Table 1: Hyper-parameters settings.
Method Symbol Value Description

M 150 # of prompt tokens
r 1 # of demonstrations
n 4.0 threshold
- 12 batch size
- 0.3 learning rate for PROMPT-TUNING
- 4 beam size
c3 - 1x10™* learning rate for FINE-TUNING
B 50 evaluation is done every # epochs for PROMPT-TUNING of
o T5-BASE or T5-SMALL
) 25 evaluation is done every # epochs for PROMPT-TUNING of
T5-LARGE
. 10 evaluation is done every # epochs for FINE-TUNING of
T5-BASE or T5-SMALL
) 5 evaluation is done every # epochs for FINE-TUNING of
T5-LARGE
- 15000 # of maximum epochs for PROMPT-TUNING
- 300 # of maximum epochs for FINE-TUNING
- 512 maximum # of input tokens
- 10 stop training when the specified metric worsens for # evaluations
- 32 batch size
- 2 x 10™* learning rate
} 15 memory size of replayed examples in EMR, EMAR,
TR and EWC
- 5 beam size
- 55 # of maximum epochs
Other. - 1 # of maximum epochs for the second iterations in EMAR
Baselines 2 N-way of MAML
- 1 K-shot of MAML
- 25 # of meta-task in MAML
- 300 maximum # of input tokens
- 1 # of demonstrations

- 1.0 regulation weight in EWC

A Hyperparameter Details

The detailed settings of the hyper-parameters used in our experiments are presented in Table[I]

B Aligning GPT’s tokenizer and T5’s tokenizer

When calling OpenAI’s API to utilize text-davinci-003 (hereinafter referred to as GPT), we can
get a predicted SQL query po.z made up of L GPT tokens and a sequence of output distributions
si.; where each s, € s is the probabilities of the most probable tokens at each decoding step,
corresponding to p;. Our objective is to convert the GPT output distributions to the the format of TS
tokenizer and get the target distributions t where each t; € t contains the probabilities of TS tokens,
making it trainable for the student models. To achieve this goal, we apply the algorithm shown in
Algorithm 1]

First, we evaluate whether GPT produces the correct SQL by comparing p with the gold SQL g. If
not, we expand g as a sequence of one-hot distributions for student’s training. Otherwise, we tokenize
the GPT predicted SQL query using the TS tokenizer and get a sequence of one-hot distributions
q1.x made up of K TS5 tokens with probability 1. And our target is to align s and q. Here we apply
an one-to-one strategy. If there exists an one-to-one mapping of a T5 token q; and a GPT token p;,
we use the GPT distribution s; as the T5 distribution. In other cases where a mismatch exists, we
simply take the one-hot distribution q; as the label.

Algorithm 1 Aligning GPT’s tokenizer and T5’s tokenizer

Require: GPT predicted SQL query p;.1,, GPT output distributions s;.r,, gold SQL query g,
TS5 Tokenizer T.
1: initialize t = []
2: function FINDONETOONEMAPPING(q;, P, S)
3 if Exists an one-to-one mapping of q; and p; then
4: return s;
5: else
6 return None
7 end if
8: end function
9: if p is equivalent to g then
10: q1.x = T.TOKENIZE(p)
11: for i :=1to K do

12: if FINDONETOONEMAPPING(q;, P, S) is not None then
13: t.APPEND(FINDONETOONEMAPPING(q;, P, S))

14: else

15: t.APPEND(q;)

16: end if

17: end for

18: else

19: t=g

20: end if

21: return t

	Hyperparameter Details
	Aligning GPT's tokenizer and T5's tokenizer

