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A Detailed Evaluation Metrics for VIC3D Object Detection

In this section, we detail the evaluation metrics used to assess the performance of the VIC3D object
detection algorithm, namely mean Average Precision (mAP) and Average Byte (AB).

Mean Average Precision (mAP). We evaluate the detection performance using the mean Average
Precision (mAP) metric, which is commonly used in previous works such as (10; 1). The AP is
calculated based on the 11-points interpolated precision-recall curve and is defined as follows:

AP =
1

11

∑
r∈0.0,...,1.0

APr =
1

11

∑
r∈0.0,...,1.0

Pinterp(r), (1)

where Pinterp(r) = max
r̃≥r

p(r̃), and a prediction is considered positive if the Intersection over Union

(IoU) is greater than or equal to 0.5 or 0.7, respectively. We calculate the AP for each class and then
average them to obtain the mAP.

For VIC3D object detection, we focus on the obstacles around the ego vehicle. Therefore, we only
consider objects within the regions of interest around the ego vehicle. To evaluate the detection
performance, we transform all predicted 3D boxes and ground truth 3D boxes into the ego-vehicle
coordinate system. To define the regions of interest, we remove objects outside the egocentric
surroundings, which are defined as a rectangular area with coordinates [0, -39.12, 100, 39.12].

There are two metrics used for evaluation: BEV@mAP and 3D@mAP. BEV@mAP evaluates the
3D boxes in the bird’s-eye view and ignores the z-dimension, while 3D@mAP considers all three
dimensions (x, y, z) and is more strict than BEV@mAP.

Average Byte (AB). We use AB as a metric to evaluate the transmission cost. In our implementa-
tion, we ignore the transmission cost of calibration files and timestamps. The average transmission
cost is computed as AB, and we explain how to calculate the transmission cost for each of the three
transmission forms:

• For early fusion, we calculate the transmission cost of transmitting raw data. Each point in the
point clouds is represented as (x, y, z, intensity) in 32-bit float format. Therefore, each point
requires four 32-bit floats, equivalent to 16 Bytes. If there are 100,000 points in the point clouds
per transmission, the AB of the transmission cost is 1.6× 106 Bytes.

• For late fusion, we calculate the transmission cost of transmitting detection outputs. Each 3D
detection output is represented as (x, y, z, w, l, h, θ, confidence) in 32-bit float format. Thus, each
detection output requires eight 32-bit floats, equivalent to 32 Bytes. If we transmit ten detection
outputs per transmission, the AB of the transmission cost is 3.2× 102 Bytes.
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• For middle fusion, we calculate the transmission cost of transmitting feature, which is represented
as a tensor. If the size of the feature is (24, 36, 36) and each element is encoded as a 32-bit float,
the transmission cost is 24× 36× 36× 4 Bytes, amounting to 1.2× 105 Bytes.

• For middle fusion, we also calculate the transmission cost of transmitting feature flow. Both feature
and the first-order derivative of feature flow are represented as tensors. If the size of the feature and
the first-order derivative is (12, 36, 36) respectively, with each element encoded as a 32-bit float,
the transmission cost is 12× 36× 36× 2× 4 Bytes, equivalent to 1.2× 105 Bytes. If we quantize
the intermediate data into b-bit and transmit the quantized feature and first-order derivative, the
transmission cost becomes (1.2 × 105) × b/32 Bytes. Further details on the calculation of the
transmission cost with the attention mask to compress the feature flow are provided in Section C.

B Architecture of FFNet

FFNet is composed of following six main parts.

• The feature flow generation module: The infrastructure PFNet (Pillar Feature Net) shares the same
architecture as PointPillars (3). The x, y, and z ranges of the input point cloud are [(0, 92.16),
(-46.08, 46.08), (-3, 1)] meters, respectively. The voxel size of x, y, and z are [0.16, 0.16, 4] meters,
respectively. The output shape of the pseudo-images is (64, 576, 576). The feature extractor Fi(·)
and the estimated first-order derivative generator F̃

′

i (·) both use the same Backbone and FPN as
SECOND (8), with output shapes of [384, 288, 288].

• The compressor and decompressor: The compressor utilizes four convolutional blocks with strides
(2, 1, 2, 2) to compress the features from (384, 288, 288) to (384/32, 288/8, 288/8). The decom-
pressor employs three deconvolutional blocks with strides (2, 2, 2) to restore the features back to
their original size.

• Affine transformation module: The affine transform is implemented with the affine_grid function
supported in Pytorch. Rotation around the x-y plane is ignored.

• Feature fusion module: The fusion module is a 3×3 convolutional block with a stride 1 to compress
the concatenated feature from (768, 288, 288) to (384, 288, 288).

• Vehicle feature extractor: This extractor follows the same configuration as the infrastructure PFNet
and feature extractor.

• 3D object detection head: A Single Shot Detector (SSD) (6) is used to generate the 3D outputs. The
anchor has a width, length, and height of (1.6, 3.9, 1.56) meters, with a z-center of -1.78 meters.
The positive and negative thresholds of matching are 0.6 and 0.45, respectively.

C Attention Mask for Compression

Implementation Details. The attention mask M has the same height and width as the compressed
first-order derivative of the feature flow F̃

′

i (ti), with a single channel and a size of (36, 36). Each
element of the attention mask is obtained by element-wise multiplication between M and F̃ i

′
(ti)

across all channels, given by:

(M ⊙ F̃
′

i (ti))j,k,l = Mk,l ∗ F̃
′

i (ti)j,k,l. (2)

To generate the attention mask, we compute the feature difference between consecutive pseudo-
images. Then, we divide the pseudo-image space into 32x32 patches. For each patch, if the feature
difference exceeds a certain threshold, we set the corresponding patch element in the mask to 1;
otherwise, it is set to 0. Here we set the threshold as 0.0. Below is a Python implementation code for
the process of determining the attention mask:

def AttentionMask(image_1 , image_2 , img_shape , mask_shape , thre):
% default parameters
% img_shape=(576 , 576)
% mask_shape=(36, 36)
% thre=0.0
mask = torch.zeros(mask_shape[0], mask_shape[1]))
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feat_diff = torch.sum(torch.abs(image_1 - image_2), dim=1)
stride = int(img_shape[0] / mask_shape[0])
for k in range(mask_shape[0]):

for l in range(mask_shape[1]):
patch = feat_diff[k*stride:(k+1)*stride , l*stride:(l+1)*

stride]
if patch.sum() > thre:

mask[k, l] = 1

return mask

Transmission and Transmission Cost. To transmit the first-order derivative with the attention
mask, we transmit both the binary mask M and the non-zero elements of (M ⊙ F̃

′

i (ti)). The
binary mask M is represented using 1 bit per element. The total transmission cost of the binary
attention mask is calculated as (36× 36)/8 Bytes. The non-zero elements of (M ⊙ F̃

′

i (ti)) account
for the proportion of non-zero elements in the attention mask, denoted as P , multiplied by the
original transmission cost. Specifically, the transmission cost of the non-zero elements is given by
P × 12× 36× 36× 4 Bytes. Here the average proportion of non-zero elements P is about 60%.

D Quantization for Compression

Implementation Details. We employ linear quantization to represent the feature flow using b-bit.
The quantization process follows the equation:

Q(x;α) = [
clamp(x, α)

s(α)
] · s(α), (3)

where clamp(·, α) truncates values to the range [−α, α], [·] denotes rounding, and α is the clipping
value. We set α as the maximum value of the input tensor, as larger values tend to contain more
valuable information (9; 11; 2). We determine s(α) as α

2b−1−1
. Below is a Python implementation

code for the quantization process:

def QuantFunc(input , b_n=6):
alpha = torch.abs(input).max()
s_alpha = alpha / (2 ** (b_n - 1) - 1)

input = input.clamp(min=-alpha ,max=alpha)
input = torch.round(input/s_alpha)
input = input * s_alpha

return input

Transmission. During the transmission process, we transmit the rounded number [ clamp(x,α)
s(α) ], which

effectively represents the quantized feature flow using b-bits. Additionally, we transmit the scaling
factor s(α) required for decoding the quantized values. In our study, we set the value of b to 6 bits
for quantization.

Experiment Results. We present the experimental results of FFNet with 6-bit quantization in
Table 1. It can be observed that the performance of FFNet with 6-bit quantization exhibits only a
minimal decrease compared to the original FFNet without quantization.

E Implementation Details of V2VNet and DiscoNet for VIC3D

V2VNet for VIC3D. V2VNet (7) is a pioneering work in multi-vehicle cooperative perception,
introducing the concept of transmitting intermediate-level data for cooperative perception without
relying on sequential frames to extract temporal correlations. In this paper, we adopt this approach as
a baseline for solving the VIC3D problem, as depicted in Figure 1. We made two modifications to
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Table 1: Experimental Results: Quantization Impact. We employ 6-bit quantization.

Latency Quantization mAP@3D ↑ mAP@BEV ↑ AB (Byte) ↓IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7
200 N 55.37 31.20 63.20 54.69 1.2×105

200 Y 55.39 31.69 63.26 (+0.06) 54.63 2.2×104

300 N 53.46 30.42 61.20 52.44 1.2×105

300 Y 53.37 30.43 61.28 (+0.08) 52.40 2.2×104

the V2VNet architecture: (1) we removed the multi-vehicle selection and kept only one vehicle in
the infrastructure setting, and (2) we compressed the features from (384, 288, 288) to (384, 288/8,
288/8) to ensure a comparable transmission cost to FFNet. The remaining modules maintain the same
configurations as their corresponding counterparts in FFNet. We trained the V2VNet model on the
training subset of the DAIR-V2X dataset for 40 epochs, employing a learning rate of 0.001 and a
weight decay of 0.01. The remaining training configurations align with those used for training FFNet.
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Figure 1: Implementation of V2VNet for Solving VIC3D Problem. The V2VNet directly transmit the feature
generated from the single point cloud, and then fuse it with the vehicle feature. This feature fusion could cause
serious fusion errors by the uncertain temporal asynchrony.

DiscoNet for VIC3D. DiscoNet (5) was originally designed for cooperative perception among
multiple vehicles. It utilizes a teacher-student paradigm, where cooperative perception with raw data
serves as the teacher network to guide cooperative perception with intermediate data, which acts as
the student network. To adapt DiscoNet as a baseline for the VIC3D task, we employ an early-fusion
network as the teacher network and V2VNet as the student network. Both the teacher and student
models are trained on the training subset of DAIR-V2X for 40 epochs, with a learning rate of 0.001
and weight decay of 0.01. Furthermore, we fine-tune the student network using soft labels generated
by the early-fusion network for an additional 10 epochs, with a learning rate of 0.0001 and weight
decay of 0.01.

F Comparison of Feature Flow Extraction on Different Sides

This section discusses the effect of extracting the feature flow on different sides (infrastructure side
vs. vehicle side).

Experiment Setting. To compare the effect of feature flow extraction on infrastructure side and
vehicle side, we train a modified FFNet called FFNet-V. The FFNet-V inputs the features Fi(Pi(ti −
1)) and Fi(Pi(ti − 1)) produced from consecutive infrastructure frames to generate the feature flow
on vehicle devices. We first concatenate the two received features and feed them into a first-order
derivative generator to generate the estimated first-order derivative of the feature flow F̃

′

i (ti). Then
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we predict the future feature as following Equation
F̃i(ti +∆t) ≈ Fi(Pi(ti)) + (tv − ti) ∗ F̃

′

i (ti). (4)

In addition, FFNet-V shares the same architecture modules and training configuration as FFNet. The
FFNet-V implementation framework is shown in Figure 2. To ensure a fair comparison with FFNet,
we also train another FFNet-V by compressing the feature from (384, 288, 288) to (384/16, 288/8,
288/8), which has the same transmission cost as FFNet. This version of FFNet-V is referred to as
FFNet-V (Same-TC). We evaluate both FFNet-V and FFNet-V (Same-TC) under different latencies
(100ms, 300ms, and 500ms).
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Figure 2: FFNet-V Overview. FFNet-V generates the feature flow on vehicle devices.

Result Analysis. Table 2 shows that FFNet-V, FFNet-V (Same-TC), and FFNet outperform FFNet-
O under different latencies. This indicates that all these methods can reduce the detection performance
drop caused by temporal asynchrony. However, FFNet can compensate for more performance
drop and achieve better performance than FFNet-V and FFNet-V (Same-TC). Specifically, FFNet
outperforms FFNet-V (Same-TC) by more than 3% mAP@BEV (IoU=0.5) in 300ms latency, while
having the same transmission cost. The results demonstrate that extracting feature flow from raw
sequential frames on infrastructure can improve the VIC3D detection performance more effectively
than extracting feature flow from intermediate sequential feature frames on vehicle. Moreover, FFNet
requires much fewer ego-vehicle computing resources, and the computing cost complexity (CCC) is
only O(N), since the feature flow has already been produced on infrastructure devices and does not
need to be generated on vehicle devices again. In contrast, FFNet-V consumes computation resources
up to O(N) to extract flow from past features. Therefore, FFNet is more computation-friendly for
resource-limited vehicle devices. Additionally, extracting feature flow on the vehicle requires much
more storage because the feature flow extraction depends on the past frames that the vehicle received.
Furthermore, FFNet-V relies heavily on past consecutive frames, so dropped frames can significantly
affect the execution and performance. Therefore, FFNet is more storage-friendly to the ego vehicle
and more robust to frame dropping.

G Relationship to Other Existing Possible Solutions

Compared to other solutions, FFNet offers a more practical paradigm for implementing vehicle-
infrastructure cooperative 3D object detection, providing the following advantages:

• Performance-Bandwidth Balance: FFNet achieves a superior balance between performance and
bandwidth compared to early fusion and late fusion methods. Unlike early fusion, FFNet transmits
compressed intermediate data, reducing transmission costs. Additionally, FFNet transmits valuable
information for egocentric object detection, surpassing the capabilities of late fusion methods.
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Table 2: Extracting Feature Flow on Infrastructure side vs. on Vehicle Side. FFNet-O denotes the FFNet
model without feature prediction. FFNet-V denotes the model that extracts the feature flow on vehicle. FFNet-V
(Same-TC) denotes the FFNet-V which has the same transmission cost as FFNet. “AB” denotes the average byte
used to measure the transmission cost. “SCC” indicates the storage cost complexity for the vehicle devices to
store the past frames, “CCC” indicates the computing cost complexity for vehicle to extract the feature flow, “N”
indicates the number of historical structures to be used. “/” indicates the FFNet-O does not need infrastructure
transmission and extra computation and storage. The SCC of FFNet is O(1) because it does not need extra
historical frames on vehicle devices. At the same time, the SCC of extracting feature flow on vehicle is O(N)
because extracting feature flow on vehicle needs past frames received from infrastructure. Moreover, FFNet
achieves better detection performs, and this advantage becomes more pronounced (+3% mAP) when latency
increases to 300ms.

Model Latency (ms) mAP@3D ↑ mAP@BEV ↑ AB(Byte) ↓ SCC ↓ CCC ↓IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7
FFNet-O 100 52.18 27.99 60.39 49.14 / / /
FFNet-V 100 53.21 28.43 61.50 50.50 6.2×104 O(N) O(N)

FFNet-V (Same-TC) 100 53.17 28.45 62.44 51.68 1.2×105 O(N) O(N)
FFNet (Ours) 100 55.48 31.50 63.14 (+0.7) 54.28 1.2×105 O(1) O(1)

FFNet-O 300 49.03 27.39 55.81 47.28 / / /
FFNet-V 300 50.81 28.45 57.75 49.62 6.2×104 O(N) O(N)

FFNet-V (Same-TC) 300 50.5 28.25 58.02 50.03 1.2×105 O(N) O(N)
FFNet (Ours) 300 53.46 30.42 61.20 (+3.18) 52.44 1.2×105 O(1) O(1)

FFNet-O 500 47.49 27.01 54.16 45.99 / / /
FFNet-V 500 49.93 28.63 56.42 48.87 6.2×104 O(N) O(N)

FFNet-V (Same-TC) 500 49.98 27.7 56.99 49.55 1.2×105 O(N) O(N)
FFNet (Ours) 500 52.08 30.11 59.13 (+2.14) 51.70 1.2×105 O(1) O(1)

• Overcoming the Temporal Asynchrony Challenge: FFNet addresses the challenge of temporal
asynchrony between vehicle and infrastructure sensors. Unlike V2VNet (7) and DiscoNet (5),
which only transmit features without considering temporal asynchrony, FFNet transmits the feature
flow along with feature prediction capabilities. This feature flow generates future features aligned
with vehicle features, mitigating fusion errors caused by temporal asynchrony. Notably, the
independent module of the first-order derivative in the feature flow can be applied to newer feature
fusion methods, achieving lower transmission costs.

• Computing-Friendly for Vehicles with Limited Resources: FFNet generates the feature flow on
the infrastructure side and can directly predict future features, compensating for uncertain latency
through linear computation in ego vehicles. Another solution proposed in (4) addresses temporal
asynchrony by generating future features with received historical features on vehicle devices.
However, this solution demands significant computing resources to process historical frames and
extract temporal correlations for future feature prediction. Extracting temporal information from
compressed features poses challenges, as compressed features lack valuable information present in
raw sequential point clouds.

• Annotation Cost Savings: FFNet training significantly reduces annotation costs. A self-supervised
learning method is employed to train the feature flow generator and extract temporal feature flow
from sequential point clouds. This training method does not rely on labeled data and opens up
possibilities for utilizing vast amounts of unlabeled infrastructure-side sequential data in the future.
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H Visualization Results

Infrastructure sensor data can broaden the perception field. We provide a visualization example
in Figure 3 to show that infrastructure sensor data can broaden the perception ability of autonomous
driving car.

Figure 3: The Effect of Infrastructure Sensor Data. The brown point clouds represent data captured from the
infrastructure sensors, the blue point clouds represent data captured from the vehicle sensors, and the red boxes
indicate the prediction outputs obtained using FFNet.

Effect of Feature Flow Prediction. We generate detection outputs using feature flow prediction
and without feature flow prediction, respectively. To demonstrate the effect of feature flow prediction,
we provide visualization examples in Figure 4.
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(a) Detection Result of FFNet without Feature Prediction.

(b) Detection Result of FFNet with Feature Prediction.

Figure 4: The Effect of Feature Flow Prediction. The brown point clouds represent data captured from the
infrastructure sensors, and the blue point clouds represent data captured from the vehicle sensors. The yellow
boxes highlight the additional detection outputs resulting from the non-aligned feature fusion caused by temporal
asynchrony.
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