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Abstract

Researchers investigating example hardness have increasingly focused on the dy-
namics by which neural networks learn and forget examples throughout training.
Popular metrics derived from these dynamics include (i) the epoch at which exam-
ples are first correctly classified; (ii) the number of times their predictions flip dur-
ing training; and (iii) whether their prediction flips if they are held out. However,
these metrics do not distinguish among examples that are hard for distinct reasons,
such as membership in a rare subpopulation, being mislabeled, or belonging to
a complex subpopulation. In this paper, we propose second-split forgetting time

(SSFT), a complementary metric that tracks the epoch (if any) after which an origi-
nal training example is forgotten as the network is fine-tuned on a randomly held
out partition of the data. Across multiple benchmark datasets and modalities, we
demonstrate that mislabeled examples are forgotten quickly, and seemingly rare

examples are forgotten comparatively slowly. By contrast, metrics only consider-
ing the first split learning dynamics struggle to differentiate the two. At large learn-
ing rates, SSFT tends to be robust across architectures, optimizers, and random
seeds. From a practical standpoint, the SSFT can (i) help to identify mislabeled
samples, the removal of which improves generalization; and (ii) provide insights
about failure modes. Through theoretical analysis addressing overparameterized
linear models, we provide insights into how the observed phenomena may arise.1

1 Introduction

A growing literature has investigated metrics for characterizing the difficulty of training examples,
driven by such diverse motivations as (i) deriving insights for how to reconcile the ability of deep
neural networks to generalize [30] with their ability to memorize noise [15, 48]; (ii) identifying
potentially mislabeled examples; and (iii) identifying notably challenging or rare sub-populations of
examples. Some of these efforts have turned towards learning dynamics, with researchers noting that
neural networks tend to learn cleanly labeled examples before mislabeled examples [17, 18, 33], and
more generally tend to learn simpler patterns sooner—for several intuitive notions of simplicity [19,
35, 43]. Broadly, works in this area tend to characterize examples as belonging either to prototypical

groups or memorized exceptions [7, 16, 25]. Adapting these intuitions to real datasets, Feldman
[15] propose rating the degree to which an example is memorized based on whether its predicted
class flips when it is excluded from the training set. These, and other works [8, 21, 35, 43, 47] have
proposed many metrics for characterizing example difficulty with Carlini et al. [7] comparing five
such metrics. However, while many of these works distinguish some notion of easy versus hard

samples, they seldom (i) offer tools for distinguishing among different types of hard examples; (ii)
explain theoretically why these metrics might be useful for distinguishing easy versus hard samples.
Moreover, existing metrics tend to give similar scores to examples that are difficult for distinct reasons,
e.g, membership in rare, complex, or mislabeled sub-populations.

1Code for reproducing our experiments can be found at https://github.com/pratyushmaini/ssft.
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Figure 1: Overview of example separation offered by the unified view of learning and forgetting time.

In this paper, we propose to additionally consider a new metric, Second-Split Forgetting Time (SSFT),
calculated based on the forgetting dynamics that arise as training examples are forgotten when a
neural network continues to train on a second, randomly held out data partition. SSFT is defined as the
fine-tuning epoch after which a first-split training example is no longer classified correctly. We find
that SSFT identifies mislabeled examples remarkably well but does little to separate out under- versus
over-represented subpopulations. Conversely, metrics based on the (first-split) training dynamics
are more discriminative for separating these populations but less useful for detecting mislabeled
examples. We leverage the complementarity of first- and second-split metrics, showing that by jointly
visualizing the two, we can produce a richer characterization of the training examples.

In our experiments, we operationalize several notions of hard examples, namely: (i) mislabeled
examples, for which the original label has been flipped to a randomly chosen incorrect label; (ii) rare
examples, which belong to underrepresented subpopulations; and (iii) complex examples, which
belong to subpopulations for which the classification task is more difficult (details in Section 3.2).
We perform specific ablation studies with datasets complicated by just one type of hard example
(Section 4.3), and show how SSFT can help to distinguish among these categories of examples.
We observe that during second-split training, neural networks (i) first forget mislabeled examples
from the first split; (ii) only slowly begin to forget rare examples (e.g., from underrepresented sub-
populations) unique to the first training set; and (iii) do not forget complex examples.

This separation of hard example types has multiple practical applications. First, we can use the
method to identify noisy labels: On CIFAR-10 with 10% added class noise, SSFT achieves 0.94 AUC
for identifying mislabeled samples, while the first-split metrics range in AUC between 0.58 to 0.90.
Second, the method can also help improve generalization in noisy data settings: while the removal of
hard examples according to first-split learning time degrades the performance of the classifier, the
removal of hard examples according to SSFT can actually improve generalization. This is especially
beneficial when e.g., training on synthetic data (produced by a generative model) or mislabeled data.
Third, we show how SSFT can identify failure modes of machine learning models. For example,
in a simplified task classifying between horses and airplanes in the CIFAR-10 dataset, we find that
training examples containing horses with sky backgrounds and airplanes with green backgrounds
are among the earliest forgotten—indicating that the model relies on the background as a spurious
feature. Last, we also add that our metric is robust across multiple seeds, and the earliest forgotten
examples are robust across architectures. Across multiple optimizers, SSFT distinguishes mislabeled
samples, whereas first-split metrics appear more sensitive to the choice of optimizer.

Finally, we investigate second-split dynamics theoretically, analyzing overparametrized linear models
[46]. We introduce notions of mislabeled, rare, and complex examples appropriate to this toy model.
Our analysis shows that mislabeled examples from the first split are forgotten quickly during second-
split training whereas rare examples are not. However, as we train for a long time, rare examples
from the first split are eventually forgotten as the model converges to the minimum norm solution on
the second split while predictions on complex examples remain accurate with high probability.
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2 Related Work

Example Hardness. Several recent works quantify example hardness with various training-time
metrics. Many of these metrics are based on first-split learning dynamics [8, 25, 27, 35, 43]. Other
works have resorted to properties of deep networks such as compression ability [21] and prediction
depth [5]. Carlini et al. [7] study metrics centered around model training such as confidence, ensemble
agreement, adversarial robustness, holdout retraining, and accuracy under privacy-preserving training.
Closest in spirit to the SSFT studied in our paper are efforts in [7, 47]. Crucially, Carlini et al. [7]
study the KL divergence of the prediction vector after fine-tuning on a held-out set at a low learning
rate, and do not draw any direct inference of the separation offered by their metric. Focusing on (first-
split) forgetting dynamics, Toneva et al. [47] defined a metric based on the number of forgetting events
during training and identified sets of unforgettable examples that are never misclassified once learned.
In our work, we find complementary benefits of analysis based on first- and second-split dynamics.

Memorization of Data Points. In order to capture the memorization ability of deep networks, their
ability to memorize noise (or randomly labeled samples) has been studied in recent work [3, 48]. As
opposed to the memorization of rare examples, the memorization of noisy samples hurts generalization
and makes the classifier boundary more complex [15]. On the contrary, a recent line of works has
argued how memorization of (atypical) data points is important for achieving optimal generalization
performance when data is sampled from long-tailed distributions [6, 11, 15].

Simplicity Bias. Another line of work argues that neural networks have a bias toward learning
simple features [43], and often do not learn complex features even when the complex feature is more
predictive of the true label than the simple features. This suggests that models end up memorizing
(through noise) the few samples in the dataset that contain the complex feature alone, and utilize the
simple feature for correctly predicting the other training examples [1, 32].

Label Noise. Large-scale machine learning datasets are typically labeled with the help of human
labelers [12] to facilitate supervised learning. It has been shown that a significant fraction of these
labels are erroneous in common machine learning datasets [39]. Learning under noisy labels is a
long-studied problem [2, 26, 31, 37]. Various recent methods have also attempted to identify label
noise [10, 23, 38, 40]. While the focus of our work is not to propose a new method in this long line
of work, we show that the view of forgetting time naturally distills out examples with noisy labels.
Future work may benefit by augmenting our metric with SOTA methods for label noise identification.

3 Method

The primary goal of our work is to characterize the hardness of different datapoints in a given
dataset. Suppose we have a dataset SA = {xi,yi}

n such that (xi,yi) ⇠ D. For the purpose of
characterization, we augment each datapoint (xi,yi) 2 SA with parameters (fslti, ssfti) where
fslti quantifies the first-split learning time (FSLT), and ssfti quantifies the second-split forgetting
time (SSFT) of the sample. To obtain these parameters, we next describe our proposed procedure.

Procedure We train a model f on S to minimize the empirical risk: L(S; f) =
P

i `(f(xi),yi).
We use fA to denote a model f (initialized with random weights) trained on SA until convergence
(100% accuracy on SA). We then train a model initialized with fA on a held-out split SB ⇠ D

n until
convergence. We denote this model with fA!B . To obtain parameters (fslti, ssfti), we track per-
example predictions (ŷt

i) at the end of every epoch (tth) of training. Unless specified otherwise, we
train the model with cross-entropy loss using Stochastic Gradient Descent (SGD).

Definition 1 (First-Split Learning Time). For {xi,yi} 2 SA, learning time is defined as the earliest

epoch during the training of a classifier f on SA after which it is always classified correctly, i.e.,

fslti = argmin
t⇤

(ŷt
i,(A) = yi 8t � t

⇤) 8{xi,yi} 2 SA. (1)

Definition 2 (Second-Split Forgetting Time). Let ŷt
i,(A!B) to denote the prediction of sample

{xi,yi} 2 SA after training f(A!B) for t epochs on SB . Then, for {xi,yi} 2 SA forgetting time is

defined as the earliest epoch after which it is never classified correctly, i.e.,

ssfti = argmin
t⇤

(ŷt
i,(A!B) 6= yi 8t � t

⇤) 8{xi,yi} 2 SA. (2)

3
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(a) (b)

Figure 2: Rate of Learning and Forgetting of examples for different groups in the synthetic dataset.
While first-split training is not able to distinguish between rare and complex examples, second-split
training succeeds in distinguishing them. Additionally, second-split training separates mislabeled
examples from the rest relatively better than first-split training. (b) Visualization of first-split learning
and second-split forgetting times when training LeNet model on the MNIST dataset.

3.1 Baseline Methods

We provide a brief description of metrics for example hardness considered in recent comparisons [25].

Number of Forgetting Events: (nf ). An example (xi,yi) 2 S undergoes a forgetting event when
the accuracy on the example decreases between two consecutive updates. Toneva et al. [47] analyzed
the total number of such events nf during the training of a neural network to identify hard examples.

Cumulative Learning Accuracy: (accl). Jiang et al. [25] suggest that rather than using the learning
time (Definition 1), using the number of epochs during training when a machine learning model
correctly classifies a given sample is a more stable metric for predicting example hardness.

Cumulative Learning Confidence: (confl). Similar to accl, confl measures the cumulative softmax
confidence of the model towards the correct class over the course of training.

3.2 Example Characterization

We characterize example hardness via three sources of learning difficulty: (i) Mislabeled Examples:
We refer to mislabeled examples as those datapoints whose label has been flipped to an incorrect
label uniformly at random. (ii) Rare Examples: We assume that rare examples belong to sub-
populations of the original distribution that have a low probability of occurrence. In particular, there
exist O(1) examples from such sub-populations in a given dataset. In Section 4.3 we describe how
we operationalize this notion in the case of the CIFAR-100 dataset. (iii) Complex Examples: These
constitute samples that are drawn from sub-groups in the dataset that require either (1) a hypothesis
class of high complexity; or (2) higher sample complexity to be learnt relative to examples from rest of
the dataset. We leave the definition of complex samples mathematically imprecise, but with the same
intuitive sense as in prior work [3, 43]. For instance, in a dataset composed of the union of MNIST and
CIFAR-10 images, we would consider the subpopulation of CIFAR-10 images to be more complex.

4 Empirical Investigation of First- and Second-Split Training Dynamics

4.1 Experimental Setup

Datasets We show results on a variety of image classification datasets—MNIST [13], CIFAR-
10 [29], and Imagenette [22]. For experiments in the language domain, we use the SST-2 dataset [45].
For each of the datasets, we split the training set into two equal partitions (SA,SB). For experiments

4



Sentences in SST-2 dataset with smallest forgetting time Label

The director explores all three sides of his story with a sensitivity and an inquisitiveness reminiscent of Truffaut Neg
Beneath the film’s obvious determination to shock at any cost lies considerable skill and determination , backed by sheer nerve Neg
This is a fragmented film, once a good idea that was followed by the bad idea to turn it into a movie Pos
The holiday message of the 37-minute Santa vs. the Snowman leaves a lot to be desired. Pos
Epps has neither the charisma nor the natural affability that has made Tucker a star Pos
The bottom line is the piece works brilliantly Neg
Alternative medicine obviously has its merits ... but Ayurveda does the field no favors Pos
What could have easily become a cold, calculated exercise in postmodern pastiche winds up a powerful and deeply moving
example of melodramatic moviemaking

Neg

Lacks depth Pos
Certain to be distasteful to children and adults alike , Eight Crazy Nights is a total misfire Pos

Table 1: First-split sentences that were forgotten by the 3rd epoch of second-split training of a BERT-
base model on the SST-2 dataset. Notice that all of these forgotten examples are mislabeled.

with mislabeled examples, we simulate mislabeled examples by randomly selecting a subset of 10%
examples from both the partitions and changing their label to an incorrect class.

Training Details Unless otherwise specified, we train a ResNet-9 model [4] using SGD optimizer
with weight decay 5e-4 and momentum 0.9. We use the cyclic learning rate schedule [44] with a
peak learning rate of 0.1 at the 10th epoch. We train for a maximum of 100 epochs or until we have 5
epochs of 100% training accuracy. We first train on SA, and then using the pre-initialized weights
from stage 1, train on SB with the same learning parameters. All experiments can be performed on a
single RTX2080 Ti. Complete hyperparameter details are available in Appendix B.1.

4.2 Learning-Forgetting Spectrum for various datasets

Synthetic Dataset We consider data (x,y) sampled from a mixture of multiple distributions Dg , s.t.
x 2 Rd. Dg denotes the gth group and has a sampling frequency of ⇡g . Each group Dg ⌘ (Xg, {yg}),
i.e., the true label for all the samples drawn from a given group is the same, and the examples in each
group are non-overlapping. Each group is parametrized by a set of k ⌧ d unique indices Ig ⇢ [d]
such that Ii \ Ij = � for i 6= j. The discriminative characteristic of each group is the vector ug,
such that, [ug]i = 1 if i 2 Ig else 0 8i 2 [d]. Then for any sample (x,y) 2 S:

P (x 2 Xg) = ⇡g; x|Xg ⇠ N (0,�2Id) + µg.

For our simulation, we consider a 10 class-classification problem, with µg = 5 for typical groups, and
µg = 4 for complex groups (higher signal to noise ratio). For any sample drawn from a rare group,
we have O(1) samples from that group in the entire dataset (SA [ SB). Mislabeled samples are only
generated from the majority typical groups. In Figure 2a, we show the rate of learning and forgetting
of examples from each of these categories. We note that in the second-split training, the mislabeled
examples are quickly forgotten, and the complex examples are never forgotten. The rare examples are
forgotten slowly. In Section 5 we will theoretically justify the observations in the synthetic dataset
and show that the rare examples are expected to be forgotten as we train for an infinite time.

Image Domain In Figure 2b, we show representative examples in the four quadrants of the learning-
forgetting spectrum. More specifically, we find that the examples forgotten fastest and learned last
are mislabeled. And the ones learned early and never forgotten once learned are characteristic simple
examples of the MNIST dataset. Examples in the first and third quadrant are seemingly atypical and
ambiguous respectively. Similar visualizations for other image datasets can be found in Appendix B.2.

Other Modalities The forgetting and learning dynamics occur broadly across modalities apart
from images. We repeat the same problem setup on the SST-2 [45] dataset for sentiment classification.
We fine-tune a pre-trained BERT-base model [14] successively on two disjoint splits of the dataset.
In Table 1, we provide a list of the earliest forgotten samples when we train a BERT model on the
second split of SST-2 dataset. The results suggest that SSFT is able to identify mislabeled samples.

4.3 Ablation Experiments

We design specific experimental setups to capture the three notions of hardness as defined in Section 3.

5



(a) Mislabeled Examples
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(b) Complex Examples (c) Rare Examples

Figure 3: Ablation experiments to distinguish the learning and forgetting dynamics for specific types
of hard examples. (a) Mislabeled samples may be learned as slowly as a high fraction of typical
samples, but they are forgotten much faster. (b) FSLT distinguishes complex (CIFAR10 clean) and
simple (MNIST clean) examples, but SSFT does not. On the contrary, FSLT can not distinguish clean
and mislabeled examples of CIFAR10, while the SSFT can. (c) FSLT is able to distinguish examples
based on the sub-group frequency, however, SSFT has a low correlation with the sub-group frequency.

Mislabeled Examples We sample 10% datapoints from both the first and second split of the CIFAR-
10 dataset, and randomly change their label to an incorrect label. Figure 3a shows the learning-
forgetting spectrum for the dataset. In the adjoining density histograms, note that a large fraction of
the mislabeled and correctly labeled examples are learned at the same time. However, during second-
split training, the mislabeled examples are forgotten quickly whereas a large fraction of the clean
examples are never forgotten, allowing SSFT to succeed in distinguishing mislabeled samples.

Complex Examples We generate a joint dataset that contains the union of both MNIST and CIFAR-
10 examples. This is motivated by work in simplicity bias [43] that argue that neural networks learn
simpler features first. We also add 10% labeled noise to each of the datasets in the union to understand
the learning and forgetting time relationship of a sample that is complex or mislabeled together. In
Figure 3b, we show the FSLT and SSFT for MNIST and CIFAR-10 samples. We note that a high
fraction of the CIFAR-10 (complex) samples learn at the same speed as the mislabeled samples.
However, when looking at the SSFT, we are able to draw a strong separation between the mislabeled
samples and complex samples. This indicates that the complexity of a sample has low correlation
with its tendency to be forgotten once learnt, but a high correlation with being learned slowly.

Rare Examples The CIFAR-100 [29] dataset is a 100-class classification task. The dataset contains
20 superclasses, each containing 5 subclasses. We create a 20-class classification dataset with long
tails simulated through the 5 sub-classes within each superclass. More specifically, the number of
examples in each subgroup for a given superclass is given by {500, 250, 125, 64, 32} respectively
(exponentially decaying with a factor of 2). This is done to simulate the hypothesis of dataset
subgroups following a Zipf distribution [49] as argued for by Feldman [15]. This dataset is further
divided into two equal splits to analyze the learning-forgetting dynamics. In order to remove any
other effects of example hardness (either within a subgroup, or among subgroups), we randomize both
the chosen subset of examples and the ordering of the majority and minority groups between each
superclass, by training the model on 20 such random splits and aggregating learning and forgetting
statistics over these runs. In Figure 3c, we show a scatter plot for the FSLT and SSFT, colored by the
frequency of the group a particular example belongs to. We observe that FSLT strongly correlates with
the size of the subgroup, whereas the SSFT has a very low correlation with the rareness of a sample.

We provide further ablations to show that FSLT is able to identify hard and rare examples, but SSFT
shows nearly no discriminative power at finding the two in Appendix C.

4.4 Dataset Cleansing

Identifying Label Noise We present AUC scores for detection of label noise via various popular
methods in example difficulty literature, across various datasets in Table 2. We note that (i) cumulative
predictions over the course of training help stabilize both the learning time and forgetting time metrics;

6



Method ! fslt accl ssft (Ours) accf (Ours) conf l nf Joint (Ours)

Imagenette 0.834 0.912 0.931 0.941 0.786 0.781 0.957
CIFAR10 0.740 0.900 0.938 0.941 0.947 0.580 0.958
MNIST 0.973 0.998 0.997 0.998 0.965 0.377 0.998
CIFAR100 0.700 0.899 0.865 0.885 0.860 0.300 0.926
EMNIST 0.987 0.990 0.987 0.989 0.984 0.386 0.997

Table 2: AUC for identification of label noise using various metrics for example hardness across
different datasets. Across all datasets, our ssft metric outperforms alternative baselines. We introduce
accf as the cumulative accuracy on the second-split training, inspired by previous work that suggests
using cumulative accuracies helps make first-split learning time more stable [25]. All other notations
are described in Section 3. In the case of the Joint method, we select new prediction ranks based on
the combined learning and forgetting ranks, further improving over the ssft metric alone.
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(a) Synthetically generated CIFAR10-like data
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(b) CIFAR10 with and without label noise

Figure 4: Accuracy on CIFAR-10 test set after removing a varying number of samples from the
training set based on (i) random choice, (ii) examples with the lowest SSFT, and (ii) the highest FSLT.
Removing examples based on SSFT helps improve the generalization on the original test set.

(ii) for simple datasets such as MNIST with few ambiguous images, all of the baseline methods have
very high AUC (greater than 0.99) in finding noisy inputs. However, in datasets such as CIFAR-10
and Imagenette, we find that second-split forgetting metrics do better than first-split training metrics.
Finally, we also compare the use of both forgetting and learning time to find noisy samples, and we
find a small improvement in the results of just using the forgetting time. While we do not make explicit
comparisons with other state of art methods dedicated to finding label noise, our results suggest that
augmenting second split forgetting time information may help improve their results. As also observed
in recent work [25], we find that the number of forgetting events (nf ) [47] is an unreliable indicator
of mislabeled samples. We hypothesize that this is because of the fact that mislabeled examples may
often be (first) learnt very late, hence their count of total forgetting events is also low.

Cleaning synthetically generated datasets Generative models are capable of mimicking the
distribution of a given dataset. We generate synthetic datasets of CIFAR10-like samples using (i)
DDPM (denoising diffusion model [20]); and (ii) DCGAN (Deep Convolutional GAN [41]). In
both cases, we assign pseudo-labels using the BiT model [28] as in prior work [36]. We collect a
sample of 50,000 training examples and record the generalization performance on CIFAR-10 as we
remove ‘hard’ samples, as evaluated by various metrics. In Figure 4, we can see that removing the
most easily forgotten examples can benefit by up to 10% generalization accuracy on the clean test
set of CIFAR-10. In case of the synthetic data generated using DDPM, the gains in generalization
performance are under 2%. We hypothesize that this is because the samples generated by DDPM are
more representative of the typical distribution of CIFAR-10 than those generated by DCGAN.

Note: The ability to train on a second split allows SSFT the unique opportunity to train on a clean
split of CIFAR-10 in order to assess the alignment of the synthetic samples with the oracle samples.
As a result, the SSFT is much more effective in filtering out ambiguous first-split synthetic examples.
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4.5 Evaluating Example Utility

Recent works [16, 47] have argued for removing a large fraction of the less memorized examples, and
keeping the memorized ones. We will analyze the change in model generalization upon removing
varying sizes of examples from the training set, as ranked by lowest SSFT and highest FSLT (Figure 4).
In the presence of noisy examples, removing samples based on the SSFT helps improve generalization,
whereas FSLT does not do much better than random. We draw the following inferences:

FSLT finds important samples As we remove more samples from the dataset, the accuracy of
the model trained after samples are removed based on the highest FSLT is significantly lower than
random guessing. This suggests that the utility of these samples is higher than random samples.
Put in line with the hypothesis of memorization of rare example as proposed in [15], we see that
empirically, the examples that are slow to learn are important for the model’s test set generalization.

SSFT removes pathological samples On the contrary, removing examples based on the SSFT
helps improve model generalization (especially when there is label noise). Even in the setting when
there is no label noise, in contrast to FSLT, we find that removing examples that were easily forgotten
has a lower negative impact on the model’s generalization as opposed to removing random samples.
This suggests that the examples that are forgotten in the early epochs of second-split training hurt a
model’s generalization, and may not be characteristic samples of their particular class.

Practitioner’s view From the AUC numbers in Table 2, it may appear that removing examples via
learning-based metrics such as learning time and cumulative learning accuracy also provides a high
rate of removal of noisy samples. However, when we observe the example utility graphs in Figure 4,
we draw the inference that the examples that are learned late, are often important examples (such as
rare memorized examples). However, even when SSFT fails to capture the correct noisy examples, it
still removes unimportant samples and does not hurt generalization. Similar graphs for other metrics
described in Table 2 can be found in Appendix B.

4.6 Characterizing Potential Failure Modes

Figure 5: By inspecting the earliest-
forgotten examples, we can gain in-
sights into potential failure modes.
This model quickly forgets planes
with green backgrounds and horses
on blue backgrounds.

Recent works have attempted to train classifiers on datasets
that contain spurious features [24, 42] (example Waterbirds,
CelebA [34] dataset). However, a fundamental challenge is
to first identify the spurious correlation that the classifier may
be relying on. Only then can recent methods be trained to
remove the reliance on spurious patterns. We train a ResNet-9
model to classify CIFAR-10 images of horses and airplanes. In
Figure 5, we observe that the model forgets planes with green
backgrounds and horses with blue backgrounds. This suggests
that the model relied on the background as a spurious feature.
By analyzing the forgotten examples we can further investigate
the examples that the classifier fails to generalize to.

Stability of SSFT We note that SSFT is stable across multiple seeds (Pearson correlation of 0.81),
and across architectures (Pearson correlation of 0.63). While the overall correlation for samples ranked
by SSFT may be low across architectures, the top-ranked examples have a high correlation (0.85),
suggesting the most forgotten examples are consistent across architectures. In contrast, FSLT has a
Pearson correlation of 0.52 across seeds. Most interestingly, the learning time metric is brittle to the
choice of hyperparameters. As shown by Jiang et al. [25], when using Adam optimizer, examples of
different hardness get learned together. In our experiments, we observe the same phenomenon during
learning, however, SSFT is robust to the choice of the optimizer. Detailed results in Appendix C.1.

Limitations One limitation of the proposed metric is that it is brittle to the choice of the learning rate
for the second-split training. If we use a very small learning rate, then overparametrized deep models
are capable of learning the new dataset without forgetting examples from the first split. Alternately,
if we use a very large learning rate, the model may diverge and undergo catastrophic forgetting.
However, under ‘reasonable’ choices of learning rate (like that for first-split training), we find SSFT
is robust. We provide a detailed anaylsis of the same in Appendix C.1.
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5 Theoretical Results

Through our theoretical analysis, we will characterize the forgetting dynamics of mislabeled, rare
and complex examples in a simplified version of the framework used for our synthetic experiments in
Figure 2a. Recall, our setup contains two dataset splits SA,SB , where we train on the first split until
achieving perfect accuracy on all training points, and then with these weights train on SB for infinite
time. In particular, we will prove that both mislabeled and rare examples are forgotten upon training
for infinite time, with mislabeled examples being forgotten much faster. Further, we will show that
complex examples from the first split do not get forgotten if not continually trained on. We assume in
our analysis that SB has no mislabeled or rare examples, and SA contains one example of each type.

We consider a dataset S = {xi,yi}
n such that (xi,yi) 2 X ⇥ Y , and xi = µg + zi where

zi ⇠ N
�
0,�2Id

�
, and ||µg||

2
2 = kµ

2 (as in Section 4.2). Let w 2 Rd represent the weight vector of
an overparametrized linear model. We analyze the learning and forgetting dynamics by minimizing
the empirical risk: L(S;w) =

P
i `(w

>yixi), where ` is the exponential loss. Following Chatterji
and Long [9], we make the following assumptions about the problem setup:

(A.1) The failure probability satisfies 0  �  1/C,

(A.2) The number of samples satisfies n � C log (1/�),

(A.3) The input dimension d � Cmax{n2 log(n/�), n(k·µ2
/�2)}, and k·µ2

/�2 � C log (n/�),

where k·µ2
/�2 represents the signal to noise ratio and C is a large constant. Now we formalize the

notions of rare, mislabeled and complex examples for our theoretical analysis.
Definition 1 (Rare Examples, R [15]). Consider a dataset S sampled from a mixture of distributions

{D1, . . . ,DN} with frequency {⇡1, . . . ,⇡N} respectively. Let R ✓ S be the set of rare examples.

Then, for all (xi,yi) 2 R, if (xi,yi) ⇠ Dj , then there are O(1) samples from Dj in S .

Definition 2 (Mislabeled Examples, M). Consider a k class classification problem with Y =
{1, 2, . . . , k}. Let M ⇢ S be the set of mislabeled examples. Then for any (x,y) ⇠ D, a corre-

sponding mislabeled example is given by (x, ỹ) 2 M such that ỹ 2 Y \ {y}.
2

Definition 3 (Complex Examples, C). Let C ⇢ S be the set of examples sampled from complex

distributions. Let (xi,yi) 2 C such that (xi,yi) ⇠ Dg (complex group), then µg = µt

� , � > 1 where

µt is the coordinate-wise mean for samples drawn from any simple distribution Dt (Section 4.2).

Optimization We perform gradient descent with fixed learning rate ⌘,

w(t+ 1) = w(t)� ⌘rL(w(t)) = w(t)� ⌘

X

i

`
0(w>yixi) · yixi. (3)

Solution dynamics For sufficiently small learning rate ⌘, and (bounded) starting point w(0), Soudry
et al. [46] showed that:

w(t) = ŵ log t+ ⇢(t), (4)

where ⇢(t) is a bounded residual term, and ŵ is the solution to the hard margin SVM:

ŵ = argmin
w2Rd

||w||
2
2 s.t. w>yixi � 1, (5)

5.1 First-split Learning

For stage 1, we consider that we train the model for a maximum of T epochs (until we achieve 100%
accuracy on the first training dataset SA). This means that the learned weight vectors are close to,
but have not converged to the max margin solution. The solution at the end of t epochs is given by
wA(t). At sufficiently large T , we have:

wA(T ) = ŵA log T + ⇢A(T )

wA(T )
>yixi � 1 8(xi,yi) 2 SA

(6)

2For binary classification, Y = {�1,+1}. The labels are reversed for mislabeled examples.
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5.2 Second-split Forgetting

We initialize the weights for second stage of training with wA(T ) from first training stage, and then
train on SB . We provide the formal theorem statement and complete proofs in Appendix A, but
provide informal theorem statements and an intuitive proof sketch below:
Theorem 1 (Asymptotic Forgetting (informal)). For sufficiently small learning rate, given datasets

SA,SB ⇠ D
n

. After training for T
0
! 1 epochs, the following hold with high probability:

1. Mislabeled and Rare examples from SA are forgotten.

2. Complex examples from SA are not forgotten.

Proof Sketch. We use the result from Soudry et al. [46] that for any bounded initialization, when
trained on a separable data, the model converges to the same min-norm solution. As a result, we can
ignore the impact of SA at infinite time training. Then, we use generalization bounds from Chatterji
and Long [9] to argue about the accuracy on mislabeled and complex examples. For the case of
rare examples, we show that the probability of correct model prediction can be approximated by a
Gaussian CDF with mean 0 and O(1/

p
n) variance.

Theorem 2 (Intermediate-Time Forgetting (informal)). For sufficiently small learning rate, given

two datasets SA,SB ⇠ D
n

. For a model initialized with weights, wB(0) = wA(T ) and trained for

T
0

= f(T) epochs, the following hold with high probability:

1. Mislabeled examples from SA are no longer incorrectly predicted.

2. Rare examples from SA are not forgotten.

Proof Sketch. SB contains examples from the same majority distributions as SA. The mislabeled
example also belongs to one of these distributions, but has the opposite label. However, SB does not
have samples from rare groups found in SA. Using representer theorem, we decompose the model
updates into a weighted sum of each training data point in SB . Then, we analyze the change in
prediction on rare and mislabeled examples, which is a dot product of the weight update with xm or
xr. Per our assumptions, the the mean of each group µg is orthogonal to the other. As a result, the
rare example finds negligible coupling with any example in SB , and the variance of its prediction
keeps increasing due to the noise term contributed in the model weights from each example in SB .
On the contrary, the mislabeled examples have a strong coupling with all the examples in its group.
Due to its incorrect label, the mean of its predictions moves towards the correct label, with variance
increasing at a similar rate. The final step is to jointly analyze the rate of change of prediction of both
the examples, and find an optimal time T

0 when the prediction on the mislabeled example is flipped
and the rare example still retains its prediction with high probability.

6 Conclusion

While many prior works investigate training time dynamics to characterize the hardness of examples,
we enrich this literature with a complementary lens focused on the second-split forgetting time. We
demonstrate the potential of SSFT to distinguish among rare, mislabeled, and complex examples; and
also show the differences in the example properties captured by first-split and second-split metrics.

Our work opens new lines of inquiry in future work that can utilize the separation of hard examples.
First, we expect state of art methods in label noise identification to benefit by augmenting our
approach. Further, we believe our ablations showing that complex, noisy, and mislabeled samples
may all be learned slowly inspire future work that can unite different takes on the memorization-
generalization research—early learning, simplicity bias, and singleton memorization.
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