
A Supplementary Material: Proofs390

A.1 Missing Proofs from Section 3391

To establish Lemmas 3.1 and 3.3, we build on the work of (VWDP+22) and (DLPES02). We first392

introduce the necessary notion and definitions.393

We recall the following notation from the main body of the paper. We use diam1 to indicate the394

diameter of a set relative to the `1 norm and B
1
" (~p) to represent the closed ball of radius " centered395

at ~p relative to the `1 norm. That is, in Rd we have B
1
" (~p) =

Qd
i=1[pi � ", pi + "].396

Lemma 3.1 is based on the construction of certain geometric partitions of Rd called secluded397

partitions. Such partitions naturally induce deterministic rounding schemes which we use in the398

proof.399

Let P be a partition of Rd. For a point ~p 2 Rd, let N"(~p) denote the set of members of the partitions400

that have a non-empty intersection with the "-ball around ~p. That is,401

N"(~p) = {X 2 P | B
1
" (~p)) \X 6= ;}

Definition A.1 (Secluded Partition). Let P be a partition of Rd. We say that P is (k, ")-secluded, if402

for every point ~p 2 Rd, |N"(~p)|  k.403

The following theorem from (VWDP+22) gives an explicit construction of a secluded partition with404

desired parameters where each member of the partition is a hypercube. For such partitions, we use405

the following notation. For every ~p 2 Rd, if X 2 P, then the representative of ~p, rep(~p), is the center406

of the hypercube X .407

Theorem A.2. For each d 2 N, there exists a (d+ 1, 1
2d )-secluded partition, where each member of408

the partition is a unit hypercube. Moreover, the partition is efficiently computable: Given an arbitrary409

point ~x 2 Rd
, its representative can be computed in time polynomial in d.410

A.1.1 Proof of Lemma 3.1411

Lemma A.3 (Lemma 3.1). Let d 2 N and " 2 (0,1). Let "0 = "
2d . There is an efficiently412

computable function f" : Rd
! Rd

with the following two properties:413

1. For any x 2 Rd
and any x̂ 2 B

1
"0 (x) it holds that f"(x̂) 2 B

1
" (x).414

2. For any x 2 Rd
the set

n
f"(x̂) : x̂ 2 B

1
"0 (x)

o
has cardinality at most d+ 1.415

As explained in the main body, intuitively, item (1) states that if x̂ is an "0-approximation of x, then416

f"(x̂) is an "-approximation of x, and item (2) states that f" maps every "0-approximation of x to417

one of at most d+ 1 possible values.418

Proof. A high-level idea behind the proof is explained in Figure 1. We scale the (d+1, 1
2d )-secluded419

unit hypercube partition by " so that each partition member is a hypercube with side length ". Now,420

for a point x, the ball B
1
"0 (x) intersects at most d+ 1 hypercubes. Consider a point x̂1 2 B

1
"0 (x), it421

is rounded to c1 (center of the hypercube it resides in). Note that c1 lies in the ball of radius " around422

x, this is because distance from x to x̂1 is atmost "0 and the disance from x̂1 to c1 is at most "/2. By423

triangle inequality c1 belongs to B
1
" (x). We now provide formal proof.424

Let P be the (d+ 1, 1
2d )-secluded partition given by Theorem A.2. Thus P consists of unit cubes425

[0, 1)d with the property that for any point ~p 2 Rd the closed cube of side length 1/d centered at ~p426

(i.e. B
1
1
2d
(~p)) intersects at most d+ 1 members/cubes of P .427

We first define a rounding function f : Rd
! Rd as follows: for every x 2 Rd

, f(x) = rep(x).428

Observe that the rounding function f has the following two properties. (1) For every x 2 Rd,429

kf(x)� xk1 
1
2 . This is because every point x is mapped via f to its representative, which is the430

center of the unit cube in which it lies. (2) For any point ~p 2 Rd, the set
n
f(x) : x 2 B

1
1
2d
(~p)

o
has431
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Figure 1: Illustration of proof of Lemma 3.1 for d = 2.

cardinality at most d+ 1. This is because B
1
1
2d
(~p) intersects at most d+ 1 hypercubes of P and for432

every hypercube X , all the points in X are mapped to its center by f .433

The function f only gives an 1
2 -approximation guarantee. In order to get any "-approximation434

guarantee, we scale f appropriately. f" is this scaled version of f .435

Define the function f" : Rd
! Rd as follows: for every x̂ 2 Rd, f"(x̂) = " · f( 1" x̂). The efficient436

computability of f" comes from the efficient computability of f .437

We first establish that f" has property (1) stated in the Lemma. Let x 2 Rd and x̂ 2 B
1
"0 (x). Then438

we have the following (justifications will follow):439

�� 1
" · f"(x̂)�

1
"x
��
1 =

��f( 1" x̂)�
1
"x
��
1


��f( 1" x̂)�

1
" x̂
��
1 +

�� 1
" x̂�

1
"x
��
1


��f( 1" x̂)�

1
" x̂
��
1 + 1

"kx̂� xk1


1
2 + 1

""0

= 1
2 + 1

2d  1

The first line is by the definition of f", the second is the triangle inequality, the third is scaling of440

norms, the fourth uses the property of f that points are not mapped a distance more than 1
2 along441

with the hypothesis that x̂ 2 B
1
"0 (x), the fifth uses the definition of "0, and the sixth uses the fact that442

d � 1.443

Scaling both sides by " and using the scaling of norms, the above gives us kf"(x̂)� xk1  " which444

proves property (1) of the lemma.445

To see that f" has property (2), let x 2 Rd. We have the following set equalities:446

n
f"(x̂) : x̂ 2 B

1
"0 (x)

o
=
n
" · f( 1" x̂) : x̂ 2 B

1
"0 (x)

o

=
n
" · f(a) : a 2 B

1
1
" "0

(x)
o

=
n
" · f(a) : a 2 B

1
1
2d
(x)

o

The first line is from the definition of f", the second is from re-scaling, and the third is from the447

definition of "0.448

Because f takes on at most d + 1 distinct values on B
1
1
2d
(x), the set has cardinality at most d + 1449

which proves property (2) of the lemma.450
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A.1.2 Proof of Lemma 3.2451

Lemma A.4 (Lemma 3.2). Let d 2 N, "0 2 (0,1) and 0 < � < 1. There is an efficiently computable452

deterministic function f : {0, 1}` ⇥ Rd
! Rd

with the following property. For any x 2 Rd
,453

Pr
r2{0,1}`

h
9x

⇤
2 B

1
" (x) 8x̂ 2 B

1
"0 (x) : f(r, x̂) = x

⇤
i
� 1� �

where ` = dlog d
� e and " = (2` + 1)"0 

2"0d
� .454

Proof. Partition each coordinate of Rd into 2"0-width intervals. The algorithm computing the455

function f does the following simple randomized rounding:456

The function f : Choose a random integer r 2 {1 . . . 2`}. Note that r can be represented using ` bits.457

Consider the i
th coordinate of x̂ denoted by x̂[i]. Round x̂[i] to the nearest k ⇤ (2"0) such that k458

mod 2` ⌘ r.459

Now we will prove that f satisfies the required properties.460

First, we prove the approximation guarantee. Let x0 denote the point in Rd obtained after rounding461

each coordinate of x̂. The ks satisfying k mod 2` ⌘ r are 2` · 2"0 apart. Therefore, x0[i] is rounded462

by at most 2`"0. That is, |x0[i] � x̂[i]|  2`"0 = "0d
� for every i, 1  i  d. Since x̂ is an463

"0-approximation (i.e. each coordinate x̂[i] is within "0 of the true value x[i]), then each coordinate of464

x
0 is within (2` +1)"0 of x[i]. Therefore x0 is a (2` +1)"0-approximation of x[i]. Thus x0

2 B
1
" (x)465

for any choice of r.466

Now we establish that for � 1� � fraction of r 2 {1 . . . 2`}, there exists x⇤ such every x̂ 2 B
1
"0 (x)467

is rounded x
⇤. We argue this with respect to each coordinate and apply the union bound. Fix an x468

and a coordinate i. For x[i], consider the "0 interval around it.469

Consider r from {1 . . . 2`}. When this r is chosen, then we round x̂[i] to the closest k⇤(2"0) such that470

k mod 2` ⌘ r. Let pr1, pr2, . . . prj . . . be the set of such points: more precisely pj = (j2l + r) ⇤ 2"0.471

Note that x̂[i] is rounded to an pj to some j. Let mr
j denote the midpoint between p

r
j and p

r
j+1.472

I.e, mr = (prj + p
r
j+1)/2 We call r ‘bad’ for x[i] if x[i] is close to some m

r
j . That is, r is ‘bad’ if473

|x[i]�m
r
j | < "0. Note that for a bad r there exists x̂1 and x̂2 in B

1
"0 (x) so that their ith coordinates474

are round to p
r
j and p

r
j+1 respectively. The crucial point is that if r is ‘not bad’ for x[i], then for every475

x
0
2 B

1
"0 (x), there exists a canonical p⇤ such that x0[i] is rounded to p

⇤. We call r bad for x, if r is476

bad for x, if there exists at least one i, 1  i  d such that r is bad for x[i]. With this, it follows that477

if r is not bad for x, then there exists a canonical x⇤ such that every x
0
2 B

1
"0 (x) is rounded to x

⇤.478

With this, the goal is to bound the probability that a randomly chosen r is bad for x. For this, we479

first bound the probability that r is bad for x[i]. We will argue that there exists almost one bad r480

for x[i]. Suppose that there exist two numbers r1 and r2 that are both bad for x[i]. This means481

that |x[i] � m
r1
j1
| < "0 and |x[i] � m

r2
j2
| < "0 for some j1 and j2. Thus by triangle inequality482

|m
r1
j1

�m
r2
j2
| < 2"0. However, note that |pr1j1 � p

r2
j2
| is |(j1 � j2)2` + (r1 � r2)|2"0. Since r1 6= r2,483

this value is at least 2"0. This implies that the absolute value of difference between m
r1
j1

and m
r2
j2

is484

at least 2" leading to a contradiction.485

Thus the probability that r is bad for x[i] is at most 1
2` and by the union bound the probability that r486

is bad for x is at most d
2`  �. This completes the proof.487

A.1.3 Proof of Lemma 3.3488

The proof, which is based on Sperner/KKM Lemma, is present in (VWDP+22). Since our setting is489

slightly different, for completeness we give a proof.490

We first introduce the necessary definitions and notation.491

Definition A.5 (Sperner/KKM Coloring). Let d 2 N and V = {0, 1}d denote a set of colors (which492

is exactly the set of vertices of [0, 1]d so that colors and vertices are identified). Let � : [0, 1]d ! V493

be a coloring function such that for any face F of [0, 1]d, for any x 2 F , it holds that �(x) 2 V (F )494
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where V (F ) is the vertex set of F (informally, the color of x is one of the vertices in the face F ).495

Such a function � will be called a Sperner/KKM coloring.496

Theorem A.6 (Cubical Sperner/KKM lemma (DLPES02)). Let d 2 N and V = {0, 1}d and497

� : [0, 1]d ! V be a Sperner/KKM coloring. Then there exists a subset J ⇢ V with |J | = d+ 1 and498

a point ~y 2 [0, 1]d such that for all j 2 J , ~y 2 ��1(j) (informally, ~y is in the closure of at least d+1499

different colors).500

We will need to relate partitions to Sperner/KKM coloring so that we can use the Sperner/KKM501

Lemma.502

For any co-ordinate i, let ⇡ denote the standard projection map: ⇡i : [0, 1]d ! [0, 1] defined by503

⇡i(x)
def
= xi which maps d-dimensional points to the i

th coordinate value. We extend this to sets:504

⇡i(X) = {⇡i(x) : x 2 X}.505

Definition A.7 (Non-Spanning partition). Let d 2 N and P be a partition of [0, 1]d. We say that506

P is a non-spanning partition if it holds for all X 2 P and for all i 2 [d] that either ⇡i(X) 63 0 or507

⇡i(X) 63 1 (or both).508

Next, we state a lemma that asserts that for any non-spanning partition, there is a Sperner/KKM509

coloring that respects the partition: that is every member gets the same color.510

Lemma A.8 (Coloring Admission). Let d 2 N, and V = {0, 1}d, and P a non-spanning partition of511

[0, 1]d. Then there exists a Sperner/KKM coloring � : [0, 1]d ! V such that for every X 2 P , for512

every x, y 2 X , �(x) = �(y).513

Now we are ready to prove the Lemma 3.3.514

Lemma A.9. (Lemma 3.3) Let P be a partition of [0, 1]d such that for each member X 2 P , it515

holds that diam1(X) < 1. Then there exists ~p 2 [0, 1]d such that for all � > 0 we have that B
1
� (~p)516

intersects at least d+ 1 members of P .517

Proof. Consider an arbitrary X 2 P . For each coordinate, i 2 [d], the set {xi : x 2 X} does not518

contain both 0 and 1 (if it did, this would demonstrate two points in X that are `1 distance at least519

1 apart and contradict that diam1(X) < 1). Thus, P is by definition a non-spanning partition of520

[0, 1]d. Since P is non-spanning, by Lemma A.8, there is a Sperner/KKM coloring where each point521

of [0, 1]d can be assigned one of 2d-many colors and for any member X 2 P , all points in X are522

assigned the same color. By Lemma A.6, there is a point ~p 2 [0, 1]d such that ~p belongs to the closure523

of at least d+ 1 colors. Since every point of a partition has the same color, each of these d+ 1 colors524

corresponds to at least d + 1 different partitions. From this, it follows that or any � > 0, B
1
� (~p)525

intersects at least d+ 1 different members of P .526

A.2 Missing Proofs from Section 4527

In the following we use DA,~b,n to denote the distribution of the output of an algorithm for d-COIN528

BIAS ESTIMATION PROBLEMwhen the bias vector is~b and it observes n independent coin tosses529

(per coin).530

Lemma A.10 (Lemma 4.8). For biases ~a,~b 2 [0, 1]d we have dTV

⇣
DA,~a,n,DA,~b,n

⌘
 n · d · k~b�531

~ak1.532

Proof. We use the basic fact that an algorithm (deterministic or randomized) cannot increase the533

total variation distance between two input distributions.534

The distribution giving one sample flip of each coin in a collection with bias~b is the d-fold product535

of Bernoulli distributions
Qd

i=1 Bern(bi) (which for notational brevity we denote as Bern(~b), so the536

distribution which gives n independent flips of each coin is the n-fold product of this and is denoted537

as Bern(~b)⌦n). We will show that for two bias vectors ~a and ~b, dTV

⇣
Bern(~b)⌦n

,Bern(~a)⌦n
⌘
538

n · d · k~b� ~ak1. This suffices to establish the lemma.539
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Observe that we have for each i 2 [d],540

dTV (Bern(bi),Bern(ai)) = |bi � ai|.

Hence we have541

dTV

⇣
Bern(~b),Bern(~a)

⌘


dX

i=1

|bi � ai|  d · k~b� ~ak1

and542

dTV

⇣
Bern(~b)⌦n

,Bern(~a)⌦n
⌘
 n · d · k~b� ~ak1.

543

A.3 Missing Proofs From Section 5544

A.3.1 Proofs of Theorem 5.4, Theorem 5.5545

Theorem A.11 (Theorem 5.4). Let H be a concept class that is learnable with d non-adaptive546

statistical queries, then H is (d+1)-list reproducibly learnable. Furthermore, the sample complexity547

n = n(⌫, �) of the (d+ 1)-list replicable algorithm is O( d
2

⌫2 · log d
� ), where ⌫ is the approximation548

error parameter of each statistical query oracle.549

Proof. The proof is very similar to the proof of Theorem 4.4. Our replicable algorithm B works as550

follows. Let " and � be input parameters and D be a distribution and f 2 H. Let A be the statistical551

query learning algorithm for H. Let STAT (Df , ⌫) be the statistical query oracle for this algorithm.552

Let �1, . . . ,�d be the statistical queries made by A.553

Let ~b = hb[1], b[2], . . . , b[d]i where b[i] = Ehx,yi2Df
[�i(hx, yi], 1  i  d. Set "0 = ⌫

2d . The554

algorithm B first estimates the values b[i] up to an approximation error of "0 with success probably555

1� �/d for each query. Note that this can be done by a simple empirical estimation algorithm, that556

uses a total of n = O( d
2

⌫2 · log d
� ) samples. Let ~v be the estimated vector. It follows that ~v 2 B

1
"0 (

~b)557

with probability at least 1� �. Note that different runs of the algorithm will output different ~v.558

Next, the algorithm B evaluates the deterministic function f" from Lemma 3.1 on input ~v. Let ~u be559

the output vector. Finally, the algorithm B simulates the statistical query algorithm A with ~u[i] as560

the answer to the query �i. By Lemma 3.1, ~u 2 B
1
⌫ (~b). Thus the error of the hypothesis output by561

the algorithm is at most ". Since A is a deterministic algorithm the number of possible outputs only562

depends on the number of outputs of the function f", more precisely the number of possible outputs563

is the size of the set {f"(~v) : v 2 B
1
"0 (

~b)} which is almost d + 1, by Lemma 3.1. Thus the total564

number of possible outputs of the algorithm B is at most d+ 1 with probability at least 1� �.565

Theorem A.12 (Theorem 5.5). Let H be a concept class that is learnable with d non-adaptive566

statistical queries, then H is dlog d
� e-certificate reproducibly learnable. Furthermore, the sample567

complexity n = n(⌫, �) of this algorithm equals O( d2

⌫2�2 · log d
� ), where ⌫ is the approximation error568

parameter of each statistical query oracle.569

Proof. The proof is very similar to the proof of Theorem 4.6. Our replicable algorithm B works as570

follows, let " and � be input parameters and D be a distribution and f 2 H. Let A be the statistical571

query learning algorithm for H that outputs a hypothesis h with approximation error eDf (h) = ".572

Let STAT (Df , ⌫) be the statistical query oracle for this algorithm. Let �1, . . . ,�d be the statistical573

queries made by A.574

Let ~b = hb[1], b[2], · · · , b[d]i, where b[i] = Ehx,yi2Df
[�i(hx, yi)]. Set "0 = ⌫�

2d . The algorithm B575

first estimates the values b[i], 1  i  d up to an additive approximation error of "0 with success576

probably 1��/d for each query. Note that this can be done by a simple empirical estimation algorithm577

that uses a total of n = O( d2

⌫2�2 · log d
� ) samples. Let ~v be the estimated the vector. It follows that578

~v 2 B
1
"0 (

~b) with probability at least 1� �. Next, the algorithm B evaluates the deterministic function579

f described in Lemma 3.2 with inputs r 2 {0, 1}` where ` = dlog d
� e and ~v. By Lemma 3.2 for at580
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least 1� � fraction of the r’s , the function f outputs a canonical ~v⇤ 2 B
1
⌫ (~b). Finally, the algorithm581

B simulates the statistical query algorithm A with ~v⇤[i] as the answer to the query �i. Since A582

is a deterministic algorithm it follows that our algorithm B is certificate replicable. Note that the583

certificate complexity is ` = dlog d
� e.584

The following theorem states how to convert adaptive statistical query learning algorithms into585

certificate reproducible PAC learning algorithms. This result also appears in the work of (GKM21;586

ILPS22), though they did not state the certificate complexity. We explicitly state the result here.587

Theorem A.13. ((GKM21; ILPS22))[Theorem 5.6] Let H be a concept class that is learnable with588

d adaptive statistical queries, then H is dd log d
� e-certificate reproducibly learnable. Furthermore,589

the sample complexity of this algorithm equals O( d3

⌫2�2 · log d
� ), where ⌫ is the approximation error590

parameter of each statistical query oracle.591

Proof. The proof uses similar arguments as before. The main difference is that we will evaluate each592

query with an approximation error of ⌫�
d with a probability error of d/�. This requires O( d2

⌫2�2 · log
d
� )593

per query. We use a fresh set of certificate randomness for each such evaluation. Note that the length594

of the certificate for each query is dlog d/�e. Thus the total certificate complexity is dd log d
� e.595

A.3.2 Proof of Theorem 5.9596

We first recall the definition of the concept class d-THRESHOLD.597

Fix some d 2 N. Let X = [0, 1]d. For each value ~t 2 [0, 1]d, let h~t : X ! {0, 1} be the concept598

defined as follows: h~t(~x) = 1 if for every i 2 [d] it holds that xi  ti and 0 otherwise. Let H be the599

hypothesis class consisting of all such threshold concepts: H =
�
h~t |

~t 2 [0, 1]d
 

.600

Theorem A.14 (Theorem 5.9). In the PAC model under the uniform distribution, there is a d+ 1-list601

replicable algorithm for the d-THRESHOLD. Moreover, for any k < d + 1, there does not exist a602

k-list replicable algorithm for the concept class d-THRESHOLD under the uniform distribution. Thus603

its list complexity is exactly d+ 1.604

It is easy to see that d-THRESHOLD is learnable under the uniform distribution by making d non-605

adaptive statistical queries. Thus by Theorem 5.4, d-THRESHOLD under the uniform distribution606

admits a (d + 1)-list replicable algorithm. So we will focus on proving the lower bound which is607

stated as a separate theorem below.608

Theorem A.15. For k < d+1, there does not exist a k-list replicable algorithm for the d-THRESHOLD609

in the PAC model under uniform distribution.610

The proof is similar to the proof of Theorem 4.7. The reason is that sampling d-many biased coins611

with bias vector~b is similar to obtaining a point ~x uniformly at random from [0, 1]d and evaluating the612

threshold function h~b on it—this corresponds to asking whether all of the coins were heads/1’s. The613

two models differ though, because in the sample model for the d-COIN BIAS ESTIMATION PROBLEM,614

the algorithm sees for each coin whether it is heads or tails, but this information is not available in615

the PAC model for the d-THRESHOLD. Conversely, in the PAC model for the d-THRESHOLD, a616

random draw from [0, 1]d is available to the algorithm, but in the sample model for the d-COIN BIAS617

ESTIMATION PROBLEM the algorithm does not get this information.618

Furthermore, there is the following additional complexity in the impossibility result for the d-619

THRESHOLD. In the d-COIN BIAS ESTIMATION PROBLEM, we said by definition that a collection of620

d coins parameterized by bias vector~a was an "-approximation to a collection of d coins parameterized621

by bias vector~b if and only if k~b�~ak1  ", and we used this norm in the proofs. However, the notion622

of "-approximation in the PAC model is quite different than this. It is possible to have a hypotheses623

h~a and h~b in the d-THRESHOLDsuch that k~b� ~ak1 > " but with respect to some distribution DX624

on the domain X we have eDX (h~a, h~b)  ". For example, if DX is the uniform distribution on625

X = [0, 1]d and ~a = ~0 and ~b is the first standard basis vector ~b = h1, 0, . . . , 0i, and " = 1
2 , then626

k~b � ~ak1 = 1 > ", but eDX (h~a, h~b) = 0  " because h~a(~x) 6= h~b(~x) if and only if all of the last627

d � 1 coordinates of ~x are 0 and the first coordinate is > 0, but there is probability 0 of sampling628

such ~x from the uniform distribution on X = [0, 1]d.629

15



For this reason, we can’t just partition [0, 1]d as we did with the proof of Theorem 4.7 and must630

do something more clever. It turns out that it is possible to find a subset [↵, 1]d on which hypothe-631

ses parameterized by vectors on opposite faces of this cube [↵, 1]d have high PAC error between632

them. A consequence by the triangle inequality of eDX is that two such hypotheses cannot both be633

approximated by a common third hypothesis. This is the following lemma states.634

Lemma A.16. Let d 2 N and ↵ = d�1
d . Let ~s,~t 2 [↵, 1]d such that there exists a coordinate i0 2 [d]635

where si0 = ↵ and ti0 = 1 (i.e. ~s and ~t are on opposite faces of this cube). Let " 
1
8d . Then there is636

no point ~r 2 X such that both eunif(h~s, h~r)  " and eunif(h~t, h~r)  " (i.e. there is no hypothesis637

which is an "-approximation to both h~s and h~t).638

Proof. Let ~q =

⌧⇢
si i = i0

ti i 6= i0

�d

i=1

which will serve as a proxy to ~s.639

We need the following claim.640

Claim A.17. For each ~x 2 X , the following are equivalent:641

1. h~q(~x) 6= h~t(~x)642

2. h~q(~x) = 0 and h~t(~x) = 1643

3. xi0 2 (qi0 , ti0 ] = (↵, 1] and for all i 2 [d] \ {i0}, xi 2 [0, ti].644

Furthermore, the above equivalent conditions imply the following:645

4. h~s(~x) 6= h~t(~x).646

Proof of Claim A.17.647

(2) =) (1): This is trivial.648

(1) =) (2): Note that because qi0 = si0 = ↵ < 1 = ti0 , we have for all i 2 [d] that qi  ti. If649

h~t(~x) = 0 then for some i1 2 [d] it must be that xi1 > ti1 , but since ti1 � qi1 it would also be the650

case that xi1 > qi1 , so h~q(~x) = 0 which gives the contradiction that h~q(~x) = h~t(~x). Thus h~t(~x) = 1,651

and since h~q(~x) 6= h~t(~x) we have h~q(~x) = 0.652

(1) () (3): We partition [0, 1]d into three sets and examine these three cases.653

Case 1: xi0 2 (qi0 , ti0 ] = (↵, 1] and for all i 2 [d] \ {i0}, xi 2 [0, ti]. In this case, qi0 < xi0 so654

h~q(~x) = 0 and for all i 2 [d] xi  ti, so h~t(~x) = 1, so h~q(~x) 6= h~t(~x).655

Case 2: xi0 62 (qi0 , ti0 ] = (↵, 1] and for all i 2 [d] \ {i0}, xi 2 [0, ti]. In this case, because656

xi0 2 [0, 1] and xi0 62 (↵, 1] we have xi0  ↵ = qi0  ti0 and also for all other i 2 [d] \ {i0},657

xi  ti = qi (by definition of ~q). Thus h~q(~x) = 1 = h~t(~x).658

Case 3: For some i1 2 [d] \ {i0}, xi1 62 [0, ti1 ]. In this case, because xi1 2 [0, 1], we have659

xi1 > ti1 = qi1 . Thus h~q(~x) = 0 = h~t(~x).660

Thus, it is the case that h~q(~x) 6= h~t(~x) if and only if xi0 2 (qi0 , ti0 ] = (↵, 1] and for all i 2 [d]\{i0},661

xi 2 [0, ti].662

(1, 2, 3) =) (4): By (2), we have xi0 > qi0 , and since qi0 = si0 by definition of ~q, it follows that663

xi0 > si0 which means h~s(~x) = 0. By (3), h~t(~x) = 1 which gives h~s(~x) 6= h~t(~x).664

We also need the following Lemma.665

Lemma A.18. Let d 2 N and ↵ = d�1
d = 1� 1

d . Then (1� ↵) · ↵d�1
>

1
4d .666

Proof. If d = 1, then ↵ = 0 so (1� ↵) · ↵d�1 = 1 �
1
4 = 1

4d (see footnote2).667

2This uses the interpretation that 00 = 1 which is the correct interpretation in the context in which we will
use the lemma.
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If d � 2, then we utilize the fact that (1� 1
d )

d
�

1
4 in the following:668

(1� ↵) · ↵d�1 = ( 1d )(1�
1
d )

d�1

= ( 1d )
(1� 1

d )
d

1� 1
d

=
(1� 1

d )
d

d� 1

�
1

4(d� 1)

>
1

4d
.

This completes the proof. As an aside, ↵ = d�1
d is the value of ↵ that maximizes the expression669

(1� ↵) · ↵d�1 which is why that value was chosen.670

With the above Claim and Lemma in hand, we return to the proof of Lemma A.16. Our next step will671

be two prove the following two inequalities:672

2" < eunif(h~q, h~t)  eunif(h~s, h~t).

For the second of these inequalities, note that by the (1) =) (4) part of claim above, since h~q(~x) 6=673

h~t(~x) implies h~s(~x) 6= h~t(~x) we have674

eunif(h~q, h~t) = Pr
~x⇠ unif(X)

[h~q(~x) 6= h~t(~x)]

 Pr
~x⇠ unif(X)

[h~s(~x) 6= h~t(~x)]

= eunif(h~s, h~t).

Now, for the first of the inequalities above, we will use the (1) () (3) portion of the claim, we will675

use our hypothesis that ~t 2 [↵, 1]d (which implies for each i 2 [d] that [0, ti] ✓ [0,↵]), we will use676

the hypothesis that "  1
8d , and we will use Theorem A.18. Utilizing these, we get the following:677

eunif(h~q, h~t)

= Pr
~x⇠ unif(X)

[h~q(~x) 6= h~t(~x)]

= Pr
~x⇠ unif(X)

[xi0 2 (↵, 1] ^ 8i 2 [d] \ {i0} , xi 2 [0, ti]]

= Pr
xi0 ⇠ unif([0,1])

[xi0 2 (↵, 1]] ·
dY

i=1
i 6=i0

Pr
x⇠ unif([0,1])

[x 2 [0, ti]]

� Pr
xi0 ⇠ unif([0,1])

[xi0 2 (↵, 1]] ·
dY

i=1
i 6=i0

Pr
x⇠ unif([0,1])

[x 2 [0,↵]]

= (1� ↵) · ↵d�1

>
1

4d
� 2".

Thus, we get the desired two inequalities:678

2" < eunif(h~q, h~t)  eunif(h~s, h~t).

This nearly completes the proof. If there existed some point ~r 2 X such that both eunif(h~s, h~r)  "679

and eunif(h~t, h~r)  ", then it would follow from the triangle inequality of eunif that680

eunif(h~s, h~t)  eunif(h~s, h~r) + eunif(h~t, h~r)  2"

but this would contradict the above inequalities, so no such ~r exists.681
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Equipped with the Lemma A.16, we are now ready to prove Theorem A.15.682

Proof of Theorem A.15. Fix any d 2 N, and choose " and � as "  1
4d and � 

1
d+2 . We will use the683

constant ↵ = d�1
d and consider the cube [↵, 1]d.684

Suppose for contradiction such an algorithm A does exists for some k < d+ 1. This means that for685

each possible threshold ~t 2 [0, 1]d, there exists some set L~t ✓ H of hypotheses with three properties:686

(1) each element of L~t is an "-approximation to h~t, (2) |L~t|  k, and (3) with probability at least687

1� �, A returns an element of L~t.688

By the trivial averaging argument, this means that there exists at least one element in L~t which is689

returned by A with probability at least 1
k · (1 � �) �

1
k · (1 �

1
d+2 ) = 1

k ·
d+1
d+2 �

1
k ·

k+1
k+2 . Let690

f : [↵, 1]d ! [0, 1]d be a function which maps each threshold ~t 2 [↵, 1]d to such an element (the691

maximum probability element with ties broken arbitrarily) of L~t. This is slightly different from the692

proof of Theorem 4.7 because we are defining the function f on only a very specific subset of the693

possible thresholds. The reason for this was alluded to in the discussion following the statement of694

Theorem A.15.695

The function f induces a partition P of [↵, 1]d where the members of P are the fibers of f (i.e.696

P =
�
f
�1(~y) : ~y 2 range(f)

 
). For any member W 2 P and any coordinate i 2 [d], it cannot697

be that the set wi : ~w 2 W contains both values ↵ and 1—if it did, then there would be two points698

~s,~t 2 W such that si = ↵ and ti = 1, but because they both belong to W , there is some ~y 2 [0, 1]d699

such that f(~s) = ~y = f(~t), but by definition of the partition, h~y would have to be an "-approximation700

(in the PAC model) of both h~s and h~t, but by Lemma A.16 this is not possible.701

Thus, the partition P is a non-spanning partition of [↵, 1]d as in the proof of Lemma 3.3, so there is702

some point ~p 2 [↵, 1]d such that for every radius r > 0, it holds that B
1
r (~p) intersects at least d+ 1703

members of P . Infact, there us some radius r such that k~t�~sk1  r, then dTV(DA,~s,n,DA,~t,n)  ⌘,704

for ⌘ the lies between 0 and 1
k ·

k+1
k+2 �

1
k+1 .705

Now we get the same type of contradiction as in the proof of Theorem 4.7: for the special point ~p we706

have that DA,~p,n is a distribution that has d+ 1 � k + 1 disjoint events that each have probability707

greater than 1
k+1 . Thus, no k-list replicable algorithm exists.708

B Supplementary Material: Prior and Related Work709

We give a more detailed discussion on prior and related work. This section is an elaboration of the710

Section 2 from the main body of the paper. Since this expanded section cites more work from the711

literature, we include a new bibliography.712

Formalizing reproducibility and replicability has gained considerable momentum in recent years.713

While the terms reproducibility and replicability are very close and often used interchangeably, there714

has been an effort to distinguish between them and accordingly, our notions fall in the replicability715

definition (PVLS+21).716

In the context of randomized algorithms, various notions of reproducibility/replicability have been717

investigated. The work of Gat and Goldwasser (GG11) formalized and defined the notion of pseu-718

dodeterministic algorithms. A randomized algorithm A is pseudodeterministic if, for any input719

x, there is a canonical value vx such that Pr[A(x) = vx] � 2/3. Gat and Goldwasser designed720

polynomial-time pseudodeterministic algorithms for algebraic computational problems, such as721

finding quadratic non-residues and finding non-roots of multivariate polynomials (GG11). Later722

works studied the notion of pseudodeterminism in other algorithmic settings, such as parallel com-723

putation, streaming and sub-linear algorithms, interactive proofs, and its connections to complexity724

theory (GG; GGH18; OS17; OS18; AV20; GGMW20; LOS21; DPVWV22).725

In the algorithmic setting, mainly two generalizations of pseudodeterminism have been investigated:726

multi-pseudodeterministic algorithms (Gol19) and influential bit algorithms (GL19). A randomized727

algorithm A is k-pseudodeterministic if, for every input x, there is a set Sx of size at most k728

such that the output of A(x) belongs to the set Sx with high probability. When k = 1, we get729

pseudodeterminism. A randomized algorithm A is `-influential-bit algorithm if, for every input x,730
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for most of the strings r of length `, there exists a canonical value vx,r such that the algorithm A731

on inputs x and r outputs vx,r with high probability. The string r is called the influential bit string.732

Again, when ` = 0, we get back pseudodeterminism. The main focus of these works has been to733

investigate reproducibility in randomized search algorithms.734

Very recently, pseudodeterminism and its generalizations have been explored in the context of learning735

algorithms to formalize the notion of replicability. The seminal work of (BLM20) defined the notion736

of global stability. They define a learning algorithm A to be (n, ⌘)-globally stable with respect to737

a distribution D if there is a hypothesis h such that PrS⇠Dn(A(S) = h) � ⌘, here ⌘ is called the738

stability parameter. Note that the notion of global stability is equivalent to Gat and Goldwasser’s739

notion of pseudodeterminism when ⌘ = 2/3. Since Gat and Goldwasser’s motivation is to study740

pseudodeterminism in the context of randomized algorithms, the success probability is taken as 2/3.741

In the context of learning, studying the stability parameter ⌘ turned out to be useful. The work of742

Bun, Livny and Moran (BLM20) showed that any concept class with Littlestone dimension d has743

an (m, ⌘)-globally stable learning algorithm with m = Õ(22
d

/↵) and ⌘ = Õ(2�2d), where the744

error of h (with respect to the unknown hypothesis) is  ↵. Then they established that a globally745

stable learner implies a differentially private learner. This, together with an earlier work of Alon,746

Livny, Malliaris, and Moran (ALMM19), establishes an equivalence between online learnability and747

differentially private PAC learnability.748

The work of Ghazi, Kumar, and Manurangsi (GKM21) extended the notion of global stability to749

pseudo-global stability and list-global stability. The notion of pseudo-global stability is very similar750

to the earlier-mentioned notion of influential bit algorithms of Grossman and Liu (GL19) when751

translated to the context of learning. Similarly, the list-global stability is similar to Goldreich’s752

notion of multi-pseudodeterminism (Gol19). These notions coincide with our definitions of list753

replicability and certificate replicability respectively. The work of (GKM21) used these concepts to754

design user-level differentially private algorithms.755

The recent work reported in (ILPS22) introduced the notion of ⇢-replicability. A learning algorithm A756

is ⇢-replicable if PrS1,S2,r[A(S1, r) = A(S2, r)] � 1�⇢, where S1 and S2 are samples drawn from a757

distribution D and r is the internal randomness of the learning algorithm A. They designed replicable758

algorithms for many learning tasks, including statistical queries, approximate heavy hitters, median,759

and learning half-spaces. It is known that the notions of pseudo-global stability and ⇢-replicability760

are the same up to polynomial factors in the parameters (ILPS22; GKM21).761

In this work, we study the notions of list and certificate complexities as a measure the degree of (non)762

replicability. Our goal is to design learning algorithms with optimal list and certificate complexities763

while minimizing the sample complexity. The earlier works (BLM20; GKM21; ILPS22) did not764

focus on minimizing these quantities. The works of (BLM20; GKM21) used replicable algorithms as765

an intermediate step to design differentially private algorithms. The work of (ILPS22) did not consider766

reducing the certificate complexity in their algorithms and also did not study list-replicability. Earlier767

works (GKM21; ILPS22) studied how to convert statistical query learning algorithms into certificate768

replicable learning algorithms, however, their focus was not on the certificate complexity. Here, we769

study the relationship among (nonadaptive and adaptive) statistical query learning algorithms, list770

replicable algorithms, and certificate replicable algorithms with a focus on list, certificate and sample771

complexities.772

A very recent and independent work of (CMY23) investigated relations between list replicability773

and the stability parameter ⌫, in the context of distribution-free PAC learning. They showed that for774

every concept class H, its list complexity is exactly the inverse of the stability parameter. They also775

showed that the list complexity of a hypothesis class is at least its VC dimension. For establishing776

this they exhibited, for any d, a concept class whose list complexity is exactly d. There are some777

similarities between their work and the present work. We establish similar upper and lower bounds on778

the list complexity but for different learning tasks: d-THRESHOLD and d-COIN BIAS ESTIMATION779

PROBLEM. For d-THRESHOLD, our results are for PAC learning under uniform distribution and do780

not follow from their distribution-independent results. Thus our results, though similar in spirit, are781

incomparable to theirs. Moreover, their work did not focus on efficiency in sample complexity and782

also did not study certificate complexity which is a focus of our paper. We do not study the stability783

parameter.784

The study of notions of reproducibility/replicability in various computational fields is an emerging785

topic. The article (PVLS+21) discusses the differences between replicability and reproducibility. In786
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(EKK+23), the authors consider replicability in the context of stochastic bandits. Their notion is787

similar to the notion studied in (ILPS22). In (AJJ+22), the authors investigate reproducibility in the788

context of optimization with inexact oracles (initialization/gradient oracles). The setup and focus of789

these works are different from ours.790
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