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This supplementary document is organized as follows:1

Section 1 illustrates the process of how to form a hierarchical receptive field within the combination2

of the shifting and interaction operations.3

Section 2 provides the implementation details of Rubik’s cube convolution within the image restora-4

tion baselines.5

Section 3 provides the evaluation of our proposed Rubik’s cube convolution on the classification task.6

We conduct the experiments on three widely-used classification benchmarks with three representative7

baselines.8

Section 4 provides more quantitative and qualitative results.9

1 The Hierarchical Receptive Field10

As illustrated in Figure 1, given an input feature map X ∈ RH×W×C, we evenly divide X into five11

parts by the channel dimension, where the first is kept unchanged and the remaining four ones are12

shifted in a distinct spatial direction: left, right, top, and down. Subsequent to the shifting operation,13

we discard out-of-focus pixels and any vacant pixels are filled with zeros. The shifted feature X̂ can14

be written as:15

X̂[0 : H, 0 : W, 0 : Cid]← X[0 : H, 0 : W, 0 : Cid],

X̂[0 : H, 1 : W,Cid : Cid +Cg]← X[0 : H, 0 : W − 1,Cid : Cid +Cg],

X̂[0 : H, 0 : W − 1,Cid +Cg : Cid + 2Cg]← X[0 : H, 1 : W,Cid +Cg : Cid + 2Cg],

X̂[0 : H− 1, 0 : W,Cid + 2Cg : Cid + 3Cg]← X[1 : H, 0 : W,Cid + 2Cg : Cid + 3Cg],

X̂[1 : H, 0 : W,Cid + 3Cg : Cid + 4Cg]← X[0 : H− 1, 0 : W,Cid + 3Cg : Cid + 4Cg],

(1)

where Cid is the number of channels of the unchanged identity part, Cg is the number of channels of16

a shifted group, and Cid + 4 ∗Cg = C. Next, the shifted feature X̂ is split into X̂ori ∈ RH×W×Cid17

and {X̂c1, X̂c2, X̂c3, X̂c4} ∈ RH×W×Cg along the channel dimension.18

After the shifting operation, we construct the high-order interaction in the channel dimension as19

described in the manuscript. As shown in Figure 1, for the (i, j) pixel in the up-shifting group, X̂c1,20

it will interacts with the (i+ p, j) pixel in the down-shifting group, X̂c12, and p indicates the number21

of the shifted pixels. Therefore, the combination of the shifting and interaction leads to a stratified22

receptive field along the channel dimension, reminiscent of a Rubik’s cube.23
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Figure 1: An illustration of the shifting operation and the formulation of the hierarchical receptive
field. Specifically, the input feature is separated into five groups, where the last four are shifted
into four direction and the first is unchanged. When a up-shifting group interacts the next down-
shifting group, the (i, j) pixel will interweave with its neighboring pixel, (i+ p, j), where p denotes
the number of shifted pixels. Therefore, with the combined action of the shifting and interaction
operation, the receptive field will be expanded along the downward direction. The red-shaded region
indicates the receptive field and the scarlet-shaded region presents the newly expanded receptive field
after the corresponding interaction.
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Figure 2: Visualization of the effective receptive field [1]. (a) The baseline indicates the effective
receptive field of the default architecture, and the last five describe the effective receptive field of the
(b) identity group, X̂ori, (c) left-shifting group, X̃c1, (d) right-shifting group, X̃c2, (e) up-shifting
group, X̃c3, (f) and down-shifting group, X̃c4 after interactions in the Rubik’s cube convolution.

We visualize the effective receptive field [1] of the distinct groups in the Rubik’s cube convolution.24

Figure 2 demonstrates the effective receptive field expands along the up, down, left, and right25

directions after the corresponding shifting and interaction.26

2 Implementation Details27

Based on the competitive baselines, we create several variants of the baselines by replacing the28

standard convolution with the proposed Rubik’s cube convolution:29

1) Original: the baseline without any changes;30

2) RubikConv: replacing the standard convolution in the original model with our designed31

Rubik’s cube convolution;32

3) Conv1x1: a baseline that replaces the RubikConv in the setting of 2) with four convolution33

layers with 1 × 1 kernel for a fair comparison with approximately the same number of34

trainable parameters as 2).35

Taking a network consisted of a stack of convolution layers with a 3 × 3 kernel for example, we36

replace the standard convolution layer with our proposed Rubik’s cube convolution layer in 2) or four37

convolution with 1× 1 kernel in 3) from top to bottom.38
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3 Evaluation on Image Classification39

Due to the limited space in the main manuscript, we provide the evaluation on the image clas-40

sification task in the supplementary material. We choose three widely-used image classification41

benchmarks: CIFAR-10 [2], CIFAR-100 [2], and CUB [3]. For comparison, we employ three42

algorithms: AlexNet [4], VGG [5], and ResNet [6].43

To validate the effectiveness of the proposed approach, we conduct extensive experiments as described44

in the implementation details. The quantitative results are presented in Table 1, where the best results45

are highlighted in bold. For the three recognition models across three benchmarks, integrating our46

Rubik’s cube convolution operation into the baseline will achieve the performance improvement,47

demonstrating the effectiveness of our operation in the recognition task.48

Table 1: Quantitative comparison of image classification. “Acc-1” and “Acc-5” indicate the top-1 and
top-5 classification accuarcy.

Model Metric
CIFAR-10 CIFAR-100 CUB

Original Conv1x1 RubikConv Original Conv1x1 RubikConv Original Conv1x1 RubikConv

AlexNet
Acc-1 77.98 75.48 82.63 49.98 48.27 52.77 61.99 60.05 64.31
Acc-5 98.69 95.71 98.94 70.43 66.41 76.12 83.48 83.09 86.73

VGG-16
Acc-1 84.62 83.54 87.40 55.76 55.06 57.39 79.70 78.52 80.79
Acc-5 99.22 96.09 99.26 76.36 76.43 79.20 88.34 86.85 89.06

ResNet-18
Acc-1 89.45 87.85 91.90 59.63 58.74 62.06 85.72 84.16 87.05
Acc-5 99.65 96.83 99.70 82.08 80.47 83.90 93.60 92.87 94.65

4 Experiments49

Quantitative Comparison. Due to the limited space, we present the comparison on the World-III50

dataset in the supplementary material. As the experiments on the manuscript, we adopt three baselines51

(PanNet [7], MulNet [8], and INNFormer [9]) for evaluation. We conduct experiments as described52

in the implementation details. As described in Table 2 , we observe a performance gain by integrating53

our proposed Rubik’s cube convolution across all competitive baselines.54

Table 2: Quantitative comparisons of pan-sharpening.

Model Configurations
WorldView-III

PSNR↑ SSIM↑ SAM↓ ERGAS↓

PanNet

Original 29.6863 0.9072 0.0853 3.4260
Conv1x1 29.4305 0.8973 0.1008 3.6954
RubikConv 39.9831 0.9139 0.0812 3.2453

MulNet

Original 30.4807 0.9211 0.0769 3.1196
Conv1x1 30.4186 0.9131 0.0837 3.3364
RubikConv 30.6426 0.9231 0.0.0754 3.0835

INNFormer

Original 30.4349 0.9204 0.0756 3.1439
Conv1x1 30.3850 0.9175 0.0827 3.3061
RubikConv 30.5052 0.9211 0.0742 3.1118

Qualitative Comparison. Due to the limited space in the manuscript, we present more visualizations55

in the supplementary materials. As illustrated in Figure 3 and 4, integrating our Rubik’s cube56

convolution into baselines generate the visually pleasant enhanced results. Specifically, the baseline57

and the baseline with Conv1x1 fails to recover texture and suffers from artifacts and color distortion.58

In contrast, the baseline combined with our Rubik’s cube convolution operator achieves details59

reconstruction, artifact reduction, and color consistency.60
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We also provide the visual comparison on the image de-noising task in Figure 5 and 6. The qualitative61

results consistently demonstrate that the improvement on the visual quality by integrating our Rubik’s62

cube convolution. The comprehensive visual results in the supplementary material demonstrate the63

effectiveness of our proposed operator.64

(a) Input (c) Conv1x1 (d) RubikConv(b) Original

Figure 3: Visual comparison of DRBN [10] on the LOL [11] dataset.

(a) Input (c) Conv1x1 (d) RubikConv(b) Original

Figure 4: Visual comparison of SID [12] on the LOL [11] dataset.

(a) Original

36.051 / 0.917

(b) Conv1x1

35.867 / 0.908

(c) RubikConv

36.681 / 0.926

(d) Original

36.314 / 0.926

(e) Conv1x1

36.353 / 0.928

(f) RubikConv

37.281 / 0.939

Figure 5: Visual comparison of DnCNN [13] on the SIDD [14] dataset. The second row presents the
error map between the corresponding denoised results and the clean images. The numbers indicate
the corresponding PSNR/SSIM metrics.
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(a) Original

39.542 / 0.949

(b) Conv1x1

39.349 / 0.948

(c) RubikConv

39.614 / 0.950

(d) Original

39.579 / 0.953

(e) Conv1x1

39.534 / 0.953

(f) RubikConv

39.611 / 0.956

Figure 6: Visual comparison of MPRNet [15] on the SIDD [14] dataset. The second row presents the
error map between the corresponding denoised results and the clean images. The numbers indicate
the corresponding PSNR/SSIM metrics.
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