
Table 1: Hyper-parameters settings.
Method Symbol Value Description

C3

M 150 # of prompt tokens
r 1 # of demonstrations
η 4.0 threshold
- 12 batch size
- 0.3 learning rate for PROMPT-TUNING
- 4 beam size
- 1× 10−4 learning rate for FINE-TUNING

- 50
evaluation is done every # epochs for PROMPT-TUNING of
T5-BASE or T5-SMALL

- 25
evaluation is done every # epochs for PROMPT-TUNING of
T5-LARGE

- 10
evaluation is done every # epochs for FINE-TUNING of
T5-BASE or T5-SMALL

- 5
evaluation is done every # epochs for FINE-TUNING of
T5-LARGE

- 15000 # of maximum epochs for PROMPT-TUNING
- 300 # of maximum epochs for FINE-TUNING
- 512 maximum # of input tokens
- 10 stop training when the specified metric worsens for # evaluations

Other
Baselines

- 32 batch size
- 2× 10−4 learning rate

- 15
memory size of replayed examples in EMR, EMAR,
TR and EWC

- 5 beam size
- 55 # of maximum epochs
- 1 # of maximum epochs for the second iterations in EMAR
- 2 N-way of MAML
- 1 K-shot of MAML
- 25 # of meta-task in MAML
- 300 maximum # of input tokens
- 1 # of demonstrations
- 1.0 regulation weight in EWC

A Hyperparameter Details1

The detailed settings of the hyper-parameters used in our experiments are presented in Table 1.2

B Aligning GPT’s tokenizer and T5’s tokenizer3

When calling OpenAI’s API to utilize text-davinci-003 (hereinafter referred to as GPT), we can4

get a predicted SQL query p0:L made up of L GPT tokens and a sequence of output distributions5

s1:L where each si ∈ s is the probabilities of the most probable tokens at each decoding step,6

corresponding to pi. Our objective is to convert the GPT output distributions to the the format of T57

tokenizer and get the target distributions t where each ti ∈ t contains the probabilities of T5 tokens,8

making it trainable for the student models. To achieve this goal, we apply the algorithm shown in9

Algorithm 1.10

First, we evaluate whether GPT produces the correct SQL by comparing p with the gold SQL g. If11

not, we expand g as a sequence of one-hot distributions for student’s training. Otherwise, we tokenize12

the GPT predicted SQL query using the T5 tokenizer and get a sequence of one-hot distributions13

q1:K made up of K T5 tokens with probability 1. And our target is to align s and q. Here we apply14

an one-to-one strategy. If there exists an one-to-one mapping of a T5 token qi and a GPT token pj ,15

we use the GPT distribution sj as the T5 distribution. In other cases where a mismatch exists, we16

simply take the one-hot distribution qi as the label.17

1

Algorithm 1 Aligning GPT’s tokenizer and T5’s tokenizer
Require: GPT predicted SQL query p1:L, GPT output distributions s1:L, gold SQL query g,

T5 Tokenizer T.
1: initialize t = []
2: function FINDONETOONEMAPPING(qi, p, s)
3: if Exists an one-to-one mapping of qi and pj then
4: return sj
5: else
6: return None
7: end if
8: end function
9: if p is equivalent to g then

10: q1:K = T.TOKENIZE(p)
11: for i := 1 to K do
12: if FINDONETOONEMAPPING(qi, p, s) is not None then
13: t.APPEND(FINDONETOONEMAPPING(qi, p, s))
14: else
15: t.APPEND(qi)
16: end if
17: end for
18: else
19: t = g
20: end if
21: return t

2

	Hyperparameter Details
	Aligning GPT's tokenizer and T5's tokenizer

