Appendix (i.e., Supplementary Material) of “Unsupervised Cross-Task
Generalization via Retrieval Augmentation’ (Submission # 2811)

This appendix include more implementation details, additional experimental results for ablation
studies, and more analysis as well as findings. Please note that we have uploaded our code too
(named “ReCross” folder). We first further analyze the performance of ReCross with more ablation
analysis in Sec. A, and present detailed case studies for specific datasets in Sec. B, and introduce
more implementation details in Sec. C.

A Additional analysis

A.1 Utility analysis by grouping upstream tasks.

Table 4 shows the results of ReCorss under the scenarios where one specific group of upstream tasks
are excluded from the index. This allows us to evaluate the impact of various upstream task categories
on each downstream task.

Task ‘ None ‘ —MCQA —SUM. —EQA —Stmt. —CBQA —S2txt —TopCls  —Paralden

ARC-c. | 38441099 | 393641086 37941151 39541104 379441151 39324054 37324177 37944115 37944115
anlifr3 35.76i()_g}0 36.1810_38 36.9010_33 36.78i1_04 35~72i1.92 35.84i2_35 37'42i0.97 35‘92i1.32 36‘42i1_20
hSWﬁg 47.28i2_95 40,56ig_71 49.28i5_79 39.02i7_4g 46.46i3_39 37-62i5.08 46~00i6.32 39~14i7.50 44~34i6.19
obqa 39.5812_80 3612:&0.88 38.3212_33 38.5212_08 38.3212_33 35.98:&2_37 36~32:EQ.86 38.3212_33 35.9411_70
piga | 41424102 | 39.604135 40464208 41.641265 41304047 41.564146 40261217 40424099 40.5610.80
squad2 | 30.581161 | 31.704202 31.641163 33.101248 30.701161 31.064101 30701161 31.6011.90 30.70L1.61
cb | 44791336 | 49361355 44501452 43931326 40791305 44.004542 43364415 42364736 40.504562

wic | 50.584+0.24 | 49.824112 49.9640.093 50.0810.96 48.961247 48901216 50301079 49.741073 49421092
wsc | 61464147 | 58.041278 60.231066 60.541123 58854367 59.19i047 59.69i221 60.19i145 59.544307
wngmnd | 55461088 | 53.30x152 52.3443094 S51.0014094 54444312 53821059 52201532 52201333  50.7413.96

@mean | 44531042 | 43401092 44161047 43411190 43351080 42731075 43361108 42781138 42.6110.06

Table 4: Performance on each downstream task when a given category of upstream tasks is re-
moved from the upstream dataset and prevented from being retrieved. The column names are
the task group names: MCQA=Multiple-Choice QA, SUM=Summarization, EQA=Extractive QA,
Stmt.=Sentiment analysis, CBQA=closed-book QA, S2txt=structure-to-text, TopCls=Topic Classifi-
cation, and Paralden=Paraphrase Identification.

Our key findings are as follows:

* (1) Using all upstream tasks leads to the best overall performance, although for many target
tasks there are some particular groups that are less useful than others. The last row shows
this result and the summarization is the least useful group of upstream tasks.

* (2) The potential best performance of retrieval-augmentation methods can be even higher.
That is, if we have an enhanced version of ReCross that can avoid examples from less useful
groups, then the final performance can be even higher. For example, if ReCross were able
to ignore MCQA examples for ARC task during retrieval augmentation, then the overall
performance of ReCross can be even higher.

* (3) The utility analysis via grouping upstream tasks by their original task formulations does
not align with general intuition. For example, people may think that MCQA (multiple-choice
QA) should be more useful than other groups for the task of ARC, which is also a multiple-
choice QA dataset. However, removing MCQA doesn’t hurt the performance of ARC.
Instead, it actually improves the performance by 1 point. We argue that the example-based
utility is of more importance for analysis.

A.2 Template Perturbation

To investigate the importance of templates in retrieval quality, we investigated two methods of
perturbing the templates of query examples (): 1. Simply concatenate the elements in the raw data. 2.
Change the words in the templates to random words to remove the semantic meaning. See figure 4
for an example. We than used these updated query examples and the same setup and configurations
described in Section 4.3 to perform unsupervised cross-task generalization.
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Raw Data: {statement : What is the 3rd prime?, sol 1 : 5, sol 2 : 9}
Template: { {statement}} What is the correct answer? {{sol_1}} or {{sol_2}}?

Normal Input: What is the 3rd prime? What is the correct answer? 5 or 9?

Concat Rand Word Change

What is the 3rd prime? \n\n 5 \n 9 What is the 3rd prime? Cat run mountain bike apple? 5 chase 9?

Figure 4: Example of concatenation and random word change perturbation.

Target Task | TO-3B | BARTO || Random | SBERT | ReCross! | ReCross || Concat | Change
an1i7r3 26.00 30.50 35-34i1.52 32.64i2_5;; 36.70:&()(53 35.76:&0‘9() 34.1412(24 32.84:&6,33
h—swag 34.40 39.40 33.84i5_59 30-92i7.82 44.36i3_07 47.28i2_95 35-74i5.06 35~40i10.82

cb | 53.93 39.64 47.0741.25 | 48.0043.28 | 44.5014.90 | 44.7943.36 || 39.294345 | 44.0045 36

wic | 45.70 46.70 41.0442.18 | 46.78 4222 | 49.9040.50 | 50.5840.24 || 46.8842093 | 47.3241.91

wsc | 50.00 57.88 52.5042.29 | 52.6946.13 | 59.274+1.96 | 61.4641.47 || 52.314517 | 57314175
Winogrande 47.60 51.10 52.68:&().83 52.18:(:3.2() 54.60:&1‘35 55-46:(:[)88 52.28:{:[)57 54.76:&2.()7
arc-chan. 41.30 35.70 33.28i1_50 37~90i1.22 37.78i0_73 38.44i0_99 37~92i0.48 38.24i1_20
obqa 38.50 34.40 28~72i2.46 33.28i1vg4 36.98i1455 39-58i2,80 36.12i3414 38.56i2_06

plqa 45.30 36.10 37.00:(:2.71 38.54:(:2.17 41.34:&1‘75 41.4211([)2 39.76:{:[]99 42.16:&1‘85
squade 30.60 32.40 29.86i5_46 29-46i0.84 30.26i1_54 30-58i1.61 30-74i1.66 30~10i1.22

All@mean 41.33 40.38 39-13i2.06 40-24i1.61 43-57i0.68 44~53i0.42 40~52i1.2 42~O7i1.5

@median | 41.33 40.38 39.93 40.91 4343 44.31 40.96 41.69
@min | 41.33 40.38 35.66 38.28 42.65 44.16 38.77 40.37
@max | 41.33 40.38 40.59 41.76 4451 45.07 41.61 44.33

Table 5: Two methods of template perturbation (concatenation and random word change) compared
with main experiment results.

Table 5 shows that when we simply concatenate the elements in raw data, the performance degrades
to a level close to random retrieval. On the other hand, if we construct the query examples as specified
by the templates, even if we break the semantics of the template, the performance boost is largely
preserved. This might mean that the formatting of input, for example the existence of parallel choices

in some form, potentially plays an important role in the performance gain.

A.3 Re-ranking for Random and SBERT

Target Task \ Random Random+RR \ SBERT SBERT+RR
.. lir3 | 3534115  31.584 326410535  28.1044s:
We evaluated training re-rankers for random and hswaz | 33840 33200 | 30920 i 3780
SentenceBERT retrievers. Specifically, we ap- cb | 410Te1z  4071s10s igggi&% 3(5)~§gi7.80
. . . . Y WIC A 9 . . 2.29 R 2.19
plied the same distant supervision mining meth- wse | 525010 50381em | 52691s 554210 m
ods introduced in Section 3.4 on data retrieved =~ Winogrande | 52.681055 494411350 | 52.184520  53.0245.49
arcchan. | 33281150 33521376 | 37.901105  37.541187
by Random and SBERT. Table 6 shows the obga | 28721046 25961653 | 33281101 35081327
results. We can see that reranking does not im- piga | 3700sams  352usas | WSiarr 3824000
the results for both Random and SBERT i il e
OV
p 0. © . .. e All@mean | 39.131506 37.00+2.91 40.24 1161 40.2141 83
retriever. We believe it is because that the initial @median | 39.93 37.06 4091 39.81
: @min | 35.66 33.32 38.28 38.45
retrieval results are not good enough, so that the om0 106 e sl

distant supervision mined from them are thus
also not of good quality. Table 6: Random and SBERT with Re-Ranking

(RR) (bold font columns)

A.4 Mining distant supervision for multiple iterations.

The algorithm that we proposed in Alg. 1 can be extended to an iterative process. That is, we can
continually update the reranker module and uses the retrieved results from the latest reranker to mine
the training data for the next iteration. Although this self-training style process sounds promising,
our empirical results show that the overall performance starts to saturate after the first iteration and
using the 2nd-iteration re-ranker won’t improve the overall performance anymore. We think there
can be better methods of continual learning to obtain a reranker module for better performance, while
it is beyond the scope of this work. We hope this can be a promising future direction.
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A.5 Transferring ReCross for Larger Base Models.

Recall that we choose to use BARTO as our base model for its smaller size and comparable results.
People may wonder what if we transfer the ReCross methods for larger base models. Therefore,
we conduct a pilot study on this. Considering the size of TO, we choose to only fine-tune its last
few layers of TO-3B and still use the prior materials from BARTO (i.e., the BART(0-based index and
the trained reranker). We found that the performance is not improved over simply using TO-3B for
zero-shot inference. We conjecture there are two major reasons for this: 1) the parameter-efficient
tuning method need to added here to improve the training efficiency, 2) the BARTO-based index and
the associated reranker do not align with the other models such as TO-3B. We admit this could be one
limitation of our methods —i.e., the index and reranker are specific to the base model that is used to
generate them. In order to address these challenges, we argue that studying the common space of the
index created by different encoders will be an important direction.

B Case studies

In this section, we discuss two specific datasets with detailed analysis as they have quite special
results in Table 1 and Table 4.

B.1 SuperGLUE CommitmentBank (cb)

For the SuperGLUE CommitmentBank dataset, instances retrieved by the BART retriever are pre-
dominantly multiple choice question-answering. However, heat map and remove-one-group analysis
shows that re-training on instances from multiple choice question-answering seems to undermine the
model’s zero-shot performance on this dataset. We examined the output of the model and discovered
that the model tends to make one type of error a lot more often when re-trained using multiple
choice question-answering: instead of answering yes, no, possible, or impossible, it picks part of the
discourse as its prediction.

For example:

Input: “Suppose A: I'm like, I’1l get a job some day and my boss will pay for it, I'll be needed. B:
Yeah. A: Because, um, I didn’t want to go do it myself because I didn’t think I was really going to
use it. Can we infer that “he was really going to use it”? Yes, no, or maybe?”

Output: “A: I didn’t want to go do it myself because I didn’t think I was really going to use it.”

We believe this is because the model misunderstood the people having the discourse (A and B) to
be the options for answers. The abundance of the template of “A:xxx, B:xxx” in the SuperGLUE
CommitmentBank dataset might be the reason why the BART retriever retrieved mostly from multiple
choice question-answering in the first place.

B.2 SQuAD V2

For the dataset SQUAD V2, the retriever typically finds upstream examples from extractive question
answering datasets, which match the format of SQuAD V2 inputs closely. However, we find that
when we exclude extractive question answering examples from the upstream dataset, performance on
SQuAD V2 improves. To explain this unexpected result, we note that the majority of our test examples
for SQuAD V2, despite being formatted as extractive question answering tasks, are examples which
expect the model to output whether or not the question is answerable. The ‘context and question’
format of the SQuAD V2 examples causes the retriever to focus on extractive question answering
examples, but because most of the examples focus on answerability (a distinct task from extractive
question answering), these examples are not helpful.

We speculate that by excluding extractive question answering from the upstream dataset, the model
avoids these misleading irrelevant examples and is able to retrieve more related examples for de-
termining if a question is answerable. For example, our results show that when extractive question
answering examples are excluded, the retriever finds examples from tasks such as Wiki QA, which
asks whether or not a proposed answer is a valid answer to a given question (a more relevant task to
determining if a question is answerable).
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C Implementation details

C.1 Retrieval aggregation.

Note that the target size of our retrieved data is | R| and we have |Q| query examples. To retrieve | R)

examples, we search for the top-K examples for each query example, where K = [%L and then

take the first | R| of them when K'|Q)| > |R|. Our results have shown that this method is more effective
than other strategies, such as combining the distance scores generated for each query example. Note
that by retrieving the top-K examples, we may repeat examples that are close to multiple query
vectors. This effect is desirable because it allows us to naturally focus more on the especially relevant
upstream examples in re-learning.

C.2 Upstream learning.

Upstream tasks. Here we refer to the TO’s paper (cited in our main paper) for Figure ??, which
shows the list of upstream tasks and their categories. We use this taxonomy to conduct ablation study.
Please find the link to download these datasets from huggingface/dataset from our submitted code.
All datasets are publicly available and their license are suitable for open-source research. We do not
see any ethical concerns from using such datasets for learning a model and developing the ReCross
method to further improve their task generalization performance.

Training details. We specify the hyper-parameters and the concrete for training the BARTO
models in our submitted code. Please read the “Readme.md” file where we point to the script and
configurations for training BARTO. Our GPU type is Quadro RTX 6000 and 8000.

C.3 Retrieval Methods.

Similarly, we leave the details such as the hyper-parameters and the concrete pipeline for running the
retrieval augmentation methods (i.e., ReCross and the other baseline methods) in a unified framework
that is presented in our code.

D Others

D.1 Evaluation metrics.

Results with the standard EM. In Table 7, we report our main experimental results (the equivalent
results to those in Table 1) with the standard EM metric instead of the SoftEM metric used in Table 1.
We can see that the relative performance from the ReCross framework is about the same as in Table 1,
although the absolute numbers are mostly smaller due to a more strict matching by EM.

D.2 Empirical results for few-shot learning.

We show the empirical results related to the few-shot setting in Table 8.

Experimental setup. We assume that the labels of the examples in the query set are available,
and directly use them to fine-tune the upstream model for learning the target task. We tune the
hyper-parameters (epochs and learning rates) such that they do not overfit the few-shot data and
lead to a better performance over BARTO. Note that the real performance of few-shot learning
performance may be lower than the ones in the table because there is not enough development data
for us to tune hyper-parameters for each target task.

Few-shot learning is not even better than the unsupervised ReCross. Although FS can outper-
form ReCross in some target tasks, the two approaches have very similar overall performance on 10
tasks. Even in such an unfair setting, ReCross shows great benefits to the users.

ReCross and Few-Shot together can produce better performance. We attempted to use both

the few-shot data and the retrieved data for generalization. The FS+RC(mix) method simply merge
the 16 labeled query examples (i.e., few-shot) and the 512 retrieved data (by ReCross) to get a larger
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Target Task ‘ TO0-3B ‘ BART0 H Random ‘ SBERT ‘ ReCross' ‘ ReCross H A
anli_r3 | 24.30 24.30 27.8042.12 | 25.624235 | 31.0240.87 | 30.184+1.45 || 5.88
h—swag 22.20 24.20 26.045:2‘61 22.88i2_44 27-48:t2.04 26-04ﬁ:1.19 1.84

cb | 49.29 26.79 31.6443.27 | 34214512 | 30.004265 | 31.5746.18 || 4.79

wic | 44.70 45.80 45.2644.13 | 46.7812.22 | 49904050 | 50.5840.24 || 4.78

WSC 48.85 54.42 53.96:|:3_29 52~42:|:6.09 59-1511‘82 61.42:‘:1.51 7.00
winogrande | 47.00 49.50 50441057 | 50.801289 | 54.1641.18 | 54.42141.10 || 4.92
arc-chan. 32.10 23.70 26.84:|:1_37 27.02:|:2_52 26.86i1,90 27.16:‘:1.78 3.46
obga | 38.80 34.10 27.2041.24 | 33764151 | 36.904256 | 39.5640.79 || 5.46

plqa 33.40 29.10 29~32:|:3.26 28.94:|:3_08 31.70:‘:3,17 30.46:‘:2.34 1.36
squadv2 | 23.70 26.30 24204434 | 21.9041.17 | 22.9641.95 | 23.3242.16 || -2.98
All@mean | 36.43 33.82 34271166 | 34434114 | 37011094 | 37474073 || 3.65
@median | 36.43 33.82 34.90 3491 36.62 37.17 2.34
@min | 36.43 33.82 31.33 3291 36.22 36.93 1.05
@max | 36.43 33.82 35.35 35.79 38.41 38.75 1.70

Table 7: The main experimental results (%) for unsupervised cross-task generalization in the
standard EM metric, i.e., the EM version of Table 1.

Target Task | BARTO | ReCross (ReX) || Few-Shot(FS) | FS+ReX(Mix) | FS+ReX(2-stage)

anli_r3 30.50 38.44i0_99 3459i253 3571i159 36.26i1i4g

h-SWﬁg 39.40 35.76:*:0,90 42.61:‘:2.15 44-04‘:i:3.60 43.99:|:1.92

cb | 39.64 47281295 52.57 1611 62.64 1568 65.3616.70

wic | 46.70 39.58, 250 48224510 492341 50 48214057

WSC 57.88 41.42i1‘02 53-1513.80 55-65i7.82 54.5415.22

winogrande 51.10 3058:&1.61 54-24i1.57 53'24i1.81 53.875:1.72

arc-chan. 35.70 44-7913‘36 36.36:‘:2.20 36.34:‘:2.64 37.50:‘:2'94

obqa 34.40 50~58i0.24 34~49i4.21 38.45i2.6g 37~15i2.63

p1qa 36.10 61.46:‘:1,47 47.38:‘:4.58 51.93:‘:2.72 52.08:‘:1.95

squade 32.40 55~46i0.88 41 ~92i6.68 51 .3Oi3423 50~38i6.46
All@mean | 40.38 | 44.54 I 44.55 \ 47.85 \ 47.93

Table 8: The few-shot related empirical results in SoftEM.

dataset for fine-tuning BARTO. The FS+RC(2-stage) method updates the model firstly with the 512
retrieved data and then train the fine-tuned model with the 16 FS data. Both methods show a great
enhancement over FS and RC used separately. This is to say, RC is still beneficial in the FS setting.
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