A Proofs
Here we prove the propositions stated in Section 4.

A.1 Entropy Search

Proposition 1. If we choose A = P(0O) and ¢(f, q) = —log¢(6y), then the EHIG is equivalent to
the entropy search acquisition function, i.e. EHIG;(x; ¢, A) = ES;(z).

Proof of Proposition 1. We first prove that under our definition of loss ¢, the H; 4-entropy H|[f | D]
is equivalent to the Shannon entropy of the posterior distribution over 8¢ (where 6+ denotes a property
of f that we would like to infer—as an example, 8 could be equal to the global maximizer z* of f).

Note that the Hy 4-entropy is the expected loss of the Bayes action
q" = arginf cp ) Ep(sp,) [~ log q(0y)] -

We want to show that ¢* defined above is equal to p(6 | D;). To do so, note that

q¢" = arginf cp ) Ep(rip,) [—log q(05[De)] (10)
= arginf cpx)Ep(o;|p,) [~ 10g ¢(0¢[Dt)] (11)
=p(6;|Dy), (12)
where the first equality holds since
Ex[f(g(X))] = E[f(2)], when Z = g(X), (13)

and the second equality holds since we can view £y, p,) [~ 10g ¢(6|D;)] as a cross entropy, which
is minimized when ¢(6¢|D;) = p(6|D;). Therefore, under this loss and action set, using the
definition of the EHIG we can write

EHIG:(z; 6, A) = H [p(0f | Di)] = Ep(y, i) [H [p(0f | D U {2,y D] = ESe(z).  (14)
O

A.2 Knowledge Gradient

Proposition 2. If we choose A = X and £(f,z) = —f(z), then the EHIG is equivalent to the
knowledge gradient acquisition function, i.e. EHIG;(x; ¢, A) = KG¢(z).

Proof of Proposition 2. The proof follows directly from the definition of H,, _4-entropy and the EHIG,
namely

ERIG, () = inf By (sp,) [((f,0)] = Epy, D)) [ggng(letu{(w,yw)}) [e(f, a)}] (15)
= il Epsipy [/ @)] = Epgyaip Li,ng Ep(sip0t@vap [=f (I’)]} (16)
== sw Eypip,) [f(@)] + Epgypy) {SUP Ep(sip0i v [f (x/)]] 4
z'eX x'eX
= Epyoimn) [ (2, 02)] — 117 (18)
= KGq(x) 19)
m

A.3 Expected Improvement

Proposition 3. If we choose A; = {z;}!Z1, where 2; € Dy, and £(f,z;) = — f(x;), then the EHIG
is equal to the expected improvement acquisition function, i.e. EHIG,(x; ¢, A) = EI;(z).
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Proof of Proposition 3. The first term of EHIG, in Eq. (3) is equal to:

Hya,[f | Dy = aienjt Ey(f1p0) (S, a)] = - ax flay) = —f; (20)

where f(;) is the posterior expected value of f at z;.

The second term in Eq. (3) is:

Ep(ym‘Dt) I:Hev-At-f—l [f | Dt U {(xayI)}H (21)
=B 100) |Ep(siDi{@an)h) Lg}gf U, )H (22)
p(yzmt ) [Ep(rip0(@aerp) = max(ff, f(x))] (23)
p(ye | Do) [— max(f, ya)] (24)
Putting it together, the EHIG; acquisition function in Eq. (3) will reduce to:
EHIG: (34, A) = = fi = Epy.|p,) [-max(f}, ya)] (25)
= Ep(y,|p,) [max(0,y. — f7)] (26)
= EL;(x). (27)
O

A.4 Probability of Improvement

We additionally include a result below showing that the probability of improvement (PI) acquisition
function can similarly be viewed as a special case of the proposed EHIG family.

Proposition 4. For some constant 7, the acquisition function of PI is defined as PI,.(z;D;) =
Eps1o) [I(f(x) — 7 > 0)], where I(-) is the indicator function, and typically 7 is taken to be

equal to f;" = max;<;_1 f(:rz) for x; € D;. If we choose A; = {z;_1}, where ;1 € Dy, and
L (f, ) = =1(f(z) — 7 > 0), then maximizing EHIG is equivalent to maximizing the probability
of improvement acquisition function, i.e. arg max, . y EHIG;(x; (;, A) = arg max, ¢ y PI-(z).

Proof of Proposition 4. The first term of EHIG; in Eq. (3) is equal to:

Hoa,[f | Di] = mf Ep(f1p,) [0(f, a)] = =1(f(z-1) — 7 > 0) (28)

where f(2,_1) is the posterior expected value of f at z;_;. More importantly, Hy 4,[f | D] is a
constant with respect to = that we are optimizing.

The second term in Eq. (3) is:

Ep(y, D) [He Avir [f | D2 U{(2,92)}]] (29)
=Ep(y.|D,) lnf Ep(s10:0{ (v} [E(S )] (30)
=Eyp(y.|D,) []Ep<f|z>f,u{<x,ym)}) [~I(f(z) — 7> 0)]] 3D
=~ Epy,p,) [1(yz — 7 > 0)] (32)
Putting it together, the EHIG; acquisition function in Eq. (3) will reduce to:
EHIG(z; ¢,, A) = —]I(f(xt_l) —7>0)+Epy, ) I(ye — 7 > 0)] (33)
= Epy.1p,) (Y — 7 > 0)] 4 constant (34)
= PI.(x) + constant. (35)

Thus maximizing EHIG is equivalent to maximizing the probability of improvement acquisition
function.

O
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B Additional Experimental Details and Results

Details on the Alpine-d function. The multimodal Alpine-d function is defined as Alpine-d(x) =
Zle |z; sin(z;) + 0.1z, for x € RY.

Details on the Vaccination function. The vaccination function is obtained by training a Multi-
Layer Perceptron (MLP) network based on the data from [53], which uses county-level vaccination
data provided by the CDC, and uses small area estimation® to interpolate the vaccination rate of every
location. We restrict the optimization domain to be a rectangle focusing on the state of Pennsylvania.

Details on the Multihills function. The Multihills function is defined as a mixture density as
follows. Multihills(z) = ijl w;N(z | p;,Cj), for v € RY, where N denotes a multivariate

normal density, {z; } are a set of J means, {C;} are a set of J covarance matrices, and {w; } are a set
of J weights.

Details on the Pennsylvania Night Light function. We consider the 2012 gray scale global night-
light raster with resolution 0.1 degree per pixel. The data is downloaded from NASA Earth Observa-
tory*. We restrict the optimization domain to be a rectangle focusing on the state of Pennsylvania and
normalize all raster data before use. Each location query gives a value proportional to the average
amount of night light at that location.

Computational Cost. While using the EHIG; (x; ¢, A) acquisition function in Bayesian optimiza-
tion (Algorithm 1) is more expensive than simpler methods (e.g. expected improvement (EI)), in
many cases it has a comparable computational cost to methods such as knowledge gradient (KG)
or entropy search (ES) methods, when applied to the same task—in fact, our implementation has a
similar structure as one-shot knowledge gradient acquisition optimization methods.

The following timing results compare the average cost (mean wall clock time in seconds) of acquisition
optimization for a set of comparison methods, including EI as an additional method, on the Alpine-2
function from the first experiment in our paper: EHIG: 6.9s, KG: 6.6s, EI: 0.5s, US: 0.3s.

*https://en.wikipedia.org/wiki/Small_area_estimation
*nttps://earthobservatory.nasa.gov/features/NightLights
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B.1 Additional Experiment Results and Visualizations.

We show further experiment results for multi-level set estimation and sequence search (Figure 5),
visualizations for multi-level set estimation (Figure 6), and an additional comparisons of classic BO
acquisition functions on the initial top-%k optimization experiments (Figure 7).
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Figure 5: Multi-level set estimation and sequence search. Left and center: Plots of accuracy versus iteration
for the task of multi-level set estimation (Equation (5), m = 1), where error bars represent one standard error.
Right: Plot of negative loss versus iteration for the task of sequence search (Equation (6)), where error bars
represent one standard error.
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Figure 6: Visualization results for multi-level set estimation. Visualization of multi-level set estimation for
Alpine-2, Multihills, and the Pennsylvania Night Light (PNL) functions. We show the ground-truth level set
thresholds with red and blue dashed lines (for Alpine-2 and Multihills) and white dashed line (for the PNL
function). The queries D; taken by each method are shown with black dots (for Alpine-2 and Multihills) and
red dots (for the PNL function). We observe that the queries taken by H, 4-Entropy Search focus on level set
boundaries, yielding a fine-grained estimate near these boundary curves, while the other methods fail to do so.
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