
A Appendix A428

A.1 Model specification.429

Here we provide all details about our model specification. The joint distribution for our model is430

p(u1:M , s1:B , θdyn, θdec) = p(u1:N |s1:B , θdyn, θdec)p(s1:B |θdyn)p(θdyn)p(θdec). (23)

Next, we specify each component in detail.431

Parameter priors. The parameter priors are isotropic zero-mean multivariate normal distributions:432

p(θdyn) = N (θdyn|0, I), (24)
p(θdec) = N (θdec|0, I), (25)

where N is the normal distribution, 0 is a zero vector, and I is the identity matrix, both have an433

appropriate dimensionality dependent on the number of encoder and dynamics parameters.434

Continuity prior. We define the continuity prior as435

p(s1:B |θdyn) = p(s1)

B∏
b=2

p(sb|sb−1, θdyn), (26)

=

 N∏
j=1

p(sj1)

 B∏
b=2

N∏
j=1

p(sjb|sb−1, θdyn)

 , (27)

=

 N∏
j=1

N (sj1|0, I)

 B∏
b=2

N∏
j=1

N
(
sjb|z(t[b],xj ; t[b−1], sb−1, θdyn), σ

2
cI

)
.

 , (28)

where N is the normal distribution, 0 ∈ Rd is a zero vector, I ∈ Rd×d is the identity matrix, and436

σc ∈ R is the parameter controlling the strength of the prior. Smaller values of σc tend to produce437

smaller gaps between the sub-trajectories.438

Observation model

p(u1:N |s1:B , θdyn, θdec) =

B∏
b=1

∏
i∈Ib

N∏
j=1

p(uj
i |sb, θdyn, θdec) (29)

=

B∏
b=1

∏
i∈Ib

N∏
j=1

p(uj
i |gθdec(z(ti,xj ; t[b], sb, θdyn))) (30)

=

B∏
b=1

∏
i∈Ib

N∏
j=1

N (uj
i |gθdec(z(ti,xj ; t[b], sb, θdyn)), σ

2
uI), (31)

where N is the normal distribution, σ2
u is the observation noise variance, and I ∈ RD×D is the439

identity matrix. Note again that z(ti,xj ; t[b], sb, θdyn) above equals the ODE forward solution440

ODESolve(ti; t[b], sb, θdyn) at grid location xj .441

A.2 Approximate posterior specification.442

Here we provide all details about the approximate posterior. We define the approximate posterior as443

q(θdyn, θdec, s1:B) = q(θdyn)q(θdec)q(s1:B) = qψdyn(θdyn)qψdec(θdec)

B∏
b=1

N∏
j=1

qψj
b
(sjb). (32)

Next, we specify each component in detail.444
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Dynamics parameters posterior. We define qψdyn(θdyn) as445

qψdyn(θdyn) = N (θdyn|γdyn,diag(τ
2
dyn)), (33)

where γdyn and τ 2
dyn are vectors with an appropriate dimension (dependent on the number of dynamics446

parameters), and diag(τ 2
dyn) is a matrix with τ 2

dyn on the diagonal. We define the vector of variational447

parameters as ψdyn = (γdyn, τ
2
dyn). We optimize directly over ψdyn and initialize γdyn using Xavier448

(Glorot and Bengio, 2010) initialization, while τdyn is initialized with each element equal to 9 · 10−4.449

Decoder parameters posterior. We define qψdec(θdec) as450

qψdec(θdec) = N (θdec|γdec,diag(τ
2
dec)), (34)

where γdec and τ 2
dec are vectors with an appropriate dimension (dependent on the number of decoder451

parameters), and diag(τ 2
dec) is a matrix with τ 2

dec on the diagonal. We define the vector of variational452

parameters as ψdec = (γdec, τ
2
dec). We optimize directly over ψdec and initialize γdec using Xavier453

(Glorot and Bengio, 2010) initialization, while τdec is initialized with each element equal to 9 · 10−4.454

Shooting variables posterior. We define qψj
b
(sjb) as455

qψj
b
(sjb) = N (sjb|γ

j
b ,diag([τ

j
b ]

2))), (35)

where the vectors γj
b , τ

j
b ∈ Rd are returned by the encoder hθenc , and diag([τ j

b ]
2) is a matrix with456

[τ j
b ]

2 on the diagonal. We define the vector of variational parameters asψj
b = (γj

b , [τ
j
b ]). Because the457

variational inference for the shooting variables is amortized, our model is trained w.r.t. the parameters458

of the encoder network, θenc.459

B Appendix B460

B.1 Derivation of ELBO.461

For our model and the choice of the approximate posterior the ELBO can be written as462

L =

∫
q(θdyn, θdec, s1:B) ln

p(u1:M , s1:B , θdyn, θdec)

q(θdyn, θdec, s1:B)
dθdyndθdecds1:B (36)

=

∫
q(θdyn, θdec, s1:B) ln

p(u1:M |s1:B , θdyn, θdec)p(s1:B |θdyn)p(θdyn)p(θdec)

q(s1:B)q(θdyn)q(θdec)
dθdyndθdecds1:B

(37)

=

∫
q(θdyn, θdec, s1:B) ln p(u1:M |s1:B , θdyn, θdec)dθdyndθdecds1:B (38)

−
∫

q(θdyn, θdec, s1:B) ln
q(s1:B)

p(s1:B |θdyn)
dθdyndθdecds1:B (39)

−
∫

q(θdyn, θdec, s1:B) ln
q(θdyn)

p(θdyn)
dθdyndθdecds1:B (40)

−
∫

q(θdec, θdec, s1:B) ln
q(θdec)

p(θdec)
dθdyndθdecds1:B (41)

= L1 − L2 − L3 − L4. (42)
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Next, we will look at each term Li separately.463

L1 =

∫
q(θdyn, θdec, s1:B) ln p(u1:M |s1:B , θdyn, θdec)dθdyndθdecds1:B (43)

=

∫
q(θdyn, θdec, s1:B) ln

 B∏
b=1

∏
i∈Ib

N∏
j=1

p(uj
i |sb, θdyn, θdec)

dθdyndθdecds1:B (44)

=

B∑
b=1

∑
i∈Ib

N∑
j=1

∫
q(θdyn, θdec, s1:B) ln

[
p(uj

i |sb, θdyn, θdec)
]
dθdyndθdecds1:B (45)

=

B∑
b=1

∑
i∈Ib

N∑
j=1

∫
q(θdyn, θdec, sb) ln

[
p(uj

i |sb, θdyn, θdec)
]
dθdyndθdecdsb (46)

=

B∑
b=1

∑
i∈Ib

N∑
j=1

Eq(θdyn,θdec,sb) ln
[
p(uj

i |sb, θdyn, θdec)
]
. (47)

464

L2 =

∫
q(θdyn, θdec, s1:B) ln

q(s1:B)

p(s1:B |θdyn)
dθdyndθdecds1:B (48)

=

∫
q(θdyn, θdec, s1:B) ln

[
q(s1)

p(s1)

B∏
b=2

q(sb)

p(sb|sb−1, θdyn)

]
dθdyndθdecds1:B (49)

=

∫
q(θdyn, θdec, s1:B) ln

 N∏
j=1

q(sj1)

p(sj1)

dθdyndθdecds1:B (50)

+

∫
q(θdyn, θdec, s1:B) ln

 B∏
b=2

N∏
j=1

q(sjb)

p(sjb|sb−1, θdyn)

dθdyndθdecds1:B (51)

=

N∑
j=1

∫
q(θdyn, θdec, s1:B) ln

[
q(sj1)

p(sj1)

]
dθdyndθdecds1:B (52)

+

B∑
b=2

∫
q(θdyn, θdec, s1:B)

N∑
j=1

ln

[
q(sjb)

p(sjb|sb−1, θdyn)

]
dθdyndθdecds1:B (53)

=

N∑
j=1

∫
q(sj1) ln

[
q(sj1)

p(sj1)

]
dsj1 (54)

+

B∑
b=2

∫
q(θdyn, sb−1, sb)

N∑
j=1

ln

[
q(sjb)

p(sjb|sb−1, θdyn)

]
dθdyndsb−1dsb (55)

=

N∑
j=1

∫
q(sj1) ln

[
q(sj1)

p(sj1)

]
dsj1 (56)

+

B∑
b=2

∫
q(θdyn, sb−1)

N∑
j=1

[∫
q(sjb) ln

q(sjb)

p(sjb|sb−1, θdyn)
dsjb

]
dθdyndsb−1 (57)

=

N∑
j=1

KL
(
q(sj1)∥p(s

j
1)
)
+

B∑
b=2

Eq(θdyn,sb−1)

 N∑
j=1

KL
(
q(sjb)∥p(s

j
b|sb−1, θdyn)

) , (58)

where KL is Kullback–Leibler (KL) divergence. Both of the KL divergences above have a closed465

form but the expectation w.r.t. q(θdyn, sb−1) does not.466

L3 = KL(q(θdyn)∥p(θdyn)), L4 = KL(q(θdec)∥p(θdec)). (59)
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B.2 Computation of ELBO.467

We compute the ELBO using the following algorithm:468

1. Sample θdyn, θdec from qψdyn(θdyn), qψdec(θdec).469

2. Sample s1:B by sampling each sjb from qψj
b
(sjb) with ψj

b = hθenc(u[t[b],xj ]).470

3. Compute u1:M from s1:B as in Equations 14-16.471

4. Compute ELBO L (KL terms are computed in closed form, for expectations we use Monte472

Carlo integration with one sample).473

Sampling is done using reparametrization to allow unbiased gradients w.r.t. the model parameters.474

C Appendix C475

C.1 Datasets.476

SHALLOW WATER. The shallow water equations are a system of partial differential equations477

(PDEs) that simulate the behavior of water in a shallow basin. These equations are effectively a478

depth-integrated version of the Navier-Stokes equations, assuming the horizontal length scale is479

significantly larger than the vertical length scale. Given these assumptions, they provide a model480

for water dynamics in a basin or similar environment, and are commonly utilized in predicting the481

propagation of water waves, tides, tsunamis, and coastal currents. The state of the system modeled482

by these equations consists of the wave height h(t, x, y), velocity in the x-direction u(t, x, y) and483

velocity in the y-direction v(t, x, y). Given an initial state (h0, u0, v0), we solve the PDEs on a484

spatial domain Ω over time interval [0, T ]. The shallow water equations are defined as:485

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0, (60)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
= 0, (61)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
= 0, (62)

where g is the gravitational constant.486

We set the spatial domain Ω to be a unit square and use periodic boundary conditions. We set T = 0.1.487

The solution is evaluated at randomly selected spatial locations and time points. We use 1089 spatial488

locations and 25 time points. The spatial end temporal grids are the same for all trajectories. Since we489

are dealing with partially-observed cases, we assume that we observe only the wave height h(t, x, y).490

For each trajectory, we start with zero initial velocities and the initial height h0(x, y) generated as:491

h̃0(x, y) =

N∑
k,l=−N

λkl cos(2π(kx+ ly)) + γkl sin(2π(kx+ ly)), (63)

h0(x, y) = 1 +
h̃0(x, y)−min(h̃0)

max(h̃0)−min(h̃0)
, (64)

where N = 3 and λkl, γkl ∼ N (0, 1).492

The datasets used for training, validation, and testing contain 60, 20, and 20 trajectories, respectively.493

We use scikit-fdiff (Cellier, 2019) to solve the PDEs.494

NAVIER-STOKES. For this dataset we model the propagation of a scalar field (e.g., smoke concen-495

tration) in a fluid (e.g., air). The modeling is done by coupling the Navier-Stokes equations with the496

Boussinesq buoyancy term and the transport equation to model the propagation of the scalar field.497

The state of the system modeled by these equations consists of the scalar field c(t, x, y), velocity in498

x-direction u(t, x, y), velocity in y-direction v(t, x, y), and pressure p(t, x, y). Given an initial state499
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(c0, u0, v0, p0), we solve the PDEs on a spatial domain Ω over time interval [0, T ]. The Navier-Stokes500

equations with the transport equation are defined as:501

∂u

∂x
+

∂v

∂y
= 0, (65)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
, (66)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
+ c, (67)

∂c

∂t
= −u

∂c

∂x
− v

∂c

∂y
+ ν

(
∂2c

∂x2
+

∂2c

∂y2

)
, (68)

where ν = 0.002.502

We set the spatial domain Ω to be a unit square and use periodic boundary conditions. We set T = 2.0,503

but drop the first 0.5 seconds due to slow dynamics during this time period. The solution is evaluated504

at randomly selected spatial locations and time points. We use 1089 spatial locations and 25 time505

points. The spatial and temporal grids are the same for all trajectories. Since we are dealing with506

partially-observed cases, we assume that we observe only the scalar field c(t, x, y).507

For each trajectory, we start with zero initial velocities and pressure, and the initial scalar field c0(x, y)508

is generated as:509

c̃0(x, y) =

N∑
k,l=−N

λkl cos(2π(kx+ ly)) + γkl sin(2π(kx+ ly)), (69)

c0(x, y) =
c̃0(x, y)−min(c̃0)

max(c̃0)−min(c̃0)
, (70)

where N = 2 and λkl, γkl ∼ N (0, 1).510

The datasets used for training, validation, and testing contain 60, 20, and 20 trajectories, respectively.511

We use PhiFlow (Holl et al., 2020) to solve the PDEs.512

Figure 11: Spa-
tial grid used for
SCALAR FLOW
dataset.

SCALAR FLOW. This dataset, proposed by Eckert et al. (2019), consists513

of observations of smoke plumes rising in hot air. The observations are post-514

processed camera images of the smoke plumes taken from multiple views. For515

simplicity, we use only the front view. The dataset contains 104 trajectories,516

where each trajectory has 150 time points and each image has the resolution517

1080 × 1920.518

To reduce dimensionality of the observations we sub-sample the original spatial519

and temporal grids. For the temporal grid, we remove the first 50 time points,520

which leaves 100 time points, and then take every 4th time point, thus leaving521

20 time points in total. The original 1080 × 1920 spatial grid is first down-522

sampled by a factor of 9 giving a new grid with resolution 120 × 213, and then523

the new grid is further sub-sampled based on the smoke density at each node.524

In particular, we compute the average smoke density at each node (averaged525

over time), and then sample the nodes without replacement with the probability526

proportional to the average smoke density (thus, nodes that have zero density527

most of the time are not selected). See example of a final grid in Figure 11.528

This gives a new grid with 1089 nodes.529

We further smooth the observations by applying Gaussian smoothing with the530

standard deviation of 1.5 (assuming domain size 120 × 213).531

We use the first 60 trajectories for training, next 20 for validation and next 20 for testing.532
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C.2 Model architecture and hyper-parameters.533

Dynamics function. For all datasets we define Fθdyn as an MLP. For SHALLOW WATER/NAVIER-534

STOKES/SCALAR FLOW we use 1/3/3 hidden layers with the size of 1024/512/512, respectively. We535

use ReLU nonlinearities.536

Observation function. For all datasets we define gθdec as a selector function which takes the latent537

state z(t, x) ∈ Rd and returns its first component.538

Encoder. Our encoder hθenc consists of three function: hθspatial , hθtemporal , and hθread . The spatial539

aggregation function hθspatial is a linear mapping to R128. The temporal aggregation function hθtemporal540

is a stack of transformer layers with temporal attention and continuous relative positional encodings541

(Iakovlev et al., 2023). For all datasets, we set the number of transformer layers to 6. Finally, the542

variational parameter readout function hθread is a mapping defined as543

ψj
b = hθread(α

T
[b]) =

(
γj
b

τ j
b

)
=

(
Linear(αT

[b])

exp(Linear(αT
[b]))

)
, (71)

where Linear is a linear layer (different for each line), and γj
b and τ j

b are the variational parameters544

discussed in Appendix A.545

Spatial and temporal neighborhoods. We use the same spatial neighborhoods NS(x) for both the546

encoder and the dynamics function. We define NS(x) as the set of points consisting of the point x547

and points on two concentric circles centered at x, with radii r and r/2, respectively. Each circle548

contains 8 points spaced 45 degrees apart (see Figure 12 (right)). The radius r is set to 0.1. For549

SHALLOW WATER/NAVIER-STOKES/SCALAR FLOW the size of temporal neighborhood (δT ) is set550

to 0.1/0.1/0.2, respectively.551

Multiple Shooting. For SHALLOW WATER/NAVIER-STOKES/SCALAR FLOW we split the full552

training trajectories into 4/4/19 sub-trajectories, or, equivalently, have the sub-trajectory length of553

6/6/2.554

C.3 Training, validation, and testing setup.555

Data preprocessing. We scale the temporal grids, spatial grids, and observations to be within the556

interval [0, 1].557

Training. We train our model for 20000 iterations using Adam (Kingma and Ba, 2017) optimizer558

with constant learning rate 3e-4 and linear warmup for 200 iterations. The latent spatiotemporal559

dynamics are simulated using differentiable ODE solvers from the torchdiffeq package (Chen, 2018)560

(we use dopri5 with rtol=1e-3, atol=1e-4, no adjoint). The batch size is 1.561

Validation. We use validation set to track the performance of our model during training and save the562

parameters that produce the best validation performance. As performance measure we use the mean563

absolute error at predicting the full validation trajectories given some number of initial observations.564

For SHALLOW WATER/NAVIER-STOKES/SCALAR FLOW we use the first 5/5/10 observations. The565

predictions are made by taking one sample from the posterior predictive distribution (see Appendix566

C.4 for details).567

Testing. Testing is done similarly to validation, except that as the prediction we use an estimate of568

the expected value of the posterior predictive distribution (see Appendix C.4 for details).569

C.4 Forecasting.570

Given initial observations ũ1:m at time points t1:m, we predict the future observation ũn at a time571

point tn > tm as the expected value of the approximate posterior predictive distribution:572

p(ũn|ũ1:m,u1:M ) ≈
∫

p(ũn|s̃m, θdyn, θdec)q(s̃m)q(θdyn)q(θdec)ds̃mdθdyndθdec. (72)

The expected value is estimated via Monte Carlo integration, so the algorithm for predicting ũn is:573
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1. Sample θdyn, θdec from q(θdyn), q(θdec).574

2. Sample s̃m from q(s̃m) =
∏N

j=1 qψj
m
(s̃jm), where the variational parameters ψj

m are given575

by the encoder hθenc operating on the initial observations ũ1:m as ψj
m = hθenc(ũ[tm,xj ]).576

3. Compute the latent state z̃(tn) = z(tn; tm, s̃m, θdyn).577

4. Sample ũn by sampling each ũj
n from N (ũj

n|gθdec(z̃(tn,xj))), σ
2
uI).578

5. Repeat steps 1-4 n times and average the predictions (we use n = 10).579

C.5 Model comparison setup.580

DINo. We use the official implementation of DINo (Yin et al., 2023). The encoder is an MLP581

with 3 hidden layers, 512 neurons each, and Swish non-linearities. The code dimension is 100. The582

dynamics function is an MLP with 3 hidden layers, 512 neurons each, and Swish non-linearities. The583

decoder has 3 layers and 64 channels.584

MAgNet. We use the official implementation of MAgNet (Boussif et al., 2022). We use the graph585

neural network variant of the model. The number of message-passing steps is 5. All MLPs have 4586

layers with 128 neurons each in each layer. The latent state dimension is 128.587

D Appendix D588

D.1 Spatiotemporal neighborhood shapes and sizes.589

Here we investigate the effect of changing the shape and size of spatial and temporal neighborhoods590

used by the encoder and dynamics functions. We use the default hyperparameters discussed in591

Appendix C and change only the neighborhood shape or size. A neighborhood size of zero implies592

no spatial/temporal aggregation.593

Initially, we use the original circular neighborhood displayed in Figure 12 for both encoder and594

dynamics function and change only its size (radius). The results are presented in Figures 13a and 13b.595

In Figure 13a, it is surprising to see very little effect from changing the encoder’s spatial neighborhood596

size. A potential explanation is that the dynamics function shares the spatial aggregation task with the597

encoder. However, the results in Figure 13b are more intuitive, displaying a U-shaped curve for the598

test MAE, indicating the importance of using spatial neighborhoods of appropriate size. Interestingly,599

the best results tend to be achieved with relatively large neighborhood sizes. Similarly, Figure 13c600

shows U-shaped curves for the encoder’s temporal neighborhood size, suggesting that latent state601

inference benefits from utilizing local temporal information.602

We then examine the effect of changing the shape of the dynamics function’s spatial neighborhood.603

We use ncircle neighborhoods, which consist of n equidistant concentric circular neighborhoods (see604

examples in Figure 12). Effectively, we maintain a fixed neighborhood size while altering its density.605

The results can be seen in Figure 14. We find that performance does not significantly improve when606

using denser (and presumably more informative) spatial neighborhoods, indicating that accurate607

predictions only require a relatively sparse neighborhood with appropriate size.608

Figure 12: Left: original circular neighborhood (1circle). Center: circular neighborhood with
increased size. Right: circular neighborhood of a different shape (2circle).

D.2 Multiple shooting.609

Here we demonstrate the effect of using multiple shooting for model training. In Figure 15 (left), we610

vary the sub-trajectory length (longer sub-trajectories imply more difficult training) and plot the test611

errors for each sub-trajectory length. We observe that in all cases, the best results are achieved when612

the sub-trajectory length is considerably smaller than the full trajectory length. In Figure 15 (right)613
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(a) (b) (c)

Figure 13: (a),(b): Test MAE vs spatial neighborhood sizes of the encoder and dynamics function,
respectively. (c): Test MAE vs temporal neighborhood size of the encoder. Note that the spatial and
temporal domains are normalized, so their largest size in any dimension is 1.

Figure 14: Test MAE vs spatial neighborhood shape.

we further show the training times, and as can be seen multiple shooting allows to noticeably reduce614

the training times.

Figure 15: Test MAE vs training sub-trajectory length.

615

E Appendix E616

Noisy Data. Here we show the effect of observation noise on our model and compare the results617

against other models. We train all models with data noise of various strengths, and then compute test618

MAE on noiseless data (we still use noisy data to infer the initial state at test time). Figure 16 shows619
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that our model can manage noise strength up to 0.1 without significant drops in performance. Note620

that all observations are in the range [0, 1].

Figure 16: Test MAE vs observation noise σu.

621
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