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A Theoretical Results

A.1 Preliminaries

Let w 2 Rd represent the weight vector of overparametrized linear model. We analyze the learning
and forgetting dynamics by minimizing the empirical risk: L(S;w) =

P
i `(w

>yixi). We consider
the exponential loss `(z) = exp(�z) for our analysis. For completeness, we rewrite the definitions
and preliminaries from the main paper below.

Data Generating Process We restate the data generating process as detailed in the synthetic
experiment in Section 4.2. We consider data (x,y) sampled from a mixture of multiple distributions
Dg, s.t. x 2 Rd. Dg denotes the g

th group and has a sampling frequency of ⇡g. Each group Dg is a
distribution over (Xg ⇥ {yg}), i.e., the true label for all the samples drawn from a given group is the
same, and the examples in each group are non-overlapping. Each group is parametrized by a set of
k ⌧ d unique indices Ig ⇢ [d] such that Ii \ Ij = � for i 6= j. The discriminative characteristic of
each group is the vector ug , such that, [ug]i = 1 if i 2 Ig else 0 8i 2 [d]. In the following discussion,
we will refer to µg as the coordinate-wise mean vector for the group g, such that µg = µgug . Then
for any sample (x,y) 2 S:

P (x 2 Xg) = ⇡g; x|Xg ⇠ N (0,�2Id) + µg. (7)

Definition 1 (Rare Examples, R [15]). Consider a dataset S sampled from a mixture of distributions

{D1, . . . ,DN} with frequency {⇡1, . . . ,⇡N} respectively. Let R ✓ S be the set of rare examples.

Then, for all (xi,yi) 2 R, if (xi,yi) ⇠ Dj , then there are O(1) samples from Dj in S .

Definition 2 (Mislabeled Examples, M). Consider a k class classification problem with Y =
{1, 2, . . . , k}. Let M ⇢ S be the set of mislabeled examples. Then for any (x,y) ⇠ D, a corre-

sponding mislabeled example is given by (x, ỹ) 2 M such that ỹ 2 Y \ {y}.
1

Definition 3 (Complex Examples, C). Let C ⇢ S be the set of examples sampled from complex

distributions. Let (xi,yi) 2 C such that (xi,yi) ⇠ Dg (complex group), then µg = µt

� , � > 1 where

µt is the coordinate-wise mean for samples drawn from any simple distribution Dt (Section 4.2).

The implication of the aforementioned characterization is that complex distributions have a lower
signal-to-noise ratio (SNR) as compared to simple distributions. We assume the sample complexity
required to estimate the distribution as a proxy for the complexity of the distribution. In this regard,
having a low SNR increases the complexity.

Recall that SA and SB denote the first and second training splits of our dataset. In our theoretical
framework, we only consider two majority distributions in the second split dataset (SB). Let us call
them D1,D2. Therefore, both SA and SB contain O(n) samples from D1,D2. In the first split dataset
(SA), we consider the presence of another distribution Dr that constitutes the rare example (only one
sample (xr,yr)). The mislabeled example (only one sample (xm,ym)) belongs to one of the majority
distributions, and we will assume without loss of generality that this is from distribution D1. To
understand the population accuracy in the case of complex distributions, we will draw a simple analogy
in the case when the majority distributions D1,D2 occur from complex distributions as defined below.
Based on equation 7, without loss of generality, we will assume that dimensions {1 . . . k}, {k +
1 . . . 2k}, {2k + 1 . . . 3k} are the predictive dimensions for the majority group 1, 2 and that for the
rare example from dataset 1. We make these assumptions to simplify the theoretical exposition.
However, our results can be observed even after relaxing them at the expense of more book-keeping.

Based on Chatterji and Long [9], we make the following assumptions about the problem setup:

(A.1) The failure probability satisfies 0  �  1/C,

(A.2) The number of samples satisfies n � C log (1/�),
1For binary classification, Y = {�1,+1}. The labels are reversed for mislabeled examples.
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(A.3) The input dimension d � Cmax{n2 log(n/�), nkµ2
/�

2
}, and k·µ2

/�2 � C log (n/�),

where k·µ2
/�2 represents the signal to noise ratio.

Optimization We perform gradient descent with fixed learning rate ⌘,

w(t+1) = w(t)� ⌘rL(w(t)) = w(t)� ⌘

X

i

`
0(w>yixi) · yixi. (8)

Asymptotic Solution [46] For sufficiently small learning rate ⌘, and (bounded) starting point w(0),

w(t) = ŵ log t+ ⇢(t), (9)

where ŵ is the solution to the hard margin SVM:

ŵ = argmin
w2Rd

||w||
2
2 s.t. w>yixi � 1, (10)

A.2 Learning Stage

For the stage 1, we consider that we train the model for a maximum of T epochs (until we achieve
100% accuracy on the first training dataset SA with margin greater than 1). This means that the
learned weight vectors are close to, but have not converged to the max margin solution. The solution
at the end of T epochs is given by wA(t). At sufficiently large T , we have:

wA(T ) = ŵA log T + ⇢A(T )

wA(T )
>yixi � 1 8(xi,yi) 2 SA

(11)

Lemma 1 (Bounded Weights). With probability at least 1� �, there exists a bounded time t beyond

which the model classifies all training points correctly.

Proof. From Lemma 5, we know that the dataset is separable with probability at least 1� �. This
means that the max-margin solution (or the SVM solution) for the dataset classifies all training points
correctly. From the analysis in Soudry et al. [46], we know that:

lim
t!1

wA(t)

||wA(t)||2
=

ŵA

||ŵA||2

,

lim
t!1

yix
>
i

wA(t)

||wA(t)||2
= yix

>
i

ŵA

||ŵA||2

(12)

Then it directly follows that, for ✏ > 0, there exists bounded time T > 0 such that 8t > T ,

����yix
>
i

wA(t)

||wA(t)||2
� yix

>
i

ŵA

||ŵA||2

���� < ✏

This concludes that there exists a time T for which the sign of the prediction of both the max-margin
solution and the learnt solution will be the same, implying correct prediction for every example in the
training set for a bounded time solution.

A.3 Forgetting Stage

We initialize the weights for second stage of training with wA(T ) from first training stage, and then
train on SB to minimize the empirical loss using gradient descent (Equation 3). Assume that the
dataset is balanced in the class labels, |SB | = n. Also, recall that SB does not contain mislabeled or
rare examples from the same sub-group as in SA. For analyzing example forgetting in an asymptotic
setting, we will directly borrow results from the analysis made by Chatterji and Long [9]. They prove
a stronger result for the case where the dataset contains a fraction ⌘ of mislabeled examples. However,
we will use the setting without label noise. The asymptotic result then builds on to the main theorem
of the paper on intermediate time forgetting (Theorem 4).
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Transformations for Equivalence to Chatterji and Long [9] In our setup, we consider a group
structure where each distribution has a mean vector that is orthogonal to the others. We show the
equivalence of the same to the data model studied in prior work [9].

Let us define µ1,µ2 2 Rd as follows:

[µ1]j =

⇢
µ if j 2 {1 . . . k}
0 o.w.

Similarly, define µ2,µ3 as well. For the equivalence condition, we are only concerned about the
dataset split SB which is where the generalization bounds hold. Further, let z ⇠ N

�
0,�2Id

�
. Then,

x|Xg ⇠ z + µg .

We can now shift and rescale the axes such that the new origin is located at (µ1+µ2)/2. Then, define
µ = (µ1�µ2)/2. This results in the simplification that the mean of the examples sampled from D1 is
µ and that from D2 is �µ. We can hence express x = yµ + z. This directly follows their model
assumption where z 2 Rd has each marginal sampled from a mean zero subgaussian distribution with
subgaussian norm at most 1. In our case, each marginal is a Gaussian random variable with variance
�
2. Once again, we can rescale the axes such that µ̃ = µ/�. Now, our data model directly follows the

data model discussed in prior work [9].

A.4 Asymptotic Analysis

First, we analyze infinite-time training case. We will extend the result from Chatterji and Long
[9], Soudry et al. [46] to show that (i) mislabeled and rare examples are forgotten when the model
is trained for long; and (ii) complex examples are not forgotten. First, recall the result used in
Subsection A.2 for any bounded initialization for weights wB(0),

wB(t) = ŵB log t+ ⇢B(t). (13)
We will first provide a formal version of Theorem 1 which was informally stated in the main paper.
Theorem 3 (Asymptotic Forgetting). Under assumptions A.1, A.2, A.3, with probability 1-�, fine-

tuning for t ! 1 iterations on the second dataset SB produces a max-margin classifier ŵB such that

P(xm,ym)2SA
[sign(ŵB · xm) = ym]  exp

�
�c||µ̃||22/d

�
,

� (�1/C)  P (xr, yr)2SA
[sign(ŵB · xr) 6= yr]  � (1/C) ,

P (xc, yc)2SA
[sign(ŵB · xc) 6= yc]  exp

�
�c||µ̃/�||22/d

�
,

for some absolute constant c>0 and (xm,ym) 2 M, (xr,yr) 2 R, (xc,yc) 2 C respectively.

The theorem implies that the probability that mislabeled examples from SA are classified with the
given (incorrect) label tends to 0 if ||µ||2 = ✓(d�) for any � 2 (1/4, 1/2]. Note that in our case, we
have k dimensions of signal. Therefore, as long as k/d is a constant fraction, as the input dimensions
d ! 1 the above holds. Examples in SA from distributions absent in SB are randomly classified.

Intuition. In the asymptotic case, the initial weights from first split training wA(T ) = O(log T ) ⌧
wB(t), where t ! 1 in the limit of infinite training. As a consequence, for any bounded initialization,
the model weights converge to the minimum norm solution (SVM) solution from Soudry et al. [46].
We use results from [9] who study the setting of a binary classification problem with noisy label
fraction ⌘. In our case, since the second-split is assumed to have only clean samples, ⌘ = 0. The final
step is to adapt our data generating process to the format used in Chatterji and Long [9].

Proof. Recall the transformations described in Section A.3. Let (xm,ym), (xr,yr), (xc,yc) rep-
resent any point from SA which belongs to mislabeled set M, rare set R and complex set C. The
important thing to note in the analysis that follows is that each of these examples is independent of
the samples in SB . Hence, the probability of correctly predicting on them is same as that of correctly
predicting on a population sample, in the limit of infinite training (when initialization does not matter
and all models converge to the same solution).

P(x,y)⇠D [sign(w · x) 6= y] = P(x,y)⇠D [(yw · x) < 0] ,

We will now analyze the probability of correct prediction of mislabeled, rare, and complex examples
separately.
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Mislabeled Examples Since SB is separable, in the limit of infinite-training time, the classifier
correctly predicts all the examples in the dataset. We will use this fact to show that it assigns the
opposite label to the mislabeled sample in set SA with high probability. Then, we denote ‘failure’ as
the event that the mislabeled samples is still predicted with label ym at infinite-time training.

P(x,y)⇠D1
[(yw · x) < 0] = 1� P [(ymw · xm) < 0]

= P [(ymw · xm) > 0]

= P [sign(w · xm) = ym] ,

Then, we can directly borrow the result from Chatterji and Long [9] (Theorem 4) to find that

P(x,y)⇠D1
[(yw · x) > 0]  exp

✓
�c

||µ̃||4

d

◆

P [sign(w · xm) = ym]  exp

✓
�c

||µ̃||4

d

◆
,

(14)

Rare Examples Without loss of generality, we may assume that the correct label for the rare
example yr = 1.

P [(yrw · xr) < 0] = P [(yrw · (xr � µr) < �yrw · µr]

= P [(w · (xr � µr) < �w · µr] , (since yr = 1)
= P [(w · zr < �w · µr]

= �

✓
�w · µr

� ||w||2

◆
,

(15)

where � is the Gaussian CDF. In the last step we use the fact that zr ⇠ N (0,�2Id). Therefore its dot
product with the vector w results with a summation of d Gaussian vectors, each with mean 0 and
variance �

2[w]2i 8i 2 [d]. Now what remains is to prove that the value at which we want to calculate
the CDF is close to 0, so that the probability of the misclassification is close to 0.5.

Recall from the analysis in Soudry et al. [46] that asymptotically the model converges to the max-
margin separator that is comprised of a weighted sum of the support vectors of the dataset (let us call
this set VB). This means that the final weights of the model w is a combination of datapoints from
the first two majority distributions D1,D2.

w =
X

i2VB

↵ixi, (16)

µr ·w =
X

i2VB

↵i(µr · xi) (17)

Since µr · µi = 0, we have that (µr · xi) = µr · zi + 0, which is a mean zero random variable.

µr ·w =
X

i2VB

↵i(µr · zi), (18)

=
X

i2VB

↵iµ

X

2k+1j3k

[zi]j , (19)

= ⇠, (20)
(21)

where ⇠ ⇠ N (0, kµ2
�
2
P

i2VB
↵
2
i ). Also, ||w||

2
2 =

P
i2VB

↵
2
ix

2
i . However, xi = µi + zi. From

Lemma 4, we know that with probability greater than 1��/6, for every example, d�2

2  ||zi||
2
2 

3d�2

2 .
By Young’s inequality for products:
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||zi||
2
2 = ||xi � µi||

2
2 ,

 2 ||xi||
2
2 + 2 ||µ2||

2
2 ,

||xi||
2
2 �

1

2
||zi||

2
2 � ||µi||

2
2 ,

�
d�

2

4
� ||µi||

2
2 ,

�
d�

2

8
(since

kµ
2

�2
< d/nC for large C),

||w||
2
2 =

X

i2VB

↵
2
ix

2
i �

d�
2

8

X

i2VB

↵
2
i .

Therefore,

⌘ =
�⇠

� ||w||2

⇠ N

✓
0,

kµ
2

d�2/8

◆
,

⌘ ⇠ N

✓
0,

1

nC

◆
, (since

kµ
2

�2
< d/nC for large C),

P [(yrw · xr) < 0] = � (⌘)

(22)

Using Gaussian tail bound on ⌘, with probability at least 1 � �, ⌘ 

q
log(1/�)

nC . Therefore,

P [(yrw · xr) < 0]  �

✓q
log(1/�)

nC

◆
 �

�
1
C

�
⇡ 0.5.

In the last step, we used the assumption (A.2) that n � C log(1/�) for some large constant C.

Remark: This analysis highlights that the meaning of being ‘forgotten’ for rare examples is to predict
randomly. However, in case of mislabeled examples, the predicted label of the example approaches
its ‘true’ label, irrespective of its training label.

Complex Examples The analysis for complex examples follows directly from the analysis in the
case of mislabeled examples. The only difference is the magnitude of the signal to noise ratio within
the group. Recall that complex examples are also sampled from majority groups. Therefore, the
probability that the complex example (x,y) is misclassified at the end of training for infinite time is
given by:

P
⇥
yx>w < 0

⇤
 exp

✓
�c

||µ̃/�||4

d

◆
(23)

This approaches 0, indicating perfect classification of complex examples from SA. Note that this is a
complimentary case where the second split only has examples from the complex distribution.

A.5 Intermediate Time Analysis

From the analysis in Section A.4, we find that all the mislabeled and rare examples are forgotten by
the time we train for t ! 1 iterations. Since examples from complex subgroups are not forgotten
even at infinite time training, we skip analysis for those examples in this subsection. Our goal is to
show that there exists a time T

0 such that with high probability, the model forgets all the mislabeled
examples, but still correctly classifies all the rare examples. To show this, we will track the accuracy
of inputs in the first data split, as we train on the examples in the second split.

The model output for any sample (xi,yi) 2 SA is given by w(t)>xi, and the prediction is considered
to be correct if sign(w(t)>xi) = yi, or if w(t)>xiyi > 0. From hereon, we will use the notation
ati = w(t)>xiyi.
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Recall that we considered that there is one example from both the mislabeled and rare example
category in SA. We will denote these data points by (xm,ym) 2 M, and (xr,yr) 2 R respectively.
Without loss of generality, we will assume that (xm,¬ym) was sampled from D1 in the mixture of
distributions D. All the examples in the second split SB sampled from the same distribution are given
by SB,1 ⇢ SB . The remaining examples are in the set denoted by SB,¬1 ⇢ SB .

From the learning time training dynamics, we know that the initialization of the weights for the
second round of training is given by:

wB(0) = ŵA log T + ⇢A(T ). (24)

Now, from the representer theorem, we can decompose the model weights at any iteration of second-
split training as follows,

wB(t) = ŵA log T + ⇢A(T ) +
X

j2SB

�jyjxj . (25)

Note that we introduce an additional term yj in the decomposition using representer theorem, but
this can be done without loss of generality since yj 2 {�1,+1}. This helps us in ensuring that each
�j is non-negative as shown in Lemma 6.

From Lemma 8, we know that there exists a bounded time T 0 when the mislabeled example prediction
flips. We will denote µ as the coordinate-wise mean for the k-signal dimensions in the vector µg in

the discussion that follows. Let us define �t =
P

j2SB,1
�j(t)

P
j2SB

�j(t)
, and � = maxt �t. For a symmetric

distribution with two majority subgroups with the opposite label, we would expect this value to be
close to 0.5. Now, we present formal version of Theorem 2 from the main paper.

Theorem 4 (Intermediate-Time Forgetting). Under the distribution outlined in Appendix A.1 with

assumptions A.1, A.2, A.3, whenever SA is separable, when fine-tuning on the second dataset split

SB with sufficiently small learning rate, there exists some bounded time T’ when

1. P(xm,ym)2SA
[ym 6= w(T 0) · xm] � 1� c0 exp

⇣
�k2µ2�2

c�2d

⌘
� c1 exp(�cd)

2. P(xr,yr)2SA
[yr = w(T 0) · xr] � 1� c0 exp

⇣
�k2µ2�2

c�2d

⌘
� c1 exp(�cd)

for absolute constants c0, c1, c and (xm,ym) 2 M, (xr,yr) 2 R respectively.

If the fraction of dimensions that contain the signal, k/d, is considered fixed then both the first and sec-
ond term above exponentially decay with a factor of d. This suggests that increasing overparametriza-
tion leads to a higher likelihood of the phenomenon of intermediate time forgetting—there exists an
epoch when the prediction of mislabeled example is flipped but the rare examples are still correctly
predicted with high probability.

In what follows, the key idea is to show that at a time when the prediction of the mislabeled example
is incorrect with high probability, the predictions of the rare examples is correct with high probability.

Proof. From Lemma 7, we know that (xm,ym) and (xr,yr) are support vectors for SA. Hence,
ymx>

mŵA = yrx>
r ŵA = 1. We will use this fact to find the distribution for atm, atr.

Let [xj ]i denote the i
th dimension of the j

th datapoint in the second split. Recall that the second
split comprises of two majority subgroups. k dimensions of the input vector contain the true signal
for class prediction. The dimensions {1 . . . k}, {k + 1 . . . 2k}, {2k + 1 . . . 3k} are the predictive
dimensions for the majority group 1, 2 and that for the rare example from dataset SA. Therefore,
[xj ]i = µ+[zj ]i, if i is in the predictive dimensions, otherwise [xj ]i = [zj ]i where [zj ]i ⇠ N (0,�2).
To make notation simple, we will refer to �j(t) by using �j .

Remark: We do not perform input transformation to prove the following results.
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Mislabeled Example The prediction on the mislabeled point times the given label can be written as:

atm = ymx>
mwB(t) = ymx>

m

0

@ŵA log T + ⇢A(T ) +
X

j2SB

�jyjxj

1

A ,

= log T + cm +
X

j2SB

�j(ymx>
myjxj) (using Lemma 7),

(26)

where cm = ymxT
m⇢A(T ) is a residual term that does not continue grow with T (Theorem 9 [46]).

Without loss of generality, assume that the mislabeled example xm belongs to majority group 1 (true
label = 1), and was originally labeled such that ym = -1 in the first-split dataset.

X

j2SB

�j(ymx>
myjxj) =

X

j2SB,1

�j(ymx>
myjxj) +

X

j2SB,¬1

�j(ymx>
myjxj)

= �

X

j2SB,1

�j(x
>
mxj) +

X

j2SB,¬1

�j(x
>
mxj).

(27)

Now we can use the distribution properties of the dataset to further simplify per dimension and
aggregate the sum across all examples.

X

j2SB,1

�j(x
>
mxj) = x>

m

X

j2SB,1

�jxj = x>
mxSB,1 , (28)

where [xSB,1 ]i = µ 1(i 2 {1 . . . k})
P

SB,1
�j + [zSB,1 ]i, where [zSB,1 ]i ⇠ N (0,�2

P
j2SB,1

�
2
j ).

Now, we will add up the dot product dimension wise. Let us call B1 =
P

SB,1
�j and B

v
1 =P

j2SB,1
�
2
j . Then [xSB,1 ]i ⇠ N (µ 1(i  k}) ·B1,�

2
B

v
1 ).

x>
mxSB,1 = µ

X

k

[zSB,1 ]i + µB1

X

k

[zm]i + k · µ
2
·B1 +

X

d

[zSB,1 ]i · [zm]i

= µ · ↵1 +
X

d

[zSB,1 ]i · [zm]i

x>
mxSB,¬1 = µ · ↵2 +

X

d

[zSB,¬1 ]i · [zm]i

(29)

where ↵1 ⇠ N (k · µ ·B1, k · �
2(Bv

1 +B
2
1)) and ↵2 ⇠ N (0, k · �

2(Bv
2 +B

2
2)). Notice that in the

first step, the first three terms are independent of each other and can be added directly to obtain a new
random variable using the independence condition, however, the last term is dependent on the first
two. In the final step, we also add the terms for the dot product corresponding to the opposite group.

This gives us the overall expression as follows:
X

j2SB

�j(ymx>
myjxj) = µ · (↵2 � ↵1) +

X

d

([zSB,¬1 ]i � [zSB,1 ]i) · [zm]i,

= µ · ↵m +
X

d

[zSB ]i · [zm]i � k · µ
2
·B1,

(30)

where ↵m ⇠ N (0, k · �
2(Bv + B

2
1 + B

2
2)) and [zSB ]i ⇠ N (0,�2

B
v), since (Bv

1 + B
v
2 =P

j2SB
�
2
j = B

v) .

atm = log T + cm + ⇠m � k · µ
2
·B1; s.t. ⇠m = µ · ↵m +

X

d

[zSB ]i · [zm]j . (31)
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Rare Example Following the analysis of the mislabeled example, we can similarly find an expres-
sion for atr on the rare example as follows:

atr = yrx
>
r wB(t) = yrx

>
r (ŵA log T + ⇢A(T ) +

X

j2SB

�jyjxj),

= log T + cr +
X

j2SB

�j(yrx
>
r yjxj) (using Lemma 7),

(32)

Following the same procedure as for mislabeled example, we get the overall expression as follows:
X

j2SB

�j(yrx
>
r yjxj) = µ · ↵r +

X

d

[zSB ]i · [zr]i, (33)

where ↵r ⇠ N (0, k · �
2(Bv +B

2
1 +B

2
2)) and [zSB ]i ⇠ N (0,�2

B
v).

atr = log T + cr + ⇠r, s.t. ⇠r = µ · ↵r +
X

d

[zSB ]i · [zr]i. (34)

Combining both cases Recall that �j > 0 for all j. Therefore, B2 = (
P

j2SB
�j)2 > B

v =P
j2SB

�
2
j . Based on the analysis of Soudry et al. [46], we know that wB(t) grows as fast as O(log t).

Therefore, both B1 = O(log t), and B = O(log t) (must grow at most as fast as that). From the
problem definition, B1  �B, where � 2 [0, 1].

Our goal now is to find an epoch t during the second-split training when the rare example is correctly
classified with high probability, and the mislabeled example is incorrectly classified with high
probability. The maxima is achieved when atr ⇡ �atm. We assume that the step sizes are sufficiently
small such that we can achieve this condition. Moreover, cr, cm ⌧ log T . Hence, the condition is to
find t such that ⇠r + log T > 0 and ⇠m + log T < k · µ

2
· B1 with high probability. By symmetry,

we must find P
�
|⇠m| < k · µ

2
·B1/2

�
.

P
✓
|⇠m| > k · µ

2
·
B1

2

◆
 P

✓
|⇠1| > k · µ

2
·
B1

4

◆
+ P

✓
|⇠2| > k · µ

2
·
B1

4

◆
, (35)

where ⇠1 = µ · ↵m ⇠ N (0, µ2
�
2
k(Bv + B

2
1 + B

2
2) and ⇠2 =

P
d[zSB ]i · [zr]i. For the first term,

we can directly use the Gaussian tail bound using Chernoff method.
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Now, for the second term, using Lemma 3 we have that.

P
✓
|⇠2| > k · µ

2
·
B1

4

◆
 2 exp

�k
2
µ
4
B

2
1

c2�
4dBv

+ c1 exp(�cd),

 2 exp
�k

2
µ
2�

c2�
2d

+ c1 exp(�cd),

(37)

since µ
� > 1. Finally, combining both the cases we have that
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+ c1 exp(�cd), (38)

This shows that as the dimensionality of the dataset increases, the likelihood of prediction on misla-
beled examples being flipped while the rare examples retain their prediction increases exponentially.
This concludes the proof of Theorem 4.
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A.6 Concentration Inequalities and Additional Lemmas

To make our work self-contained, we supplement the reader with additional Lemmas and Theorems
that are helpful tools for proving the theorems in this work. We restate versions of the Hoeffding and
Bernstein inequalities as in Chatterji and Long [9].
Lemma 2 (Soudry et al. [46], Theorem 3). For any linearly separable dataset SA and for all small

enough step-sizes ↵, we have

wA

kwAk
= lim

t!1

w(t)

kw(t)k
.

Theorem 5 (General Hoeffding’s Inequality). Let ✓1, . . . , ✓m be independent mean-zero sub-

Gaussian random variables and a = (a1, . . . , am) 2 Rm
. Then, for every t > 0, we have
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where K = maxi ||✓i|| 2
and c is an absolute constant.

In our case, since we deal with Gaussian random variables, ||✓|| 2
(sub-Gaussian norm) is same as the

variance of the random variable. That is, ✓ ⇠ N (0,�2) =) ||✓|| 2
= K = �.

Theorem 6 (Bernstein Inequality). For independent mean-zero sub-exponential random variables

✓1, . . . , ✓m, for every t > 0, we have
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where c1 is an absolute constant.

In our case, let xi ⇠ N (0,�2) be independent Gaussian random variables, then for Z =
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Lemma 3 (Gaussian Product). Let z1 ⇠ N (0,�2
1Id), z2 ⇠ N (0,�2

2Id) be independent multivariate

Gaussian random variables. Then,
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Proof. The proof of this lemma is a simplified version of the proof for Lemma 20 in Chatterji and
Long [9]. First, consider z2 to be fixed, and only z1 to be random. Then from Theorem 5 we have
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Also, adapting Theorem 6 such that Z =
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Coming back to the initial problem and again considering both z1, z2 to be random variables, we have
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Corollary 1 (Chatterji and Long [9], Lemma 20). There is a c � 1 such that, for all large enough C,

with probability at least 1� �/6, for all i 6= j 2 [n],
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2
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d log(n/�)
⌘
.

Lemma 4 (Gaussian Square). There is a c � 1 such that, for all large enough C, with probability at

least 1� �/6, for all k 2 [n],
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Proof. Recall that xk = µk + zk, where zk ⇠ N (0,�2Id). Then,
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Recall that d � C log(n/�). We can set � = 1/2 so that, ||z2||
2
2 > d�

2
/2 with probability at least

1� �/6n (for large enough C). Taking a union bound over all examples gives us the desired result.

Note that we can get closer to d�
2 by chosing an appropriately higher value of C.

Lemma 5 (Dataset Separability). With probability at least 1� � over random samples of dataset SA,

samples (x1,y1), . . . , (xn,yn) are linearly separable.

Proof. We will show that there exists a set of weights that with high probability correctly classify
each example in the dataset. Let xi = µi + zi for every data point in S. From assumptions, our
dataset (SA) contains zr, zm that belong to rare and mislabeled groups. Rest all points are denoted
by zk. Consider the classifier w =

Pn
i yixi. Then,

Case 1: Rare Example (xr,yr)
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d�2 log(n/�) (using Lemma 4 and Corollary 1)
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for d � Cn
2 log(n/�).
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Case 2: Mislabeled Example (xm,ym) Without loss of generality, assume that the mislabeled
example is sampled from the distribution D1, and the set of all correctly labeled examples in the
dataset SA from this distribution be SA,1.

ymw · xm =
X

j

yjymxj · xm,

= xm · xm +
X

i 6=j

ymyjxm · xj ,
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j2SA,1

µm · µm +
X

m 6=j

ymyjzm · zj ,

(since µm · µ1 = 1,µm · µ2 = 0,µm · µr = 0)
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2
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(if n1 = |SA,1|, using Lemma 4 and Corollary 1)
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2
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2
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2
p
d log(n/�),

> 0

for d � Cmax{n2 log(n/�), nkµ2
/�

2
}.

Case 3: Majority Example (xi,yi) The case of majority examples directly follows from the case
of mislabeled examples. Rather than having a negative summation over the mean vector for n examples
(in line 3), we will have a positive summation because the true label will match the label of the rest of
the examples in the subset SA,1. This will make the expected value of the dot product even larger.

Remark: Since the first split dataset SA is separable, it directly follows that the second split dataset
SB is also separable since it does not have any mislabeled and rare examples.

A.7 Lemmas for Theorem 4

Lemma 6 (Sign of �). �j � 0 for all j in Equation 25.

Proof. Analyzing the steps of gradient descent, we have:

ẇ(t) = �rL(w(t))

=
X

j2SB

exp (�yjx
>
j w(t))(yjx

>
j )

w(t)�w(0) =
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BBB@
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>
j )

Z t

0
exp (�yjx

>
j w(t))dt

| {z }
�j(t)

1

CCCA
,

(41)

Hence, �j � 0 8 j.

Lemma 7 (Support Vectors). If dataset SA is separable, then (xm,ym) and (xr,yr) are support

vectors for SA.

Proof. We will prove by contradiction. From our assumption, (xm,ym) and (xr,yr) are the only
mislabeled and rare examples in the first-split SA from their respective sub-groups. Let us assume
that they are not support vectors. Then, we can directly follow from the Asymptotic Analysis in
Subsection A.4 that the probability of correct classification of the rare example is 0.5 and for the
mislabeled example approaches 0 as the model is trained for infinite time. But we know that the model
achieves 100% accuracy on the training set SA with weights wA(T ). Hence, this is a contradiction,
and (xm,ym), (xr,yr) must be support vectors for the original classification problem.
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Learnt Late, Forgotten EarlyLearnt Early, Forgotten Early

Figure 6: Examples from the CIFAR-10 dataset grouped based on their learning and forgetting time.

Lemma 8 (Bounded Time Prediction). With probability at least 1� �, there exists a bounded time T’

= O(T) when the mislabeled examples are incorrectly classified with high probability.

Proof. In Subsection A.4 we have shown that at infinite time training, the model misclassifies
mislabeled examples with high probability. Then, the existence of bounded time weights for which
the prediction of mislabeled examples is flipped directly follows from the proof of Proposition 1
applied to the result of Theorem 3.

B Experimental Results

B.1 Experimental Setup

Architectures We perform experiments using four different model architectures—LeNet, ResNet-
9 [4], ResNet-50, and Bert-base-cased [14]. Comparisons with model architectures are used in
analysis of stability of the SSFT metric. For other numbers reported in tables and plots, we use the
ResNet-9 model, unless otherwise stated.

Optimizer We experiment with three different learning rate scheduling strategies—cyclic learning
rate schedule, cosine learning rate, and step decay learning rate. We test for two values of peak
learning rate—0.1 and 0.01. All the model are trained using the SGD optimizer with weight decay
5e-4 and momentum 0.9, apart from the comparison with optimizers in Appendix C.1 where we also
experiment with the Adam optimizer.

Training Procedure We train for a maximum of 100 epochs or until we have 5 epochs of 100%
training accuracy. We first train on SA, and then using the pre-initialized weights from stage 1, train
on SB with the same learning parameters. All experiments can be performed on a single RTX2080 Ti.

B.2 Image Datasets

In the main paper we present visualizations of training examples from the MNIST dataset based
on which quadrant they lie on in the learning-forgetting graph. Here, we complement our findings
by showing visualizations for the CIFAR-10 dataset. We note that CIFAR-10 dataset provide many
different types of visibility patterns within the same class. Hence, examples may be learnt late due to
belonging to a rare visibility pattern. In Figure 6, we see that the examples that were learnt earliest and
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never forgotten have similar visibility patterns—for instance all the trucks have a similar perspective.
On the contrary, as we move to the first quadrant with examples that were learnt late but never
forgotten, we see that all the examples are true to their semantic class, but these visibility patterns
occur rarely. Finally, we also analyze the visualizations based on examples that were forgotten during
the course of second-split training. While in the case of MNIST dataset, SSFT was able to remove the
mislabeled examples well, we see that CIFAR-10 offers more challenges because examples may be
ambiguous because of other reasons and may be forgotten owing to the model using spurious features.

C Ablation Studies

We detail the experimental setup used to conduct our ablation studies directed towards understanding
the learning and forgetting dynamics of rare and complex examples respectively.

Rare Examples The experiments to show the rate of learning for rare examples are inspired by the
singleton hypothesis as proposed by Feldman [15]. The hypothesis was inspired by a long-tailed
distribution of visibility patterns in the person and bus category of the PASCAL dataset. For example,
the dataset contains many buses with the front visible, but very few buses that were captured from the
rear or the side, and even fewer buses whose view is occluded by the presence of other objects infront
of them. (Refer to Figure 1 in their work for more details.) In our work, we first attempted to leverage
the same training set-up with the provided visibility patters. However, we noted that there wasn’t
a strong correlation between the frequency of an example’s visibility pattern, and the rate at which
it was learnt. We hypothesize that this is because there are other factors of example hardness that
may make an example be learnt slowly or fast (such as complexity, as detailed in the next paragraph).
This can lead to an example being learnt fast if it has a simple pattern yet occurs rarely. Especially
when there are only O(1) samples from a given sub-group (based on the visibility pattern), we can
not make any claims based on singleton correlation alone.

Hence, in order to distill the frequency of occurrence of an example with other confounders that may
influence its training-time, we created a long-tailed dataset from the CIFAR-100 dataset. CIFAR-100
is a dataset of 100 object classes, which can be further grouped into 20 super-classes. For instance,
examples from categories maple, oak, palm, pine, willow all belong to the ‘superclass’ of trees.
Similar division of 5 sub-classes is provided in the datasets for each of the superclasses. Each class
contains 500 training examples and the overall dataset has 50,000 training examples.

As a first step towards creating a long-tailed dataset, we assign a fixed frequency ordering within
the subgroups of a superclass. The most frequent subgroup has 500 examples in the training set, for
the next most frequent subgroup, we randomly select 250 examples from the training set, and so on
until the last sub group with 31 examples in the training set. This means that there are exactly 20
sub-groups in the final dataset with {500,250,125,62,31} examples respectively. Irrespective of the
class number, the task is to predict the corresponding superclass, that is, we reduce the problem to a
20-class classification problem. However, we track the learning and forgetting dynamics of examples
from each of the 100 sub-groups separately, based on their group frequency. To remove any other
confounders of example hardness, we (i) randomize the group frequency ordering of the sub-groups
within a superclass (in case some classes are harder to learn than the others); and (ii) randomize the
examples that were selected based on the group size (in case some examples were ambiguous or hard).
We further split the dataset into two IID partitions to analyze the learning time and SSFT, and average
the results over 20 random runs of the experiment. Experimental results are detailed in the main paper.

Complex Examples Prior works advocating for, and understanding the simplicity bias [43] have
operationalized the notion of simplicity via the complexity of hypothesis class required to learn the
distribution that a complex example may be sampled from. In particular, Shah et al. [43] construct a
synthetic dataset with MNIST and CIFAR-10 images vertically stacked on top of each other—with
the part with MNIST images corresponding to the part of the combined image with simpler features,
and the part with CIFAR-10 images corresponding to the part with complex features. They show
that the model almost completely relies on the part of the image containing the MNIST digit even
when it is less predictive of the true label. Inspired by this argument about the simplicity of features,
we create a dataset that has the the union of images from the MNIST and the CIFAR-10 dataset.
More specifically, we select classes from the MNIST dataset corresponding to digits {0, 1, 2, 3}, and
classes from the CIFAR-10 dataset corresponding to {horses, airplanes, dog, frog} and label them
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Figure 7: FSLT (First-split learning time) is able to provide some degree of separation between
mislabeled and clean samples when trained with the SGD optimizer (left), but fails when the model
is trained using Adam (right) on the CIFAR-10 dataset.

from {0, 1, 2, 3}. This means that the model associates the label 0 to both the digit 0 and airplane
class. The attempt of this experiment is to draw the link between the simplicity bias and the rate of
learning. Experimental results are provided in the main paper.

C.1 Stability of our metric

Stability across architectures The forgetting of examples is a property of both the dataset and the
model architecture. As a result, we find that just like the learning time, the forgetting time has a
lower correlation between architectures. The average pearson correlation between the ResNet-9 and
ResNet-50 models is 0.62 in case of the CIFAR10 dataset. However, we note that the most forgotten
examples generalize across datasets. That is, the average pearson correlation between the bottom
10% examples of the dataset is 0.87. This highlights how the forgetting metric is good for finding
misaligned examples in the dataset, since they are not a property of the model architecture. We suspect
that among the examples that are infrequently forgotten, the model campacity and other inductive
biases of the model architecture may have a role in driving the average pearson correlation low.

Stability across optimizers Jiang et al. [25] showed that changing the learning optimizer from
SGD to Adam can lead to a significant change in the learning rate of examples from different levels
of hardness (based on their regularity metric). More specifically, they find that examples with a low
consistency score (closely correlated with learning speed) also get learnt fast when using the Adam
optimizer. This suggests that using an optimizer like Adam at training time may have an impact on
the ability of learning time based metrics to separate examples. In Figure 7, we contrast the ability of
forgetting and learning time based metrics for identifying label noise when using the SGD and Adam
optimizers. When using an optimizer such as SGD, the mislabeled samples are learnt slower than a
large fraction of the training examples, and the learning time metric offers some degree of separation
between the clean and mislabeled examples. However, when we use the Adam optimizer, it results
in joint learning of a large fraction of both mislabeled and clean samples. Hence, offering a very
low degree of separation. However, under the same training procedure, the SSFT still allows us to
distinguish between the mislabeled and clean samples.

Stability across seeds and learning rates The pearson correlation for stability across seeds for
the forgetting time metric is 0.83. This is higher than the corresponding learning time based metric
(correlation 0.56). However, one of the drawbacks of our proposed metric is that the SSFT requires
the use of an appropriate learning rate that allows the examples to be forgotten slowly. We provide
more information about the same in the main paper.

Stability Across Learning Rate Schedules We experiment with three different learning rate
schedules for the second-split training—triangular, cosine and linear. In triangular learning rate, we
increase the learning rate from 0 to the maximum set value linearly over the first 10 epochs, and
then decay it back to 0 until we reach the last epoch (maximum of 100 epochs). In case of the linear
schedule, we increase the learning rate from 0 to the maximum set value linearly over the course of
100 epochs. The intuition behind using a linear learning rate schedule was to be able to set higher
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(a) Triangular Learning Schedule (b) Cosine Learning Schedule

(c) Linear Learning Schedule

Figure 8: We present a heatmap for the AUC of detection of mislabeled examples using the SSFT
metric under various learning rates, architecture sizes and learning rate schedules for the SGD
optimizer. The experiment was performed on the CIFAR-10 dataset with 10% label noise, and the
forgetting times were averaged over 5 seeds before using them for AUC calculation.

peak learning rates so that the model eventually forget all the examples in the first split and we can
create a better ordering between samples based on forgetting time (as opposed to the setting where
only a small fraction of examples are ever forgotten).

The results of the combined analysis across hyperparameters such as architecture, learning rate and
learning rate schedule are presented in the heatmap of AUC of mislabeled example detection in
Figure 8. The experiment was performed on the CIFAR-10 dataset with 10% label noise, and the
forgetting times were averaged over 5 seeds before using them for AUC calculation. We can see that
uniformly across architectures and learning rate schedules having a very low learning rate makes
nearly all examples indistinguishable based on forgetting time. This is because all the models are
sufficiently overparametrized to memorize all the examples in the dataset. Hence, when using a very
small learning rate the optimization step moves the model weights insignificantly and we do not
forget many mislabeled samples from the first split. On the other side, having a large learning rate
helps achieve a strong separation between mislabeled and clean examples which also shows up in the
form of high AUC values in the figure.

C.2 Impact of Sampling Frequency of Mislabeled Examples

In the synthetic experiment performed in Section 4.2, we assumed that mislabeled examples occur
from the majority subgroups. As a result, we observed that they get forgotten quickly during second-
split training. However, in this section we aim to understand the impact of sampling frequency on the
forgetting time of mislabeled examples. More specifically, we now assume that mislabeled samples
occur in rare subgroups in the synthetic setup. We find that the learning curves of the mislabeled
example stays the same as before, but the forgetting time for mislabeled examples closely approaches
that of rare examples. This is because there is very little signal for the model to learn the opposite class
during second split training since the example occurs only O(1) times. The learning and forgetting
curves pertaining to the same experiment are presented in Figure 9. In contrast with the forgetting

28



��� ���
���

���

��


���

��

���

��
�(

%�
�*

��%&'�&$ �'��%��"�"�

��& ��� ��
��%�
�#!$ �)
�*$��� 

��� ��	 ���
���

���

��


���

��

���
���#"��&$ �'��%��"�"�

�(!��%�#���%��"�"���$#��&

Figure 9: Learning and forgetting curves for mislabeled and rare examples when the mislabeled
examples are drawn from rare subgroups in the synthetic setup described in Section 4.2.

curve in Section 4.2 where the mislabeled examples are quickly forgotten and their prediction is
flipped, we find that when the subgroup corresponding to the mislabeled examples is infrequent, their
forgetting time closely corresponds to that of rare examples; and on aggregate their predictions do
not get flipped in the epochs that the model was trained for.

C.3 Mislabeled Example Detection

In this section we provide additional details about the experimental setting for the results presented in
Table 2. In case of the CIFAR-100 dataset, we reduce the learning rate for second-split training by a
factor of 10, and use batch size of 128. While all the other training procedures in this paper used a
cyclic learning rate, for the case of CIFAR-100, we use warm-up based multi-step decay learning
rate schedule.2 The model used for training was ResNet-18, and 10% label noise was added. The
training setting for EMNIST is identical to that of the MNIST dataset. We use the first 10 classes of
the dataset to make it a 10-class classification problem.

2We follow the code in https://github.com/weiaicunzai/pytorch-cifar100
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