Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Hualin Zhang, Huan Xiong, Bin Gu

Abstract

We consider escaping saddle points of nonconvex problems where only the function evaluations can be accessed. Although a variety of works have been proposed, the majority of them require either second or first-order information, and only a few of them have exploited zeroth-order methods, particularly the technique of negative curvature finding with zeroth-order methods which has been proven to be the most efficient method for escaping saddle points. To fill this gap, in this paper, we propose two zeroth-order negative curvature finding frameworks that can replace Hessian-vector product computations without increasing the iteration complexity. We apply the proposed frameworks to ZO-GD, ZO-SGD, ZO-SCSG, ZO-SPIDER and prove that these ZO algorithms can converge to $(\epsilon,\delta)$-approximate second-order stationary points with less query complexity compared with prior zeroth-order works for finding local minima.