 ± 0.004 0.449 ± 0.003 0.433 ± 0.002 0.425 ± 0.002 0.426 ± 0.002
Bath 0.52 ± 0.004 0.5 ± 0.004 0.447 ± 0.002 0.433 ± 0.002 0.427 ± 0.002 0.422 ± 0.002
Health 0.597 ± 0.005 0.549 ± 0.004 0.449 ± 0.003 0.54 ± 0.005 0.425 ± 0.002 0.435 ± 0.002
Diaper 0.562 ± 0.004 0.546 ± 0.004 0.447 ± 0.002 0.44 ± 0.002 0.435 ± 0.002 0.435 ± 0.002
Toys 0.591 ± 0.006 0.577 ± 0.006 0.446 ± 0.003 0.472 ± 0.003 0.448 ± 0.003 0.449 ± 0.003
Bedding 0.643 ± 0.005 0.623 ± 0.004 0.437 ± 0.002 0.438 ± 0.002 0.456 ± 0.002 0.461 ± 0.002
Feeding 0.55 ± 0.003 0.547 ± 0.003 0.459 ± 0.002 0.453 ± 0.001 0.454 ± 0.001 0.452 ± 0.001
Apparel 0.558 ± 0.004 0.55 ± 0.004 0.459 ± 0.002 0.452 ± 0.002 0.446 ± 0.002 0.444 ± 0.002
Media 0.578 ± 0.007 0.578 ± 0.006 0.474 ± 0.004 0.47 ± 0.004 0.461 ± 0.004 0.461 ± 0.004

Table 8: Replica of Table 2 with standard deviation. Here, we perform prediction of subsets in
product recommendation task. Performance is measured in terms of Jaccard Coefficient (JC) and
Normalized Discounted Cumulative Gain@10 (NDCG@10) for nine datasets the Amazon baby
registry records, for FLEXSUBNET, Deep submodular function (DSF), mixture of submodular
functions (SubMix), Facility location (FL), Determinantal point process (DPP) and Disparity Min
(DisMin). In all experiments, we use training, test, validation folds of equal size. Numbers in bold
(underline) indicate best (second best) performer.
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Figure 9: Variation of MJC as training progresses, for Gear and Bath categories. Our proposed per-
mutation adversarial subset selection is atleast 4× faster than the Monte Carlo sampling method [79].

G.2 Efficiency

The key motivation of our proposed data subset selection method is to ensure that the estimated
parameters are invariant to the order of the elements of the input subset. Tschiatschek et al. [79]
achieve this goal by computing Monte Carlo average of the underlying likelihood over many samples.
In Figure 9, we compare our method with their proposal, which shows that our method is ≥4× faster.
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