
A Implementation details1

The diagram of our proposed Neural Lad framework is illustrated in Fig.1.

(b) Vector field

ℱ! = ℎ"(𝑡)𝑓# (𝑧$) 𝑔%(
𝑑𝑋
𝑑𝑡
)

(b) Encoder

ℎ"

𝑡

𝑓#

𝑋!

ℱ!
ℱ! ℱ!ℱ!

0

𝑥$

𝑧&

𝑧'

𝑧$('

𝑧!

1 𝑡 − 1 𝑡
𝑥'

𝑔%

ℱ!(𝑧$)

𝑧$ = 𝑧& +1
)*&

$
ℱ! 𝑧), 𝑥&:), 𝑠 𝑑𝑠

Path 𝑋

𝑥& 𝑥$('

𝑔%

Block 𝐵!

Block 𝐵!

Block 𝐵!

𝑧!

𝐵#

(a) Time expansion

Decoder

$𝑥{!#$: !#&}

𝑧!
())

𝑧!
(+)

Figure 1: Diagram of Neural Lad. (a) The residual architecture of time expansion for the latent
dynamics; (b) The decomposable vector field F (·) w.r.t explicit time-dependent dynamics hw(t),
state-dependent fθ(zt), local change of the interpolated signal path gv(dXdt ); (c) The neural latent
ODE encoder.

2

The time expansion part: we stack multiple linear layers with temporal expansion parts with3

residual architecture. Specifically, we add the time function hw after each linear layer, and take the4

state-dependent layer fθ(zt) and hw(t) as a basic block, then we take the residual as the input to the5

next layer to make the model fit the details better.6

The vector field part: The vector field of Neural Lad consists of three parts: (i) the state-dependent7

layer fθ; (2) the time-dependent layer hw(t); (3) the memory network-based transformation of signal8

path gv. In addition, we use ℓ1 regularization over the basis coefficients of hw(t) to avoid model9

sensitivity to settings of the number of basis.10

The encoder part: Similar to Neural CDE, we solve the latent ODE with defined FΘ;11

The decoder part: The decoder is a one-step convolution layer to generate the outputs with length τ .12

The pseudo code of the proposed Neural Lad is described in Alg. 1. For mult-variate time series13

forecasting, we multiply the function ψγ to model the spatial correlations.

Algorithm 1 Neural Lad for time series forecasting

1: Input: data x<t, t0, ..., tend, fθ, gv , hw, ψγ , ξθ.
2: Output: x̂t, ..., x̂t+τ .
3: Initialize hidden state z0, t0.
4: for i = 0 to t do
5: for l = 0 to L do
6: ẑ

(l)
t ← hw(t)fθ(z̃

(l−1)
t )

7: z̃
(l)
t ← z̃

(l−1)
t − ẑ(l)t

8: end for
9: if Multi-variate time series then

10: zt ← z̃tψγ(zt)× gv(dX/dt)
11: else
12: zt ← z̃tgv(dX/dt)
13: end if
14: end for
15: zt ← ODESolver(fθ, gv, hw, ψγ , t0, z0).
16: {x̂t+1, ..., x̂t+τ} ← ξθ(zt)

14

1



B Experiments details15

We show the detailed settings of hyper-parameters including learning rate, hidden dimensions, weight16

decay, number of season frequencies, number of trends. We run all experiments on a Tesla a100-80g17

GPU. The training time of Neural Lad for the toy dataset is about 8s per epoch. For large real-world18

traffic datasets, the training time is 2-3 minutes per epoch. It is worth note that the NeuralLad19

converges faster than STG-NCDE, so it achieves better performance earlier than baselines.20

It is worth noting that we use larger weight decay for PhysioNe sepsis dataset to avoid over-fitting.21

Because we exploit function gv on control gradient which increases the model fitting ability, so we22

need a larger weight decay and larger lr simultaneously.23

Moreover, the number of seasons with different frequencies is setting to 16− 32 which is large than24

backbones, because we use l1 function which makes the selection of season frequencies and trends25

more flexible.26

Table 1: Detailed hyper-parameter settings of all networks on all datasets.

Tasks Dataset Horizons lags # Season # Trend lr dimensions wdecay

Uni-variate

ETTM1

96 48 16 4 0.001 [32, 64] 1e-3
192 96 16 4 0.001 [32, 64] 1e-3
336 192 16 4 0.001 [32, 64] 1e-3
720 192 16 4 0.001 [32, 64] 1e-3

ETTM2

96 48 16 4 0.001 [32, 64] 1e-3
192 96 16 4 0.001 [32, 64] 1e-3
336 192 16 4 0.001 [32, 64] 1e-3
720 192 16 4 0.001 [32, 64] 1e-3

ETTh2

96 48 16 4 0.001 [32, 64] 1e-3
192 96 16 4 0.001 [32, 64] 1e-3
336 192 16 4 0.001 [32, 64] 1e-3
720 192 16 4 0.001 [32, 64] 1e-3

Weather

96 48 16 4 0.001 [32, 64] 1e-3
192 96 16 4 0.001 [32, 64] 1e-3
336 192 16 4 0.001 [32, 64] 1e-3
720 192 16 4 0.001 [32, 64] 1e-3

Multi-variate

PEMSD3 12 12 16 4 0.001 [64, 128] 1e-3
PEMSD4 12 12 16 4 0.001 [64, 128] 1e-3
PEMSD7 12 12 16 4 0.001 [64, 128] 1e-3
PEMSD8 12 12 16 4 0.001 [64, 128] 1e-3

PhysioNe OI - - 32 2 0.0002 [49, 49] 0.025
Sepsis No OI - - 32 2 0.0002 [49, 49] 0.02

C Visualization27

Visualization of memory network enhanced scores. We show the memory network enhanced28

control gradient comparisons in Fig.2. The middle column is the observed time series, and the right29

column is he weights of the 83rd components along time in log scale. We can observe that the30

proposed memory-enhanced control gradients can capture the oscillation of time series.31

Visualization of basis-expanded hidden states. we visualize the hidden states of time series before32

and after basis expansion in Fig.4. The left column shows the hidden states before expansion, and the33

left is the hidden state after seasonality-trend transformation. More specifically, we first transform the34

hidden state with different frequencies represented with coupled sine and cosine periodical functions,35

then added by the polynomial functions. We can see that the hidden states after time-dependent36

expansion can capture more details locally, so the output network weights of Neural Lad in Fig.5 are37

more sparse than Neural CDE without no basis-expansion components.38

Visualization of predicted time series on short and long horizons. we visualize the prediction39

performance in the test dataset in Fig.3. The left two columns are the comparison of Neural CDE40

and Neural Lad at short horizon with 12 steps, and the right two columns show that with horizon as41

48. We can observe that our model performs significantly better at both short and long horizons. In42

2



0 100 200

0

50

100

0 50 100 150 200 250
−0.5

0.0

0.5 true

0 50 100 150 200 250

5.000

5.005

5.010 scores

4.5

5.0

0 100 200

0

50

100

0 50 100 150 200 250
−1

0

1
true

0 50 100 150 200 250
5.0

5.5

6.0
scores

2.5

5.0

7.5

10.0

0 100 200

0

50

100

0 50 100 150 200 250
−1

0

1
true

0 50 100 150 200 250

6

8

10 scores

10

20

0 100 200

0

50

100

0 50 100 150 200 250

0

1 true

0 50 100 150 200 250
5.00

5.25

5.50

5.75
scores

2

4

6

8

0 100 200

0

50

100

0 50 100 150 200 250
−0.5

0.0

0.5

1.0 true

0 50 100 150 200 250
5.00

5.25

5.50

5.75 scores

2

4

6

8

Figure 2: Visualization of memory network enhanced control gradient scores on weather dataset.
Left: attention weights of memory network. Middle: the observed time series. Right: the weights of
the 83rd components along time in log scale.

0 200 400

−1.0

−0.5

0.0

true (step-12)
Ours (step-12)

0 200 400
−1

0

1

2

true (step-12)
CDE (step-12)

0 200 400

−1.0

−0.5

0.0

0.5

true (step-48)
Ours (step-48)

0 200 400
−1

0

1

2

true (step-48)
CDE (step-48)

0 200 400

0.0

0.5

1.0 true (step-12)
Ours (step-12)

0 200 400

−1.0

−0.5

0.0

0.5

1.0 true (step-12)
CDE (step-12)

0 200 400
−0.5

0.0

0.5

1.0 true (step-48)
Ours (step-48)

0 200 400
−1.0

−0.5

0.0

0.5

1.0 true (step-48)
CDE (step-48)

0 200 400
−0.4

−0.2

0.0

0.2

0.4

0.6 true (step-12)
Ours (step-12)

0 200 400

0.0

0.5

1.0

1.5

2.0

true (step-12)
CDE (step-12)

0 200 400

−0.25

0.00

0.25

0.50

0.75
true (step-48)
Ours (step-48)

0 200 400
−0.5

0.0

0.5

1.0

1.5
true (step-48)
CDE (step-48)

Figure 3: Visualization of predicting results comparisons between Neural CDE and Neural Lad (ours).
The left two figures are performances at step-12 (short horizon) and the right two figures are results
at step-48 (long horizon)

.

3



0 50 100 150 200 250

9.6

9.8 org-z

0 50 100 150 200 250

3.8

3.9
expansion-z

0 50 100 150 200 250
9.6

9.8

10.0 org-z

0 50 100 150 200 250
3.8

3.9

4.0 expansion-z

0 50 100 150 200 250

9.67

9.68 org-z

0 50 100 150 200 250
3.84

3.85

expansion-z

0 50 100 150 200 250
9.5

10.0

10.5 org-z

0 50 100 150 200 250

3.75

4.00

4.25
expansion-z

Figure 4: Visualization of basis expansion transformation on weather dataset. Left figure: hidden
states before basis expansion. Right figure: hidden states after basis expansion including season and
trend transformation.

0 25 50

0

20

40

60

Linear weights

0 20 40 60 80

0

10

20

30

Conv weights

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50

0

20

40

60

Linear weights

0 20 40 60 80

0

10

20

30

Conv weights

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Visualization of network weights. The above two figures are the output linear weight
and end convolution weights of Neural Cde. The bottom two figures are the linear weights and end
convolutions weights of Neural Lad.

addition, both models fit well on short-distance prediction while it is hard to predict long horizons43

accurately.44

Visualization of optimized network weights. we visualize the learned network weights including45

the linear weights of the vector field function fθ and the end-convolution weights of function ξθ for46

Neural CDE and our proposed Neural Lad. For a fair comparison, we normalize the model parameters47

of two layers to the same range. We can observe that the network weights of Neural Lad are more48

sparse than those of Neural CDE, demonstrating that the proposed two components of Neural Lad49

can capture the hidden dynamic better so it is not necessary to fit the future time series with more50

parameters.51

4


	Implementation details
	Experiments details
	Visualization

