A Winograd transformation matrices

Depending on the particular choice of Winograd domain (i.e., polynomial domain), transformation
matrices A, B, and G in the Winograd algorithm can be different. In the paper, we present that the
most popular interpolation points for F(2,3) are [0, 41, —1] and then these transformation matrices
can be constructed as follows:
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For F(4,3) and F(6,3), we choose the same transformation matrices as BQW [[1]]. For F(4,3), the
Winograd transformation matrices are as follows:
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For F(6,3), the Winograd transformation matrices are as follows:
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B Derivatives of transformation matrices

In the paper, in order to align these transformation procedures after quantization, we propose to adjust
transformation matrices via an optimization procedure as follows:
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By using the straight-through estimator [2] to approximate the gradient through the round function
as a pass-through operation, we can obtain the derivatives of A, B and G. In this paper, we directly
present the derivative of B. Here, a more comprehensive derivation is provided as follows:
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We have obtained the derivative of B;;, and now we can provide the expression for the derivative of
B:
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The derivatives of A, G and O can be computed in a similar manner:
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C Optimal quantization scale for Guassion varibles

In Theorem 1, in order to demonstrate that the optimal per-pixel scale .S can be factorized into vectors,
we rely on the conclusion that the optimal scale s* to minimize the mean-square error of quantization
of Gaussian variables z ~ A/ (0, 02) is proportional to o, i.e., s* = Ko, where K is a constant. Here,
we will provide a proof of it.

Theorem C.1. Assuming z ~ N(0,0?), the optimal scale s* to minimize the mean-square error of
quantization of z is proportional to the standard deviation o, i.e., s* = Ko, where K is a constant.

Proof. Because z ~ N'(0,0?), z can be reparameterized as z = o - u, where u ~ N(0, 1).
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Eq. (18) can be treated as a function of s/o when solving for s with o as a known value. Assuming
K minimizes function h(x), i.e., K = argmin h(x), we have:
x

s* = argmin E[(Q(z) — 2)*] = argmin U2h(§) =K-o (23)
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D Experiments on other architectures

In Section 5, we compare our methods to previous work BQW/1] on the ResNet model family with
comprehensive experiment settings, including various bit widths, tile sizes, and datasets. Here, we
present a similar analysis for two other popular architectures VGG and Squeezenet using the Cifar-10
dataset. The results are shown in Table[T]and Table[2] These results align with our analysis in Section
5. Our PTQ-Aware Winograd (PAW) method outperforms the strong baseline introduced in Section 5
and our FSQ method is well-compatible with PAW.

Table 1: PTQ results of VGG11 on CIFAR-10.

Partial Quantization Full Quantization

Model Tile Bits
Baseline PAW FSQ FSQ+PAW
F(4.3) 6 89.13 91.56 86.59 91.55
VGG-11 ’ 8 92.02 92.28 90.82 91.83
(92.02%) F(6.3) 6 75.10 89.94 68.98 90.34
’ 8 91.27 91.88 88.44 91.63

Table 2: PTQ results of SqueezeNet on CIFAR-10.

Partial Quantization Full Quantization

Model Tile Bits
Baseline PAW FSQ FSQ+PAW
F(4.3) 6 89.69 91.98 88.66 91.78
SqueezeNet ’ 8 92.61 92.68  92.01 92.80
(92.62%) F(6.3) 6 80.50 90.67 76.48 91.26
’ 8 92.37 92.61 90.54 92.42
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