
A Additional Experiment Results469

In this section, we show additional experiment results beyond Tab. 2. Tab. 6 shows the results of470

RoBERTa-L finetuning on each task in GLUE datasets. Tab. 7 shows the results of GPT-2 Medium471

finetuning on E2E-NLG via different metrics. Tab. 8 shows the EM and F1 of RoBERTa-L finetuning472

on SQuAD and SQuAD 2.0 datasets.473

Table 6: Performance of RoBERTa-Large finetuning on GLUE with diverse optimizers. Medians and
std over 5 runs are reported on all tasks.

Optimizer MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B

32-bit AdamW 90.2 ± 0.00 94.9 ± 0.00 92.2 ± 0.00 85.2 ± 0.14 96.3 ± 0.00 93.2 ± 0.01 66.9 ± 0.01 92.3 ± 0.00

32-bit Adafactor 90.4 ± 0.00 94.7 ± 0.00 92.2 ± 0.00 85.9 ± 0.02 96.3 ± 0.00 92.8 ± 0.00 67.3 ± 0.01 92.3 ± 0.00
32-bit Adafactor‡ 90.5 ± 0.00 94.8 ± 0.00 92.2 ± 0.00 87.0 ± 0.03 96.3 ± 0.00 92.9 ± 0.00 68.2 ± 0.01 92.2 ± 0.00
32-bit SM3 90.6 ± 0.00 94.2 ± 0.00 89.5 ± 0.00 85.2 ± 0.02 96.0 ± 0.00 90.5 ± 0.01 62.3 ± 0.04 91.4 ± 0.01

8-bit AdamW† 90.4 ± 0.00 94.8 ± 0.00 92.2 ± 0.00 84.8 ± 0.02 96.2 ± 0.00 93.2 ± 0.00 68.0 ± 0.00 92.2 ± 0.00

4-bit AdamW 90.2 ± 0.00 94.5 ± 0.00 92.0 ± 0.00 85.2 ± 0.12 96.3 ± 0.00 92.8 ± 0.00 67.3 ± 0.01 92.5 ± 0.00
4-bit Factor 90.1 ± 0.00 94.7 ± 0.00 92.2 ± 0.00 85.9 ± 0.00 96.4 ± 0.00 92.7 ± 0.00 68.1 ± 0.00 92.3 ± 0.00

Table 7: Performance of GPT-2 Medium finetuning on E2E-NLG Challenge with diverse optimizers.
Means and std over 3 runs are reported.

Optimizer BLEU NIST METEOR ROUGE-L CIDEr

32-bit AdamW 67.7 ± 0.67 8.60 ± 0.08 45.7 ± 0.28 68.7 ± 0.61 2.35 ± 0.04

32-bit Adafactor 67.2 ± 0.81 8.61 ± 0.60 45.3 ± 0.08 68.3 ± 0.22 2.35 ± 0.01
32-bit Adafactor‡ 67.2 ± 0.63 8.54 ± 0.09 45.6 ± 0.32 68.5 ± 0.30 2.32 ± 0.02
32-bit SM3 66.9 ± 0.58 8.59 ± 0.04 45.4 ± 0.32 68.2 ± 0.49 2.33 ± 0.03
8-bit AdamW† 67.5 ± 0.87 8.59 ± 0.08 45.7 ± 0.52 68.7 ± 0.97 2.34 ± 0.06

4-bit AdamW 67.8 ± 0.51 8.61 ± 0.08 45.8 ± 0.23 68.9 ± 0.33 2.35 ± 0.07
4-bit Factor 67.6 ± 0.33 8.59 ± 0.03 45.6 ± 0.43 68.6 ± 0.60 2.34 ± 0.06

Table 8: Performance of RoBERTa-Large on SQuAD and SQuAD 2.0 with diverse optimizers.
Medians and std over 5 runs are reported.

SQuAD SQuAD 2.0
Optimizer EM F1 EM F1

32-bit AdamW 89.0 ± 0.10 94.6 ± 0.13 85.8 ± 0.18 88.8 ± 0.15

32-bit Adafactor 88.8 ± 0.12 94.6 ± 0.14 85.8 ± 0.44 88.7 ± 0.21
32-bit Adafactor‡ 89.0 ± 0.18 94.7 ± 0.10 85.9 ± 0.15 88.8 ± 0.15
32-bit SM3 84.2 ± 0.49 91.7 ± 0.29 77.2 ± 0.71 81.1 ± 0.66

8-bit AdamW† 88.8 ± 0.15 94.5 ± 0.04 86.1 ± 0.26 89.0 ± 0.26

4-bit AdamW 88.8 ± 0.08 94.5 ± 0.10 85.4 ± 0.28 88.4 ± 0.26
4-bit Factor 88.8 ± 0.38 94.6 ± 0.20 85.9 ± 0.36 88.9 ± 0.18
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B Outlier Patterns of Moment474

In this section, we give a comprehensive visualization about the outlier pattern of optimizer states.475

[2] did similar analysis for Adagrad’s second-order statistics but here we give a better demonstration476

about various patterns in optimizer states. The same technique has been applied to parameters and477

activations in [50].478

The outlier pattern of first-order momentum depends on many factors such as data and training479

hyperparameters. Here we mainly focus on different transformer models and different layers inside.480

In one transformer block, there is one Attention module and one MLP module, including 6 main481

parameter matrices. We do not focus on additional parameters including bias and parameters in482

layer normalization (LN) since they only account a small portion. We denote the 6 matrices by483

WQ,WK ,WV ,WO,W1,W2, respectively. When the matrices across different layers are involved484

at the same time, we add a subscript indicating layer index. Note that W has shape RCo×Ci in a485

linear layer, we call the output and input dimension by dim0/row and dim1/column, respectively. The486

per-channel quantizaition used in other works actually correspond to per-row(dim0) normalization487

here.488

Swin Transformer ImageNet pretraining In Fig. 5,6,7, the magnitude of first-order momentum in489

transformer blocks at different depths are shown. It can be seen that the 1-dimensional structure in all490

parameter matrices are vague at the initial layer. At layer 2, the pattern in WO and W1, that outliers491

occur at fixed columns, becomes obvious while other parameter matrices remain noisy. At layer 3,492

the patterns in WO,W1,W2 are quite obvious. In WO and W2, the outliers occur at fixed rows493

while the pattern in W1 remain unchanged. The 1-dimensional structure in WQ,WK ,WV also494

seem to appear even though not remarkable. It is notable that the pattern of same parameter matrix at495

different depths are not necessarily same. See WO in Fig. 6,7.496

Figure 5: Outlier patterns of first moment in transformer block layers.0.blocks.0 of Swin-T at
epoch 210.
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Figure 6: Outlier patterns of first moment in transformer block layers.2.blocks.0 of Swin-T at
epoch 210.

Figure 7: Outlier patterns of first moment in transformer block layers.3.blocks.0 of Swin-T at
epoch 210.
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RoBERTa-Large GLUE finetuning In Fig. 8,9,10,11,12,13, the magnitude of first-order momen-497

tum in transformer blocks of RoBERTa-Large at different depths are shown. At layer 0 and layer498

1 (initial layers), patterns in WO,W2 are obvious. At layer 11 and layer 12 (intermediate layers),499

patterns are all noisy. At layer 22 and layer 23 (last layers), patterns in WQ,WK are obvious.500

Patterns in other matrices are weak.501

Figure 8: Outlier patterns of first moment in transformer block layer-0 of RoBERTa-Large at epoch 8.

Figure 9: Outlier patterns of first moment in transformer block layer-1 of RoBERTa-Large at epoch 8.
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Figure 10: Outlier patterns of first moment in transformer block layer-11 of RoBERTa-Large at epoch
8.

Figure 11: Outlier patterns of first moment in transformer block layer-12 of RoBERTa-Large at epoch
8.

18



Figure 12: Outlier patterns of first moment in transformer block layer-22 of RoBERTa-Large at epoch
8.

Figure 13: Outlier patterns of first moment in transformer block layer-23 of RoBERTa-Large at epoch
8.
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GPT-2 Medium E2E-NLG finetuning In Fig. 14,15,16,17,18,19, the magnitude of first-order502

momentum in transformer blocks of GPT-2 Medium at different depths are shown. At layer 1 and layer503

2 (initial layers), patterns in WO are obvious. At layer 13 and layer 14 (intermediate layers), patterns504

in WK ,WO are obvious. At layer 21 and layer 22 (last layers), patterns in WQ,WK ,WV ,WO
505

are obvious. First-order momentum of W1,W2 are consistently noisy throughout layers. It is notable506

that the rows(or columns) that gather outliers are different across different layers.507

Figure 14: Outlier patterns of first moment in transformer block layer-1 of GPT-2 Medium at epoch 2.

Figure 15: Outlier patterns of first moment in transformer block layer-2 of GPT-2 Medium at epoch 2.
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Figure 16: Outlier patterns of first moment in transformer block layer-13 of GPT-2 Medium at epoch
2.

Figure 17: Outlier patterns of first moment in transformer block layer-14 of GPT-2 Medium at epoch
2.
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Figure 18: Outlier patterns of first moment in transformer block layer-21 of GPT-2 Medium at epoch
2.

Figure 19: Outlier patterns of first moment in transformer block layer-22 of GPT-2 Medium at epoch
2.
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C Quantization Quality via Histogram508

C.1 Zero-point Problem509

In Fig. 20,21,22, we show the effect of zero-point on quantization error for second-order momentum510

via histogram. All those figures show the negative impact of zero-point on quantizing second-order511

momentum. After removing zero-point, the quantization quality improves at a great scale.512
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Figure 20: Histogram of second-order momentum of the attention layer (WQ,WK ,WV ) in trans-
former block-wise layer-2 of GPT-2 Medium at epoch 2. In one horizontal line, the first figure is
the original second-order momentum. The second figure is the tensor after normalization. The third
figure is the quantized tensor. The last figure is the dequantized object. Both the first and last figure is
at log10 scale. Both the second and third take values in [0, 1]. All y-axis represents density. Good
quantization methods try to make the third figure identical to the second figure and make the last
figure identical to the first figure. Top: B128/DE quantization. Bottom: B128/DE-0 quantization.
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Figure 21: Histogram of second-order momentum of the WV in transformer block layer-10 of
RoBERTa-Large at epoch 8. Top: B128/DE quantization. Bottom: B128/DE-0 quantization.
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Figure 22: Histogram of second-order momentum of the attention layer (WQ,WK ,WV ) in trans-
former block layers.0.blocks.0 of Swin-T at epoch 210. Top: B128/DE quantization. Bottom:
B128/DE-0 quantization.

C.2 Comparison between Block-wise and Rank-1 Normalization513

To show the differences in quantization error for second-order momentum between block-wise nor-514

malization and rank-1 normalization, some cases where rank-1 normalization approximates better515

than block-wise normalization are shown in Fig. 23, 25, 27. Also, some cases where rank-1 normal-516

ization approximates worse than block-wise normalization is shown in Fig. 24, 26, 28. Empirically, it517

has been observed that rank-1 normalization yields superior results when the distribution exhibits518

long-distance multimodal characteristics. On the other hand, block-wise normalization tends to519

outperform when the distribution displays short-distance multimodal patterns and/or intricate local520

structures.521
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Figure 23: Histogram of second-order momentum of W1 in transformer block layer-23 of GPT-2
Medium at epoch 2. A case where rank-1 normalization is better than block-wise normalization
with block size 128. In this case, the tail in the right side of distribution is captured by rank-1
normalization but lost in block-wise normalization. Top: B128/DE-0 quantization. Bottom: Rank-
1/DE-0 quantization.

C.3 Effectiveness of Block Size in Block-wise Normalization522

In Fig. 29,30,31, we show the effect of block size on quantization error for both first-order momentum523

and second-order momentum. Fig. 29,30 shows that B2048 normalization quantizes a significant524

portion of the points to zero, resulting in poor approximation based on the histogram. However, when525
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Figure 24: Histogram of second-order momentum of the attention layer (WQ,WK ,WV ) in trans-
former block layer-2 of GPT-2 Medium at epoch 2. A case where rank-1 normalization is worse than
block-wise normalization with block size 128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0
quantization.
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Figure 25: Histogram of second-order momentum of W2 in transformer block layer-4 of RoBERTa-
Large at epoch 8. A case where rank-1 normalization is better than block-wise normalization with
block size 128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0 quantization.
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Figure 26: Histogram of second-order momentum of WV in transformer block layer-2 of RoBERTa-
Large at epoch 8. A case where rank-1 normalization is worse than block-wise normalization with
block size 128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0 quantization.
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Figure 27: Histogram of second-order momentum of W2 in transformer block layers.0.blocks.0
of Swin-T at epoch 210. A case where rank-1 normalization is better than block-wise normalization
with block size 128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0 quantization.
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Figure 28: Histogram of second-order momentum of WO in transformer block layers.1.blocks.0
of Swin-T at epoch 210. A case where rank-1 normalization is worse than block-wise normalization
with block size 128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0 quantization.

we utilize a smaller block size of 128, the quantization performance improves. Fig. 31 shows smaller526

block size improves quantization quality on second-order momentum.527
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Figure 29: Histogram of first-order momentum of W1 in transformer block layer-20 of GPT-2
Medium at epoch 2. Top: B128/DE quantization. Bottom: B2048/DE quantization.
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Figure 30: Histogram of first-order momentum of WO in transformer block layer-22 of RoBERTa-L
at epoch 8. Top: B128/DE quantization. Bottom: B2048/DE quantization.
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Figure 31: Histogram of second-order momentum of W1 in transformer block layers.0.blocks.0
of Swin-T at epoch 210. Top: B128/DE-0 quantization. Bottom: B2048/DE-0 quantization.
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D Experimental Details528

D.1 Quantization529

There are several parameters in deep neural networks that play a delicate role without occupying530

too much memory, such as normalization layers and bias. In this context, we establish a rule to531

determine which parameters should not be quantized. For all the experiments we conducted, the532

rule is straightforward: tensors with a size smaller than or equal to 4096 will not be quantized.533

However, for larger models with a hidden size exceeding 4096, it is advisable to exclude the bias and534

normalization layers from quantization. Regarding the quantization settings, as stated in Sec. 5, we535

employ block-wise normalization with a block size of 128, dynamic exponent mapping for first-order536

momentum and rank-1 normalization, linear mapping for second-order momentum. When we apply537

factorization on second-order momentum, only tensors with a dimension greater than or equal to 2538

will be factorized while 1-dimensional tensors that meet the specified rule will still be quantized.539

8-bit Adam [14] also uses the threshold of 4096 about size to determine whether or not to quantize540

parameters. Additionally, the implementation in huggingface does not quantize the parameters in541

Embedding layers regardless of the model used. Consequently, we compare our method with the542

8-bit Adam that does not quantize Embedding.543

D.2 Hyperparameters and Training Details544

In each benchmark, unless otherwise specified, we maintain the same hyperparameters for a given545

optimize across different quantization schemes. Additionally, we use same optimizer hyperparameters546

across various optimizers, including our 4-bit optimizers, 8-bit Adam [14], SM3 [2], Adafactor [42]547

and the full precision counterpart AdamW [30]. For Adafactor, we use β1 > 0 as default setting548

which is same as the β1 value used in AdamW. Also, the case where β1 = 0 is compared. The549

other newly introduced hyperparameters in Adafactor are set to their default values and remain fixed550

throughout the experiments. For SM3, we compare with the β1 > 0 configuration, same as the β1551

value used in AdamW.552

Table 9: The hyperparameters for RoBERTa-L finetuning on GLUE.
Dataset MNLI QNLI QQP RTE MRPC SST-2 CoLA STS-B

Batch Size 32 32 32 16 16 32 16 16
LR 1e-5 1e-5 1e-5 2e-5 1e-5 1e-5 1e-5 2e-5
Warmup 7432 1986 28318 122 137 1256 320 214
Max Train Steps 123873 33112 113272 2036 2296 20935 5336 3598
Max Seq. Len. 128 128 128 512 512 512 512 512

Table 10: The hyperparameters for RoBERTa-L finetuning on SQuAD and SQuAD 2.0.
Dataset SQuAD & SQuAD 2.0

Batch Size 48
LR 1.5e-5
# Epochs 2
Warmup Ratio 0.06
Max Seq. Len. 384

RoBERTa We train all of our RoBERTa-L models with PyTorch Huggingface7. On GLUE bench-553

mark, we mainly follow the hyperparameters in fairseq [32]. We use β1 = 0.9, β2 = 0.98, ε = 1e-6,554

a weight decay factor of 0.1 and linear learning rate schedule. Other hyperparameters are listed555

in Tab. 9. On SQuAD benchmark, we mainly follow the reported hyperparameters in RoBERTa556

paper [28]. We use β1 = 0.9, β2 = 0.98, ε = 1e-6, a weight decay factor of 0.01 and linear learning557

rate schedule. The other hyperparameters are listed in Tab. 10. On both datasets, we report the median558

7
https://github.com/huggingface/transformers

28

https://github.com/huggingface/transformers


Table 11: The hyperparameters for GPT-2 on E2E.
Dataset E2E

Training

Batch Size 8
LR 4e-5
# Epochs 5
Warmup 500
Max Seq. Len. 512
Label Smooth 0.1

Inference

Beam Size 10
Length Penalty 0.8
no repeat ngram size 4

and standard deviation results over 5 runs, the result in each run is taken from the best epoch. We559

utilize single RTX 3090 or 4090 GPU for runs of each task in GLUE datasets and four RTX 3090 or560

4090 GPUs for SQuAD and SQuAD 2.0.561

On SQuAD 2.0, there may be a performance gap observed between the reproduced results using562

32-bit AdamW and the original results reported in the original paper. This is because there are some563

questions without answers in SQuAD 2.0. It is worth noting that the approach employed by Liu et564

al. [28] to handle unanswered questions may differ from the solutions utilized in the BERT paper [16],565

which is the reference implementation we are using566

GPT-2 We train all of our GPT-2 Medium models with the LoRA codebase8. We mainly follow the567

hyperparameters in [26] and [22]. We use β1 = 0.9, β2 = 0.999, ε = 1e-6, a weight decay factor of568

0.01 and linear learning rate schedule. The other hyperparameters used in GPT-2 are listed in Tab. 11.569

We report the mean and standard deviation results over 3 runs, the result in each run is taken from the570

best epoch. We utilize fours RTX 3090 or 4090 GPUs for runs of this task.571

Transformer We train all of our Transformer-Base models for machine translation with codebase9.572

We completely follow the hyperparameters in the codebase. We report the mean and standard573

deviation results over 3 runs, the result in each run is taken from the best epoch. We utilize eight RTX574

3090 or 4090 GPUs for runs of this task.575

Swin We train all of our Swin-T models with its official codebase10. We completely follow the576

hyperparameters in the codebase. We report the mean and standard deviation results over 3 runs, the577

result in each run is taken from the best epoch. We utilize eight RTX 3090 or 4090 GPUs for runs of578

this task.579

LLaMA We finetune LLaMA-7B with Alpaca codebase11. We follow the hyperparameters in the580

codebase except the we finetune the model using two A100 80GB GPUs. The training loss curve is581

the mean results over 3 runs. For the LLaMA-7B model, we enable Fully Sharded Data Parallelism582

(FSDP), which packs parameters into 1-dimensional array. This packing process makes it difficult to583

apply factorization directly without additional engineering efforts. Consequently, we only compare584

the performance of 4-bit AdamW with its full precision counterpart.585

D.3 Memory and Computing Efficiency586

In Tab. 3, we present measurements of memory usage in practical settings, i.e. training configuration587

described in Sec. D.2. Specifically, we measure the memory usage for LLaMA-7B using 2 A100588

8
https://github.com/microsoft/LoRA

9
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer

10
https://github.com/microsoft/Swin-Transformer

11
https://github.com/tatsu-lab/stanford_alpaca
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80G GPUs, RoBERTa-L using 1 RTX 4090 GPU, and GPT-2 Medium using 4 RTX 4090 GPUs.589

Additionally, the time measurement for RoBERTa-L is conducted on the RTE task.590

E Quantization Formulation Details591

E.1 Signed Case592

In this section, we discuss quantization function for signed tensors and the differences compared to593

unsigned case. Regarding the normalization operator, the only difference lies in the fact that the sign594

of the tensor remains unchanged before and after normalization. Formally, let N be the normalization595

operator for the unsigned cases. For the signed case, the normalization can be defined as596

nj := sign(xj)N(|xj |).

Therefore, the unit interval for signed case is [-1, 1]. Regarding the mapping operator, the difference597

lies in the values of quantization mappings. See App. E.2 for more details.598

E.2 Quantization Mappings599

In this work, we mainly consider linear mapping and dynamic exponent mapping [12]. See Fig. 32600

for illustration of quantization mappings.601
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Figure 32: Visualization of the quantization mappings for the linear and dynamic exponent at 4-bit
precision. Left: Signed case. Right: Unsigned case.

Linear mapping It is notable that the linear mapping considered in our work does not include zero602

in both signed case and unsigned case. Actually, we only use linear mapping in unsigned case, which603

is defined as torch.linspace(0, 1, (2 ** b) + 1)[1:].604

Dynamic exponent mapping Let b be the total bits. In the main text, we mentioned that dynamic605

exponent takes the form T(i) = 10−E(i)fraction(i). In following paragraphs, we will define the606

dynamic exponent mapping formally based on the binary representation.607

In unsigned case, dynamic exponent mapping [12] is composed of exponent bits E, one indicator608

bit and fraction bits F , where b = 1 + E + F . It uses the number of leading zero bits E represents609

the exponent with base 10. The first bit, which is one, serves as an indicator bit that separates the610

exponent and the unsigned linear fraction. The remaining bits F represent an unsigned linear fraction611

distributed evenly in (0.1, 1), which is formally defined as612

pj =
1− 0.1

2F
j + 0.1, 0 ≤ j ≤ 2F ,

fraction[k] =
pk + pk+1

2
, 0 ≤ k ≤ 2F − 1.

Therefore, a number with E exponent bits and F fraction bits valued k has a value of613

10−E × fraction[k].
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For signed case, the only difference is that dynamic exponent mapping additionally uses the first bit614

as the sign thus we have b = 1 + E + 1 + F . Specially, at 8-bit case, we learn from the codebase12615

that dynamic exponent mapping assign 000000002 = 010, 000000012 = 110 in unsigned case and616

assign 100000002 and 000000002 with 110 and 010, respectively. This means −110 is not defined617

and the mapping is not symmetric in signed case. Finally, after collecting all the represented numbers618

and arranging them in a sorted, increasing list, which has a length of 2b, the quantization mapping619

T(i) returns the i-th element of this list.620

The construction of dynamic exponent mapping is unrelated to the number of bits. Therefore, when621

we say we barely turn the 8-bit optimizer into 4-bit optimizer, it just use 4 total bits. The corner cases622

mentioned in last paragraph remain unchanged.623

E.3 Stochastic Rounding624

Stochastic rounding is only used in Tab. 1. In this section, we talk about how to integrate stochastic625

rounding into our formulation of quantization. When stochastic rounding is used, the definition of626

mapping M has some minor changes. Specifically, M is still an element-wise function and defined as627

M(nj) = arg min
0≤i<2b

{nj −T(i) : nj −T(i) ≥ 0} ∪ arg max
0≤i<2b

{nj −T(i) : nj −T(i) ≤ 0} .

In other words, M maps each entry nj to the maximal index set M(nj) such that for any i ∈M(nj)628

there is no other 0 ≤ k ≤ 2b − 1 with T(k) lying between T(i) and nj . Actually, M acts as a filter629

of T and give a more fine-grained range of quantized output candidates. In this definition, M(nj)630

has only one or two points since only stochastic rounding is considered in the final step.631

Finally, we define stochastic rounding Rs. When M(nj) only has one point, Rs just output this632

point. When M(nj) has two points q1 and q2 with T(q1) < nj < T(q2), stochastic rounding (Rs)633

is defined as634

Rs (nj , q1, q2) =


q2,with proba. nj−T(q1)

T(q2)−T(q1)

q1,with proba. T(q2)−nj

T(q2)−T(q1)

F Compression-based Memory Efficient Optimizer Instances635

In this section, we present some examples about compression-based memory efficient optimizers.636

See Compression-based Memory Efficient SGDM in Alg. 2 and Adam in Alg. 3.637

Algorithm 2 Compression-based Memory Efficient SGDM

Require: initial parameter θ0 ∈ Rp, learning rate α, initial momentum m̄0 = 0, total number of
iterations T and momentum parameter β.

1: for t = 1, 2, . . . , T do
2: Sample a minibatch ζt and get stochastic gradient gt = ∇θf(θt−1, ζt)
3: mt−1 ← decompress(m̄t−1)
4: mt ← β ·mt−1 + gt
5: θt ← θt−1 − α ·mt

6: m̄t ← compress(mt)
7: end for
8: return θT

G Rank-1 Normalization638

In this section, we present the detailed formulation of rank-1 normalization in Alg. 4.639

12
https://github.com/TimDettmers/bitsandbytes
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Algorithm 3 Compression-based Memory Efficient Adam

Require: initial parameter θ0 ∈ Rp, learning rate α, initial momentum m̄0 = 0, v̄0 = 0, total
number of iterations T and hyperparameters β1, β2, ε.

1: for t = 1, 2, . . . , T do
2: Sample a minibatch ζt and get stochastic gradient gt = ∇θf(θt−1, ζt)
3: mt−1, vt−1 ← decompress(m̄t−1), decompress(v̄t−1)
4: mt ← β1 ·mt−1 + (1− β1) · gt
5: vt ← β2 · vt−1 + (1− β1) · g2

t
6: m̂t ← mt/(1− βt1)
7: v̂t ← vt/(1− βt2)
8: θt ← θt−1 − α · m̂t/(

√
v̂t + ε)

9: m̄t, v̄t ← compress(mt), compress(vt)
10: end for
11: return θT

Algorithm 4 Rank-1 Normalization

Require: tensor x ∈ Rd1×···×dp ; statistics µr ∈ Rdr for 1 ≤ r ≤ p; permutation function Φ
mapping {1, . . . , d} to indices of tensor x, where d = d1 × · · · × dp.

1: for r = 1, 2, . . . , p do
2: for j = 1, 2, . . . , dr do
3: µr,j = maxi1,...,ir−1,ir+1,...,ip

∣∣x[i1,...,ir−1,j,ir+1,...,ip]

∣∣
4: end for
5: end for
6: for i = 1, 2, . . . , d do
7: Mi = min1≤r≤p µr,Φ(i)r
8: end for
9: reshape 1-dimensional array M to the same shape as x

10: return x/M
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