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1 Results on additional dataset

In section 4.1 of the main paper, we demonstrated the performance of our GeoCLIP method on
Im2GPS3k [2] and GWS15k [1] datasets and compared them with the state-of-the-art methods. Here,
we perform experiments on another dataset YFCC26k [6]. The results are provided in Table 1.

Table 1: Results on YFCC26k [6] dataset

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

PlaNet [7] 4.4 11.0 16.9 28.5 47.7
ISNs [4] 5.3 12.3 19.0 31.9 50.7

Translocator [5] 7.2 17.8 28.0 41.3 60.6
GeoDecoder [1] 10.1 23.9 34.1 49.6 69.0

Ours 11.61 22.19 36.69 57.47 76.02

We can observe that GeoCLIP achieves state-of-the-art performance on the YFCC26k dataset in the
majority of distance threshold metrics, with +1.51%, +2.59%, +7.87%, and +7.02% improvements
in accuracy on the 1km, 200km, 750km, and 2500km respectively. This result highlights that
GeoCLIP performs well across datasets, being useful across different data distributions.

2 Results for limited data settings on YFCC26k and GWS15k datasets

(B)    Data Efficiency of GeoCLIP on GWS15k

(A)    Data Efficiency of GeoCLIP on YFCC26k

Figure 1: Performance of GeoCLIP in limited data scenarios on (A) YFCC26k dataset and (B) GWS15k
datasets. GeoCLIP achieves decent performance across datasets even when the training data is significantly
reduced.
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We show the efficacy of GeoCLIP on limited training samples of Im2GPS3k in section 4.2 of the
main paper. Now, we further investigate the performance of GeoCLIP for limited data settings on
other datasets (YFCC26k and GWS15k).

As shown in Figure 1, we observe a similar trend of GeoCLIP on YFCC26k and GWS15k datasets
as in the Figure 3 of the main paper. The performance of GeoCLIP is not affected considerably,
even when the amount of data is limited. This observation is consistent and holds across datasets.
Surprisingly, even if the training data is reduced exponentially (getting as low as 5%), GeoCLIP still
achieves competitive performance.

3 Additional Ablations

We had discussed a few important ablations (benefits of our GPS encoding and hierarchical learning)
in Sec. 4.3 of the paper draft. In this section, we present and discuss other ablations on different
components of our method GeoCLIP.

3.1 Gallery size

The existing methods, which perform worldwide geo-localization, limit themselves to matching a
query image to 21k GPS coordinates (at the finest resolution). They are restricted due to their design
choice of predefined classes. However, our method, GeoCLIP, can perform matching against a gallery
of any arbitrary length. hence, we vary the gallery size and evaluate GeoCLIP performance on them.
The results for the datasets Im2GPS3k [2], YFCC26k [6], and GWS15k [1] are reported in Table 2.

Table 2: Results on the Im2GPS3k [2], YFCC26k [6], and GWS15k [1] datasets when the gallery size is varied.

Dataset Gallery Size Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

Im2GPS3k [2]

21k GPS 11.88 33.10 48.75 68.70 83.18
100k GPS 14.11 34.47 50.65 69.67 83.82
500k GPS 13.98 33.80 50.95 69.80 84.38
1M GPS 13.98 33.47 51.48 69.14 82.85

YFCC26k [6]

21k GPS 8.44 20.28 34.52 56.37 75.16
100k GPS 11.61 22.19 36.69 57.47 76.02
500k GPS 11.49 21.81 36.68 57.85 76.12
1M GPS 11.45 21.51 36.57 57.68 76.05

GWS15k [1]

21k GPS 0.18 2.4 14.84 42.13 73.05
100k GPS 0.53 3.2 15.94 44.55 72.79
500k GPS 0.6 3.12 16.92 45.69 74.06
1M GPS 0.6 2.95 16.96 46.15 74.19

The results demonstrate that expanding the GPS gallery improves performance, particularly at smaller
scales. For example, on the Im2GPS3k dataset, increasing the gallery size from 21K to 100K leads
to an accuracy improvement from 11.88% to 14.11% at the 1km scale. Similarly, augmenting the
gallery from 21K to 100K GPS coordinates in the YFCC26k dataset improves the accuracy at the
1km scale from 8.44% to 11.61%. However, the 500K and 1M gallery sizes lead to a slight decrease
in performance compared to the 100K gallery. Hence, we used this gallery size to report performance
on these datasets.

On the GWS15k dataset, the 500K gallery yields better improvements, increasing the accuracy from
0.18% to 0.6% at the 1km scale. However, further additions to the gallery do not provide more
gains. Even though increasing the gallery size to 1M, yields marginally beneficial at larger scales,
the performance at smaller scales reduces. Thus, using a 500k gallery size gives a better trade-off,
keeping low computational expense and performance on fine-grained scales as a priority.

3.2 Queue Length

Negative samples play a crucial role as we use contrastive learning to train our model (refer to eq. 4
of the paper draft). Our method performs image-to-GPS retrieval, thus, the negative samples in our
case are the GPS coordinates rather than images used in traditional retrieval methods, which are easy
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to obtain. We have shown the benefit of additional negatives via our dynamic queue strategy in Table
2(a) in the main paper. Here, we do further analysis by evaluating the performance when the queue
length (S=|Q|) is varied. The results are presented in Table 3.

Table 3: Ablation on the length of the queue used for additional negatives during the training of GeoCLIP.

Queue Length Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

512 7.57 32.03 48.76 67.42 82.35
1024 7.79 32.63 49.22 68.39 82.68
2048 8.73 32.65 49.14 67.11 82.22
4096 9.84 33.10 49.32 69.07 83.30
8192 9.64 32.00 49.01 68.12 82.82

16384 9.23 32.80 49.77 68.00 82.71
32768 8.45 32.83 49.20 68.20 82.70
65536 8.31 32.48 48.59 67.52 82.19

Among the tested queue lengths, |Q| = 4096 obtained 9.84%, 33.10%, 49.32%, 69.07%, and 83.30%
accuracy on 1km, 25km, 200km, 750km, and 2500km thresholds, respectively. While other queue
lengths showed comparable results, the performance of the 4096-length queue is better. Even though
the queue length 16384 showed a slight improvement in the 200km threshold, the 4096-length queue
still outperformed it on the rest of the thresholds. Hence, we used |Q| as 4096 in our experiments in
the main paper.

3.3 ση for Batch GPS noise

As explained in section 3.2 of the main paper, we create variation in GPS coordinates by adding
a small amount of noise η ∼ N (0, σ2

η). Here, we perform an ablation where we vary the ση of
the Gaussian distribution and report their performance on Im2GPS3k [2] dataset in Table 4. We
can observe that ση of 150 meters yields better performance. We used the same value of ση across
different datasets for the experiments in the main paper.

Table 4: Ablation on different ση values. We observe the best performance when ση is 150 meters.

ση (in meters) Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

0 8.43 32.06 47.76 65.49 81.84
10 8.89 32.17 47.66 67.01 81.59
50 8.56 31.82 47.14 66.19 81.57

150 8.95 32.61 47.96 67.09 82.08
300 8.05 31.32 46.89 65.40 81.54
500 7.54 31.78 47.27 65.34 81.39

3.4 ση′ for Queue GPS noise

As described in the main paper (Sec. 3.2), we propose a dynamic queue strategy with GPS coordinates
and use them as additional negative samples n the contrastive learning of GeoCLIP. We also showed
the benefit of it in Table 2(a) in the paper draft. We now do further analysis on the queue and perform
ablations with respect to the static queue and the gaussian noise parameter ση′ .

As shown in Table 5, compared to the static queue, we observe improvement in performance across
all the distance accuracy metrics while using the dynamic queue, especially on the finer scales (1km
and 25 km distance thresholds). Note that the performances reported are without hierarchical learning.
Moreover, adding noise sampled from gaussian distribution (η′ ∼ N (0, σ2

η′)) to the GPS coordinates
of the dynamic queue leads to further gains in performance. ση′ of 1000 meters yields improvements
on all distance thresholds compared to dynamic queue performance, while for ση′ > 1000m, the
performance on smaller scales improved at the cost of drop in accuracy on the large scales.
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Table 5: Comparison of the performance of our dynamic queue strategy with the static queue. We also perform
an ablation on ση′ used to add gaussian noise to the dynamic queue. The addition of noise to GPS coordinates
of dynamic queue yields further gains in performance.

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

Static Queue 5.93 31.8 49.02 67.42 82.22
Dynamic Queue 7.55 32.91 49.28 67.46 82.48

Dynamic Queue + noise (ση′ = 1000m) 9.84 33.10 49.32 69.07 83.35
Dynamic Queue + noise (ση′ = 5000m) 11.85 33.07 48.90 67.60 82.87

Dynamic Queue + noise (ση′ = 10000m) 11.53 33.51 48.63 67.55 82.66
Dynamic Queue + noise (ση′ = 25000m) 10.01 32.85 47.76 67.22 82.46

3.5 σ for Random Fourier Features

We employed positional encoding with Random Fourier features (RFF) in our location encoder
(discussed in Sec. 3.1.1) to overcome the spectral bias (favoring low-frequency) of direct usage of
MLPs. In RFF, the σ value plays an important role in determining the range of frequencies. In an
ideal scenario where a single metric is being optimized, a specific optimal sigma value could be
determined through a hyperparameter search. However, in our task, we evaluate our method on five
different distance metrics. Based on our extensive experiments when searching for an optimal σ value
on a particular metric, we found a particular pattern.

In Figure 2, we train our GeoCLIP model by varying the σ value on a wide range (from 20 to 212), and
evaluate their performance on different threshold metrics. We observe an interesting trend. A single
σ value does not perform best for all the metrics. We observe that higher σ values are preferable for
fine-grained scales (1km and 25km). Conversely, for coarser scales (200km, 750km, and 2500km),
lower σ values perform better than their higher σ counterparts.

Based on the above observations, a simple approach would be to select intermediate σ values to
achieve reasonably good performance across multiple scales. Hence, we showed results of our method
on the intermediate σ value in Table 2 (a) in the main paper. However, this strategy is suboptimal.
Our proposed hierarchical strategy outperforms the single σ value approach when optimizing metrics
at different scales (Table 2 (b) in the main paper), emphasizing the combination of hierarchies being
better than their individual parts.

3.6 Number of hierarchies (M )

In Table 2(b) of the main paper, we demonstrate the importance of hierarchical learning to perform
well across all the distance metrics. In Table 6, we further conduct experiments with varying numbers
of hierarchies (M ) to identify the optimal M that maximizes performance across all metrics. We
observe that increasing the number of hierarchies leads to improved model performance up to three
hierarchies. However, beyond that, increasing the hierarchies leads to a slight decrease in performance.
Hence, in the main paper, we utilized three hierarchies in our GeoCLIP model.

Table 6: Performance of GeoCLIP when the number of hierarchies is varied.

Number of hierarchies Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

1 9.84 33.1 49.28 69.07 83.35
2 13.85 32.9 49.3 69.3 83.52
3 14.11 34.47 50.65 69.67 83.82
4 14.01 34.33 50.52 69.54 83.22
5 13.98 34.48 49.88 68.9 82.85
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Figure 2: Ablation on different σ values (single hierarchy) used to generate the Random Fourier Features. We
train our model by varying σ from 20 to 212 and measure the performance across different distance thresholds.
The trend is shown by dashed lines. Higher σ values are preferred on smaller scales (1km and 25km) while
larger scales (200km, 750km and 2500km) performs well with smaller σ values.
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4 Different selection choices for GPS Gallery Construction

The primary approach for constructing the GPS gallery in our experiments in the main paper involves
sampling a predetermined number of coordinates from the training dataset. This strategy aligns
with prior geo-localization methods that also leverage the training set information to create discrete
geographical cells (classes), while we use the GPS coordinates information of the training set to
construct the reference GPS gallery. The underlying rationale is that the training set is likely to
contain locations of interest, defined as places where photographs have been taken before and are
thus probable sites for future image captures. Given an image with an unknown location, these areas
serve as initial points of reference, making this method particularly relevant for real-world evaluation
scenarios. However, this approach operates under specific assumptions about the geographical
distribution of future test data. To explore GeoCLIP’s performance without such assumptions, we
also investigate alternative choices for gallery construction, as explained below.

4.1 Evenly Spaced GPS Coordinates

To probe GeoCLIP’s adaptability, we construct GPS galleries using evenly spaced coordinates
across the Earth’s surface. This approach provides a test of GeoCLIP’s generalization capabilities,
particularly when the geographical distribution of the images is unknown or not confined to specific
regions. Under this scenario, we adopt two distinct approaches for gallery construction:

Global Sampling: In this scenario, we generate a gallery containing 1 million coordinates that are
evenly distributed across the entire sphere of the Earth. This includes both land and oceanic regions.
The distribution is achieved using a Fibonacci lattice, ensuring an even spread of coordinates. In this
case, we do not assume any prior geographical knowledge about where the images might be located.

Land-Only Sampling: In this case, while similar to the previous, we focus exclusively on terrestrial
regions. Here, the gallery comprises 1 million coordinates, also arranged using a Fibonacci lattice but
limited to land areas. This scenario reflects situations where we have the additional information that
the image of interest is taken on land, thus reducing the search space.

By employing these alternative GPS galleries, we aim to assess GeoCLIP’s performance in diverse
geo-localization contexts. The results for both the scenarios are presented below:

Table 7: Performance of GeoCLIP when the gallery is constructed by evenly sampling GPS coordinates.

GPS Gallery Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

Evenly Spaced (1M Land Only) 0.02 12.85 37.07 59.39 77.78
Evenly Spaced (1M All Earth) 0.03 9.18 33.47 55.32 75.34

Without using any dataset prior knowledge of geographical places of interest, the reference gallery
can be constructed by evenly sampling GPS coordinates across the globe, as shown above. But,
it is not a better choice to create a GPS gallery as there can be many places on Earth (like oceans
and polar regions), which may not be relevant places of interest (also evidenced by results). To
accurately predict within a 1km radius, GPS coordinates must lie in the reference gallery. By
uniformly sampling 1 million coordinates across the Earth’s surface, a total area of 1, 000, 000 km² is
encompassed. However, considering Earth’s land area of 148, 326, 000 km², the likelihood of having
the true coordinates in the reference gallery is low. Thus, if true GPS coordinates fall outside the
available GPS options of the gallery (for instance, not within a 1km proximity to the true location),
then image-to-GPS performance within a 1km distance threshold would suffer. As we observe
in higher scales, competitive performance can be achieved through uniform sampling, given the
increased likelihood of true coordinates lying within the larger distance thresholds from reference
gallery coordinates. Hence, given the vast search space, applying prior knowledge and alternative
search methods can enhance efficiency and improve performance.

4.2 Test Set GPS Coordinates

Similar to traditional image-to-image retrieval methods, the image gallery can also be constructed
using the test set (in our case, test set GPS coordinates). As shown in Table 8, we obtain strong
localization performance across different distance threshold metrics when a GPS gallery is constructed
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using the test set. However, such an approach may lack generalizability, as it essentially reduces the
problem to a retrieval task among known, labeled locations.

Table 8: Performance of GeoCLIP when the gallery is constructed test set GPS coordinates.

Dataset Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

Im2GPS3k 29.66 47.64 59.05 72.53 85.78

These alternative methods for GPS gallery construction, as discussed in Sec. 4.1 and 4.2, offer deeper
insights into GeoCLIP’s robustness and versatility across varying geographical scales and conditions.

5 Analysis of Runtime and Memory Footprint

To provide a comprehensive understanding of GeoCLIP’s efficiency, we compare its runtime and
memory footprint with baseline methods, specifically ISNs [4] and Translocator [5]. The table 9
summarizes the findings.

Table 9: Comparison of Runtime and Memory Footprint
Methods Memory Footprint (parameter count) Runtime (batch of 128 images)
ISNs [4] 257,830,177 0.0997

Translocator [5] 478,125,882 0.2374
GeoCLIP (Ours) 314,400,770 0.1043

Even though GeoCLIP’s memory footprint and runtime are higher than those of ISNs [4], they are
substantially lower than Translocator [5]. Importantly, GeoCLIP outperforms both methods across
all distance threshold metrics, indicating that the trade-off between efficiency and effectiveness is
favorable.

It’s worth noting that classification-based methods like ISNs generally have lower runtimes as they
do not involve searching through a gallery of images. On the other hand, methods like Translocator,
which incorporate auxiliary information such as scene contexts via a dual-branch vision transformer
architecture, tend to have higher runtime and parameter counts [5]. In contrast, GeoCLIP achieves
better performance without relying on additional scene-based information and employs a lightweight
location encoder composed of MLPs with four hidden layers and one output layer.

6 Motivations for using Pretrained CLIP as Image encoder Backbone

In our proposed method, GeoCLIP, we employ a CLIP backbone as part of our image encoder. We
leverage the CLIP model as it has been originally trained on 400 million (image, text) pairs and
has shown strong generalization performance across different downstream tasks. We keep the CLIP
backbone frozen in our method as our design choice is influenced by computational constraints and
the nature of our training dataset. The MP-16 dataset [3], a standard for worldwide geo-localization,
contains 4.72 million geotagged images. Training from scratch or fine-tuning the entire image encoder
on such an extensive dataset demands high computational resources and considerable training time.
These factors present challenges, particularly in academic settings with limited resources. To mitigate
these computational costs, we freeze the CLIP backbone and only train the additional linear layers
(h1 and h2) introduced to adapt the model to the geo-localization task.

Another benefit of using pretrained CLIP weights is that it allows precomputation of CLIP features,
further reducing computational overhead. We observed precomputing training set features drastically
reduced our training time. For instance, the training time of one epoch on the MP-16 dataset was
reduced substantially from ≈ 27 hrs to ≈ 15 minutes.

Interestingly, our empirical evaluations corroborate the efficacy of employing a frozen CLIP backbone.
In contrast, fine-tuning the CLIP backbone did not improve performance; in fact, the frozen backbone
performed better. This may be the consequence of catastrophic forgetting of original CLIP weights
while training. Additionally, the use of a frozen and publicly accessible CLIP model has ethical
implications. Given that CLIP is a publicly available model, it enables the implementation of defense
mechanisms, such as adversarial noise, which allows individuals to protect their privacy better.
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Moreover, CLIP is a multimodal architecture (its image and text encoders are aligned). When we
align the pretrained image encoder of CLIP with our location encoder, the pretrained text encoder of
CLIP also gets implicitly aligned with the location encoder. As a result, without separate training on
text, our method, GeoCLIP, can also process text queries, enabling geo-localization using text.

7 Qualitative Demonstration

In this section, we qualitatively demonstrate the effectiveness of our method. We first visually
demonstrate the geo-localization by different hierarchies of our location encoder. In the subsequent
subsections, we show the results of GeoCLIP on both the image query and text query. Finally, we
provide a visualization of the distribution of correct predictions of our model and compare them with
the actual test dataset distributions.

7.1 Hierarchical learning in our location encoder L (·)

3 Level Hierarchy

Query: “Thailand”

2 Level Hierarchy1 Level Hierarchy

Query: “India”

Query: “South Africa”

Figure 3: Visualization of the geo-localization of different places mentioned in the query. For each query, we
show the heatmap of predictions using 1-level, 2-level, and 3-level hierarchies. The 1-level hierarchy performs
localization at a coarse resolution while increasing the hierarchies helps in localizing more precisely.
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7.2 GeoCLIP with Image Query

ImagesError ≦

1km

25km

200km

750km

2500km

Figure 4: Sample query images from Im2GPS3k dataset [2] on which GeoCLIP localizes within an error of
1km (1st row), 25km (2nd row), 200km (3rd row), 750km (4th row) and 2500km (last row).
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7.3 Distribution of correct predictions of GeoCLIP on different datasets

Im2GPS3kYFCC26k

2500 km

750 km

200 km

25 km

1 km

GWS15k

Dataset 
Distribution

Accuracy

Figure 5: Demonstration of the distribution of correct predictions of GeoCLIP at different threshold metrics on
various benchmark datasets. Our predictions match closely with the dataset distribution.

7.4 GeoCLIP with Text Query

Specific Landmarks and Places:

Query: “Pyramids of Giza” Query: “Burj Khalifa” Query: “Great Wall of China”

Figure 6: Geo-localization using GeoCLIP with text query as specific landmarks.
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(a) Text Query: “Boston, Massachusetts"

(b) Text Query: “Colosseum, Rome"

(c) Text Query: “Niagara Falls"

Figure 7: Across different text queries ranging from city to specific places, we demonstrate the geo-localization
using our method GeoCLIP on the left, while the original region is shown on the right.
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8 Discussion on Ethical Issues and Possible Mitigation

The capability of our GeoCLIP model to accurately geo-localize images on a global scale introduces
ethical considerations related to privacy and security. Individuals may be apprehensive about the
potential misuse of such technology, especially when it comes to revealing their geographic location
without consent.

In response to these concerns, we have designed GeoCLIP with countermeasures in mind. Our method
employs a publicly accessible, pre-trained CLIP backbone for the image encoder, allowing individuals
to directly implement defense mechanisms. Specifically, a form of defense can be achieved through
the addition of adversarial noise to images. This carefully crafted human-imperceptible noise can
significantly alter the image embeddings generated by the CLIP backbone, thereby disrupting the
model’s ability to accurately predict geographical locations. For instance, the adversarial noise can
be tailored to maximize the image embedding for an unrelated target prompt, such as "Eiffel Tower,"
leading to incorrect matches with the GPS embeddings in the gallery. This approach leverages the
public availability of the pre-trained CLIP model weights, offering individuals a viable means to
protect their location privacy. Thus, GeoCLIP aims to strike a balance between technological utility
and ethical considerations.
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