
A Additional properties of the Yeo-Johnson transformation

A.1 Derivation of the Yeo-Johnson log-likelihood

Using the change of variables rule, the probability to draw a set of points {xi} such that { (�, xi)}
follows a Gaussian distribution of mean µ and variance �2 is given by:

P({xi}|�, µ,�) = P({ �(�, xi)}|�, µ,�) ⇤ det J [{xi}, (�, xi)] (5)

where det J [xi, (�, xi)] is the determinant of the Jacobian matrix J [{xi}, { (�, xi)}] defined as:

J [{xi}, { (�, xi)}]ab =
@ (�, xa)

@xb

This matrix is diagonal and each term of its diagonal can be computed using Eq. (1). For each value
of � and xi, these diagonal terms can be re-written as exp[(�� 1) sgn(xi) log(|xi|+ 1)]. The term
P({ �(�, xi)}|�, µ,�) is equal to:

P({ �(�, xi)}|�, µ,�) =
Y

i

1

�
p
2⇡

exp


� (xi � µ)2

2�2

�

By taking the logarithm of Eq. (5), we obtain the log-likelihood provided in Section 1 and originally
derived on [52].

A.2 Relationship with the Box-Cox transformation

The Box-Cox transformation [5] works similarly to the YJ transformation, but only applies to strictly
positive data. The Box-Cox transformation is based on a function �(�, ·) parametrized by � and
defined for x > 0 as:

�(�, x) =

(
x��1

� , if � 6= 0,
ln(x), if � = 0.

It is straightforward to check that for any � 2 R the YJ transformation  and the Box-Cox transfor-
mation � are related by the following equations:

 (�, x) =

⇢
�(�, x+ 1) if x � 0,
��(2� �, 1� x) if x < 0.

A.3 Analytical formulae for the derivatives of the Yeo-Johnson transformation

The YJ function is infinitely differentiable with respect to both of its variables (x and �). Here are its
successive derivatives with respect to �:

@k
� (�, x) =

8
>><

>>:

[(x+ 1)�[ln(x+ 1)]k � k@k�1
�  (�, x)]/�, if x � 0,� 6= 0,

ln(x+ 1)k+1/(k + 1), ifx � 0,� = 0,
([�x+ 1]2��[ln(�x+ 1)]k + k@k�1

�  (�, x))/(2� �), if x < 0,� 6= 2,
(� ln(�x+ 1))k+1/(k + 1), ifx < 0,� = 2.

B Background on exponential search

Exponential search [3] is a method to look for an element in an unbounded sorted array. The idea
is to first find bounds on the array such that the element is contained within such bounds, and then
perform a classic binary search inside these bounds. Let us consider the task of finding the smallest
element ui0 greater than a threshold C in an unbounded sorted array {ui}i2N⇤ . The exponential
search iteratively looks at ui for i 2 {1, 2, 22, 24, . . . } until it finds a imax such that uimax � C. This
takes log2(imax) steps. Then it performs a binary search between i = imax/2 and i = imax, which
also takes log2(imax/2) steps.

15



If f(s) is a strictly increasing function of s taking both positive and negative values, one can adapt
the exponential search to find the root s0 of f . The first step is to find an upper and a lower
bound of s0 by evaluating f at different points using an exponential grid (e.g. evaluating f in s =
1,�1, 2,�2, 22,�22, 24,�24, . . . ). Once such bounds are found, one can perform a dichotomic
search inside these bounds to find the root s0 of f . This dichotomic search has a linear convergence
of order 2, with each step summarized in Algorithm 2. It is important to note that this algorithm is
correct even if f is not increasing, as long as f(s) < 0 when s < s0 and f(s) > 0 when s > s0, as
is the case in this work when f is the derivative of the negative YJ log-likelihood.

Figure 6 is an illustration of EXPYJ that is based on exponential search.

Figure 6: An example of EXPYJ applied to the largest perimeter of the cells in each sample of the
Breast Cancer dataset. Left: histogram of the pooled dataset before (top) and after (bottom) applying
a YJ transformation with fitted parameters. Right: negative log-likelihood of the YJ transformation as
a function of �. The points �t correspond to the values taken by EXPYJ during exponential search.

A natural extension of the exponential search is to replace the binary search into a k-ary search
during the dichotomic search. In that case, k � 1 values of f are computed at each round. Such a
modification reduces the number of steps required for a given accuracy while increasing the number
of operations performed at each step.

C Proof of Proposition 3.1

We first introduce some lemmas that will be required for the main proof.
Lemma C.1. Let � 7! fi(�), i = 1, . . . , I be positive and twice differentiable functions, such that
for all i, � 7! ln[fi(�)] is convex. Then � 7! ln[

P
i fi(�)] is also convex.

Proof. The proof of Lemma C.1 is based on the following lemma:

Lemma C.2. Let {ai}i=1...I , {bi}i=1...I , (ci)i=1...I be real numbers, such that for all 1  i  I:
ai � 0, bi � 0 and aibi � c2i . Then

 
IX

i=1

ai

! 
IX

i=1

bi

!
�
 

IX

i=1

ci

!2

.

Indeed, it holds,
 

IX

i=1

ai

! 
IX

i=1

bi

!
�
 

IX

i=1

ci

!2

=

 
IX

i=1

aibi � c2i

!
+

0

@
IX

i=1

X

i<jI

aibj + ajbi � 2cicj

1

A .

The first sum contains only non-negative terms as 8i, aibi � c2i . Recalling that ai � 0 and bi � 0, the
second sum also contains non-negative terms as aibj+ajbi�2cicj � aibj+ajbi�2

p
aibi

p
ajbj =

(
p
aibj �

p
ajbi)2 � 0

16



Now let us prove Lemma C.1. The convexity and twice differentiability of ln[fi(�)] implies
that @2

� ln[fi(�)] � 0 and therefore that

fi@
2
�fi � (@�fi)

2 � 0. (6)

As fi > 0, we can conclude from Eq. 6 that @2
�fi � 0. Using Lemma C.2 and the linearity of the

derivative, we have:
 
X

i

fi

!
@2
�

 
X

i

fi

!
�
 
@�
X

i

fi

!2

� 0.

which means that @2
� ln(

P
i fi) � 0.

Lemma C.3. Let {↵i}i=1,...,n↵ and {�i}i=1,...n� be two non-empty sets of real numbers, and let us
denote {�i}i = {↵1, . . . ,↵n↵ ,�1, . . . ,�n�} and n� = n↵ +n� . Let ↵̄ = 1

n↵

P
i ↵i, �̄ = 1

n�

P
i �i,

�̄ = 1
n�

P
i �i and �2

↵ = 1
n↵

P
i(↵i � ↵̄)2, �2

� = 1
n�

P
i(�i � �̄)2, �2

� = 1
n�

P
i(�i � �̄)2. Then:

�2
� =

n↵

n�
�2
↵ +

n�

n�
�2
� +

n↵n�

n2
�

(↵̄� �̄)2.

Proof. This identity is easily obtained using the definitions of �2
↵,�

2
� and �2

� .

C.1 Proof of Proposition 3.1

Proof. We start by proving the only shows the convexity of � logLYJ(�), and prove strict convexity
in Appendix C.4.

Let {xi}i=1···n be our data points and let us split this dataset into non-negative values {x+
i } =

{xi|xi � 0} and negative values {x�
i } = {xi|xi < 0}. Let �i =  (�, xi), ↵i =  (�, x+

i ),
and �i =  (�, x�

i ). We denote n↵, n� , n� the lengths of the sets {↵i}, {�i} and {�i}. For
clarity, let us consider the case where both {x+

i } and {x�
i } have at least two distinct items and

therefore n↵ � 1, n� � 1 and �2
↵ > 0, �2

� > 0. We relegate to Appendix C.3 the other edge cases.
According to Lemma C.3, the expression of negative log-likelihood of the YJ transformation provided
in Eq. (2) can be reformulated as:

� logLYJ(�) =
n

2
log(2⇡)� (�� 1)

nX

i=1

sign(xi) log(|xi|+ 1)

+ ln

✓
n↵

n�
�2
↵ +

n�

n�
�2
� +

n↵n�

n2
�

(↵̄� �̄)2
◆
. (7)

The first term is constant and the second one is linear in � so we only have to prove the convexity of
the last term to prove that the full negative log-likelihood is convex. Using Lemma C.1, we only need
to show that � 7! ln

⇣
n↵
n�

�2
↵

⌘
, � 7! ln

⇣
n�

n�
�2
�

⌘
and � 7! ln

⇣
n↵n�

n2
�

(↵̄� �̄)2
⌘

are convex. We can

get rid of the constant factor and show that � 7! ln
�
�2
↵

�
, � 7! ln

⇣
�2
�

⌘
and � 7! ln

�
(↵̄� �̄)2

�
are

convex.

The key idea of the proof is to use the fact that, according to [26], for any set of positive real
numbers {ai}, � 7! ln�[�(�, {ai}] is convex, where �(�, ·) denotes the Box-Cox transformation.
Besides we have (see Appendix A.2):

↵i =  (�, x
+
i ) = �(�, x

+
i + 1), (8)

�i =  (�, x
�
i ) = ��(2� �, 1� x�

i ). (9)

Therefore ln�[↵i] = ln�[�(�, (x+
i + 1)] which is a convex function of �. Similarly, �[{��(2 �

�, 1� x�
i )}]2 = �[{�(2� �, 1� x�

i )}]2. The function � 7! �[{�(2� �, 1� x�
i )}]2 is convex as

the composition of the linear function � 7! 2� � with the convex function � 7! �[{�(�, 1� x�
i )}]2.

17



Let us finally prove the convexity of � 7! ln
⇥
(↵̄� �̄)2

⇤
. We recall that ↵̄ > 0 and �̄ < 0

and that ln
⇥
(↵̄� �̄)2

⇤
= 2 ln

⇥
↵̄� �̄

⇤
. Using Lemma C.1, we only need to prove that � 7! ln (↵̄)

and � 7! ln
�
��̄
�

are convex. As ↵̄ and �̄ are defined as sums, still using Lemma C.1, we only need to
prove that � 7! ln

�
 (�, x+

i )
�

and � 7! ln
�
� (�, x�

i )
�

are convex for any i. Using, Eqs. (8) and (9),
it is sufficient to prove that for any real number a � 1, the function � 7! ln[�(�, (a)] = ln[(a��1)/�]
is convex, which is proved in Appendix C.2.

C.2 Proof that � 7! ln[�(�, (a)] is convex

Let a � 1 u(�) = (a� � 1)/� and g(�) = lnu(�). For � 6= 0, the second derivative of g is positive
if and only if D def

= �4(uu00 � (u0)2) � 0.

We have
D(a,�) = a2� � a��2 log(a)2 � 2a� + 1.

Let us show that D � 0 when � 6= 0. D(a = 1,�) = 0, so we just need to show that @aD(a,�) > 0
when a > 0. As

@aD(a,�) = a(��1)�(2a� � �2 log(a)2 � 2� log(a)� 2),

let us define T (a,�) as:

T (a,�) = (2a� � �2 log(a)2 � 2� log(a)� 2).

We just need to show that T (a,�) > 0 when � > 0 and T (a,�) < 0 when � < 0. As T (a, 0) = 0,
we just need to show that @�T (a,�) > 0 when � 6= 0.

@�T (a,�) = 2(a� � � log(a)� 1) log(a).

As a > 1, log(a) > 0, so we just need to show that (a� � � log(a)� 1) > 0 which can be done by
replacing x by � log(a) in the following inequality: exp(x) > x+ 1 for x > 0.

To conclude, when � 6= 0 and a � 1, D(�, a) � 0, and if a > 1 then D(�, a) > 0. Therefore, the
second derivative of g is positive for any � � 0. Using continuity, we can conclude that the second
derivative of g is positive for any � and that � 7! ln[�(�, (a)] is convex.

Note that if a > 1, then D > 0 and we can conclude that � 7! ln[�(�, (a)] is strictly convex.

C.3 Edge cases not covered by the main proof of Proposition 3.1

In the main proof we assume that n↵ � 2, n� � 2 and that �2
↵ > 0, �2

� > 0. Said otherwise, we
assume that both {x+

i } and {x�
i } have at least two distinct elements. The proof is almost unchanged

if this is not the case, as we can discard any term inside the logarithm of Eq. 7. For example, let’s
assume that n↵ = 1. Therefore �2

↵ = 0. We can then rewrite Eq. 7 as:

� logLYJ =
n

2
log(2⇡)� (�� 1)

nX

i=1

sign(xi) log(|xi|+ 1)

+ ln

✓
n�

n�
�2
� +

n↵n�

n2
�

(↵̄� �̄)2
◆
.

We only need to show that � 7! ln
⇣

n�

n�
�2
�

⌘
and � 7! ln

⇣
n↵n�

n2
�

(↵̄� �̄)2
⌘

are convex as in the main
proof.

Any other edge case can be treated similarly, and the proof holds as soon as {xi} has at least two
distinct elements.

C.4 Strict convexity of the Yeo-Johnson negative log-likelihood.

To prove the strict convexity of the YJ negative log-likelihood, let us notice that under the hypotheses
of Lemma C.1, if at least one function � 7! ln(fi) is strictly convex, then � 7! ln[

P
i fi(�)] is

18



strictly convex. Besides, according to [26], for any set of positive real {ai} with at least two distinct
elements, � 7! ln�[�(�, (ai)] is strictly convex. Therefore, in the case where either {x+

i } or {x�
i }

has two distinct elements, we can conclude that the YJ negative log-likelihood is strictly convex.

The only problematic case is when both �2
↵ = 0 and �2

� = 0. In that case {xi} has only two distinct
element: one positive or null and one strictly negative. In that case, � 7! �[{�(�, 1 � x�

i )}]2 is
strictly convex as � 7! ln[�(�, (a)] = ln[(a� � 1)/�] is strictly convex for a > 1.

D Secure Multi-Party Computation

D.1 Shamir Secret Sharing

Secure Multiparty Computation (SMC) consists in evaluating functions without disclosing their
inputs. One way to achieve this result is to use secret sharing. The main idea is that a value h is split
into different secret shares hk, k = 1, · · · ,K where K is the number of clients. Each client k only
knows the value of the secret share hk, and one needs at least p shares with 1 < p  K to recover
the initial value h. The set of the secret shares hk of h is denoted JhK. Schematically, SMC consists
in three main steps: (i) secret sharing, where each client splits its input into secret shares and sends
them to the other clients (ii) computation, where the clients perform mathematical computations on
the secret shares and obtain secret shares of the output and (iii) reveal steps, where the clients send
each other the secret shares of the output in order to reconstruct and reveal the output.

In the Shamir Secret Sharing method [44], the secret shares of h correspond to the values of a given
polynomial Ph(x) of order K at different points xk where Ph(0) = h. The values xk are arbitrarly
chosen by the protocol with the constraint that all xk should be distinct. If all the clients disclose
their secret share hk = Ph(xk), then the secret h can be recovered by polynomial interpolation. In
this framework the addition can be done trivially. If JhK = {hk}k=1,···K and JgK = {gk}k=1,···K
are the shares of g, then Jg + hK = {gk + hk}k=1,···K are shares of g + h. Said otherwise,
Jg + hK = JgK + JhK. Therefore adding two shared secrets requires no communication between the
clients. Similarly, multiplying a shared secret by a public constant c is done without communication
as JcgK = cJgK. However, multiplying two shared secrets, i.e. computing shares of JghK is more
involved and requires one round of communication. More precisely, each client has to send one scalar
quantity to all the other clients during this process, as explained for example in [37], section 3.

D.2 Fixed-Point Representation

The secret shares in SMC belong to a finite set Zp where p is a prime number and all the operations
are integer operations done modulo p. In practice we consider integers encoded using l bits, then
we choose the smallest prime number p such that 2l < p and we perform each operation modulo p.
Therefore any value has to be encoded as an integer using a finite number of bits. To encode negative
integers, we consider that encoded integers between 0 and 2l�1 � 1 are positive and encoded integers
between 2l�1 and 2l � 1 are negative. We have to choose a value of l large enough such that the
highest absolute value considered is below 2l�1. Real-value numbers are encoded using fixed-point
precision, as described in [8], where the f least significant bits of the encoding correspond to the
decimal part, and the l � f most significant bits correspond to the integer part. The addition of two
fixed-point numbers in SMC can be done as described in Appendix D.1. However, multiplying two
fixed-point representation numbers in SMC is more complex as the result must be divided by 2f , i.e.
the 2f least significant bits are discarded. As explained in detail in [8], multiplying two fixed-point
numbers requires two rounds of communication (instead of one round of communication for the
multiplication of two integers).

D.3 Comparison in SMC

In SECUREFEDYJ , we need to compute in SMC the sign of an expression, which is equivalent
to making a comparison with 0. As we are using fixed-point representation encoding, computing
the sign amounts to computing the most significant bit of the binary decomposition of a given
shared secret. In order to do so, we use the method described in [38], which works for any SMC
framework supporting addition and multiplication. This method requires 10 rounds of communication
among the clients (6 of which can be done offline, i.e. they correspond to random values exchanged

19



10/05/2022 17:14 PUpVHQWaWLRQ VaQV WLWUH - GRRJOH¬SOLGHV

KWWSV://GRFV.JRRJOH.FRP/SUHVHQWaWLRQ/G/1F5BFW8CMHK2KM]LL\G-AFFaOTELC4V8JEUJ1JWVOJ98/HGLW#VOLGH=LG.J1274125999G_0_0 1/1

Plémenoaoion manm oiole
Fichier ÁdiXion Affichage InWerXion FormaX DiapoWiXiZe RÛorganiWer OYXilW ModYleW complÛmenXaireW Aide DerniÚre modi¡caXion il ] a 7 minYXeW

ArriÚre-plan MiWe en page ThÚme TranWiXion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1
2

3
4

5
6

7
8

9
10

11
12

13
14

�

�

�

� � �

…

Δ�

Δ�
Δ�

Δ�

…

ĶΔ Ė ķ���žőClie�� K

SECURE
COMPUTATION

ĶΔ Ė ķ���žőClie�� Œ

ĶΔ Ė ķ���žőClie�� ő

CliqXe] poXr ajoXter les commentaires dX prpsentateXr

Plémenoaoion manm oiole
ö

Diaiolama
ö

ö Paloagel

Figure 7: Simplified view of one round of SECUREFEDYJ. 1�: All clients compute local, data-
dependent quantities. 2�: �t is computed using SMC. Data-dependent quantities computed by each
client are not disclosed during the process. 3�: �t is disclosed to all the clients, a new value �t+1 is
computed using an exponential update.

beforehand and can be done regardless of the value of the input). During these 10 rounds of
communication, 153l+423 log l+24 multiplications are performed, 135l+423 log l+16 of which
can also be done offline. Notice that other SMC primitives could be used, such as the one described
in [17] which provides more efficient way to do SMC comparison.

D.4 MPyC

To implement SECUREFEDYJ we used the python library MPyC [42]. MPyC is based built upon
VIFF framework [11] and is based on Shamir Secret Sharing [44]. We refer to [30] for a discussion
of the performance of this library for various SMC tasks.

D.5 Further details on Algorithm 3

The pseudo-code provided in Algorithm 3, is a schematic overview of SECUREFEDYJand relies on
the SMC routines described above. For example, the following line of the pseudo-code:

JS'K =
X

k

JSk,'K

implies that: (i) each client k computes Sk,', divide it into secrets and send these share secrets to all
the other clients; (ii) Using the SMC routines described in Appendices D.1, D.2 and D.4, the clients
compute together the share secrets of JS'K where S' =

P
k Sk,'. After this step in Algorithm 3, the

value of S' is therefore shared using share secrets across all the clients. Notice that the server only
plays an orchestration roles in this process.

D.6 Complexity of SECUREFEDYJ

At each step of the exponential search, we share 6 secrets (the values of Sg), perform 10 fixed-point
multiplications (including multiplying and dividing by n), and one comparison (i.e. computing the
sign of @�LYJ.

The 6 secrets can be shared in parallel in one round of communication. Some of the multiplications
can also be done in parallel, and only 3 successive rounds of multiplications have to be performed,
which require 6 rounds of communications. As stated in Appendix D.3, the comparison requires 10
rounds of communications. Revealing the secret� also requires one round of communication. Notice
that the additions do not require any round of communication. This amounts to 18 communications per
exponential search step. Besides, computing JS�K at the beginning of the algorithm and computing
and revealing µ⇤ and �2

⇤ at the end of the algorithm requires 6 more rounds of communication.
Overall, performing 40 steps of exponential search with SECUREFEDYJ costs 18⇥ 40 + 6 = 726
rounds of communications.

For each elementary operation, such as sharing a secret, revealing a secret or making a multiplication,
the order of magnitude of the size of the message sent by each client to the other clients is dlog2(p)e

20



bits. Notice that log2(p) is of the same order of magnitude of l as p is the smallest prime number
above 2l. More precisely, each client sends around l bits to each of the other clients for these
elementary operations. The overall size of the messages exchanged during the 726 rounds of
communications mentioned above is mainly dominated by the 153l + 423 log l + 24 multiplications
done at each of the 40 comparisons. Taking l = 100, we find that each client sends overall
around 6.5 107 bits (or ⇠ 8 Mega-bytes) to each of the other clients during SECUREFEDYJ.

E Details of the numerical experiments

E.1 Datasets used in this work

Datasets exposed by scikit-learn API used in Figure 2 and Figure 3 For numerical experiments,
we use four public datasets available in the UC Irvine Machine Learning repository [15] under a
Creative Commons Attribution 4.0 International (CC BY 4.0) license and exposed by the scikit-learn
datasets API. These datasets are the Iris dataset [18] (150 samples, 4 features), the Wine Data Set
(178 samples, 13 features), the Optical Recognition of Handwritten Digits Data Set (1797 samples,
64 features) and the Breast Cancer Wisconsin (Diagnostic) Data Set (569 samples, 30 features). Only
keeping features that have at least two distinct values, these datasets provide a total of 108 different
features.

Extra UC Irvine Machine Learning repositories used to test Brent minimization method We
used 19 extra datasets in Appendix E.4, in order to test the instabilities of the Brent minization method
applied to the YJ transformation. All these datasets are present in [15] under a Creative Commons
Attribution 4.0 International (CC BY 4.0).

Genomic data used in Figure 4 For genetic experiments, we rely on RNA-seq expression data
from The Cancer Genome Atlas, expressed in Fragments per Kilobase Million (FPKM). We focus on
3 cancers: colorectal cancer (COAD), lung cancer (LUAD + LUSC), and pancreatic adenocarcinoma
(PAAD). These datasets are available on https://portal.gdc.cancer.gov/ under Open Access.

E.2 Experiments on TCGA data

Based on FPKM counts, we load all available data for each cancer of interest, removing genes with
null expression for all samples.

Pipeline Our pipeline consists of three steps:

1. Normalization: either whitening, log, or Yeo-Johnson transformation;

2. Dimensionality reduction: a PCA was applied on normalized data to reduce dimension
(dimension 128 for lung and colorectal cancer, 90 for pancreatic cancer);

3. Cox Proportional Hazards (CoxPH) [10] model fitting.

Normalization All normalization steps are performed on counts, regardless of the genes, as counts
are related to the same underlying phenomenon induced by next-generation RNA sequencing. In
other words, for the plain whitening, a single mean and variance is computed. For log, following
application of log(1 + ·) to all entries, a similar count-level whitening is performed. For the YJ
transformation, we perform 10 iterations of the proposed algorithm.

CoxPH model training CoxPH models are fitted with lifelines (0.26.4). We use an `2 regularization
of magnitude 10 for each cancer, without any hyperparameter optimization.

Cross-validation Results are computed following 5-fold stratified group cross-validation, repeated 5
times with different seeds. Stratification is performed to ensure a balanced set of censored patients in
each fold, while ensuring that samples belonging to the same patients end up in the same group to
avoid over-estimating the generalization of the model.

21

https://portal.gdc.cancer.gov/


Dataset name # of samples # of features (with at least two distinct values) # of instabilities of Brent minimization
airfoil self noise 1503 5 0
blood transfusion 748 4 1

breast cancer diagnostic 569 30 2
climate model crashes 540 18 0

concrete slump 103 7 0
connectionist bench sonar 208 60 0
connectionist bench vowel 990 10 0

ecoli 336 7 2
glass 214 9 0

ionosphere 351 34 0
iris 150 4 0

libras 360 90 0
parkinsons 195 23 0

planning relax 182 12 0
qsar biodegradation 1055 41 0

seeds 210 7 0
wine 178 13 0

wine quality red 1599 10 0
wine quality white 4898 11 0

yacht hydrodynamics 308 6 0
yeast 1484 8 0

Table 1: Number of feature for which the scikit-learn implementation of Yeo-Johnson based on Brent
minimization method fails for 21 different datasets available on the UC Irvine Machine Learning
repository [15]. We only kept the features with at least two distinct values.

E.3 Experiment on synthetic data

To generate the results of Section 5, we sampled for each of the 10 centers 200 datapoints using
Eq. (4). We then apply an optional preprocessing steps before fitting a linear regression model using
scikit-learn LinearRegression model on the pooled data. Another dataset of 200 points was then
generated, and we computed the R2 on this unseen dataset. This experiment was repeated 1000 times
using each time a different seed and the box plot in Section 5 presents the min-max, the median the
first and the third quartile. The different preprocessing steps shown are:

• None: no preprocessing step is applied
• Whitening: for each of the three dimensions of Xi, we subtract the empirical mean and

we divide by the empirical standard deviation computed across all ten centers to the train
dataset and the test dataset

• LocalYJ: we use one center randomly chosen to perform EXPYJ with tmax = 20 to each of
the dimensions of the dataset. The fitted triplets �⇤, µ⇤,�2

⇤ found for each column are then
used to normalize the dataset of all 10 centers and the test dataset.

• Federated YJ: We apply SECUREFEDYJ with tmax = 20 on the 10 centers to each of the
dimensions of the dataset. The fitted triplets �⇤, µ⇤,�2

⇤ found for each column are then used
to normalize the dataset of all 10 centers and the test dataset.

E.4 Testing Brent minimization on more dataset

As explained in the paragraph Numerical stability of EXPYJ of Section 3, applying blindly the
Brent minimization method of scikit-learn to minimize the Yeo-Johnson negative log-likelihood
might result in numerical instabilities and might collapse all the values of the dataset into a single
value. To check further whether this phenomenon is likely to appear, we apply the scikit-learn
Yeo-Johnson transformation to various real-life tabular datasets that are either from the UC Irvine
Machine Learning repository [15] (which are under a Creative Commons Attribution 4.0 International,
CC BY 4.0). For each dataset, we only kept the features that have at least two distinct values. We
found that for the 409 features out of 21 datasets, this issue arises 5 times, as summarized by Table 1

F Further details on Proposition 4.1

Proposition 4.1 states that all intermediate quantities of SECUREFEDYJ can be recovered from
its final result �⇤. We provide in Algorithm 4 a way to construct the function F introduced in
Proposition 4.1 that can perform this recovery.

We apply Algorithm 4 on the 108 features used in Figure 3, with a fixed-point precision of f = 50.
We numerically check that the output of F from Algorithm 4 matches the intermediate quantities
revealed by Algorithm 3 up to machine precision.

22



Algorithm 4 Function F recovering quantities revealed by SECUREFEDYJ

Input: Hyperparameters �t=0,�
�
t=0,�

+
t=0 number of steps tmax, �⇤

for t = 1 to tmax

if �t�1 < �⇤ then
�t = 1

else
�t = �1

end if
�t,�

�
t ,�

+
t  EXPUPDATE(�t�1,�

�
t�1,�

+
t�1,�t)

end for
Output: (�t,�

�
t ,�

+
t ,�t)t=0,...,tmax

23


