A consistently adaptive trust-region method

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Fadi Hamad, Oliver Hinder

Abstract

Adaptive trust-region methods attempt to maintain strong convergence guarantees without depending on conservative estimates of problem properties such as Lipschitz constants. However, on close inspection, one can show existing adaptive trust-region methods have theoretical guarantees with severely suboptimal dependence on problem properties such as the Lipschitz constant of the Hessian. For example, TRACE developed by Curtis et al. obtains a $O(\Delta_f L^{3/2} \epsilon^{-3/2}) + \tilde{O}(1)$ iteration bound where $L$ is the Lipschitz constant of the Hessian. Compared with the optimal $O(\Delta_f L^{1/2} \epsilon^{-3/2})$ bound this is suboptimal with respect to $L$. We present the first adaptive trust-region method which circumvents this issue and requires at most $O( \Delta_f L^{1/2} \epsilon^{-3/2}) + \tilde{O}(1)$ iterations to find an $\epsilon$-approximate stationary point, matching the optimal iteration bound up to an additive logarithmic term. Our method is a simple variant of a classic trust-region method and in our experiments performs competitively with both ARC and a classical trust-region method.