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Abstract

We study the multi-objective minimum weight base problem, an abstraction of
classical NP-hard combinatorial problems such as the multi-objective minimum
spanning tree problem. We prove some important properties of the convex hull of
the non-dominated front, such as its approximation quality and an upper bound on
the number of extreme points. Using these properties, we give the first run-time
analysis of the MOEA/D algorithm for this problem, an evolutionary algorithm
that effectively optimizes by decomposing the objectives into single-objective
components. We show that the MOEA/D, given an appropriate decomposition
setting, finds all extreme points within expected fixed-parameter polynomial time,
in the oracle model. Experiments are conducted on random bi-objective minimum
spanning tree instances, and the results agree with our theoretical findings. Further-
more, compared with a previously studied evolutionary algorithm for the problem
GSEMO, MOEA/D finds all extreme points much faster across all instances.

1 Introduction

Evolutionary algorithms have been widely used to tackle multi-objective optimization problems
in many areas such as robotics, pattern recognition, data mining, bioinformatics, scheduling and
planning, and neural network training [35]. Their population-based search operators make them a
natural choice for simultaneously handling several possibly conflicting objectives. Many generic
evolutionary multi-objective frameworks have been developed to supply basic implementations for
any problem, and to provide templates that can be fine-tuned for specific applications (we refer
to [30] for an overview of common approaches). Such features, along with their strong empirical
performances in challenging applications, have led them to becoming one of the most attractive topics
to researchers and practitioners alike.

Among evolutionary multi-objective algorithms (EMOs), arguably the most exemplary are dominance-
based approaches such as GSEMO and NSGA variants, with the former often being considered a
baseline. Another popular technique for multi-objective optimization is to decompose the multiple
objectives into a single-objective subproblem. The MOEA/D algorithm is a state-of-the-art application
of this technique in evolutionary computation [29, 31].

Despite the prevalence of EMOs on practical applications, rigorous analyses of their runtime behavior
on meaningful problems are scarce. Nevertheless, these kinds of analyses are critical for (1) providing
performance guarantees and guidelines to practitioners who use and develop these techniques in
the field, and (2) promoting the explainability of heuristic search and optimization techniques by
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clarifying their working principles through a careful mathematical analysis. Run-time analyses on the
performance of evolutionary algorithms have been provided for simple algorithms such as GSEMO
in both artificial benchmark problems [2, 7] and others such as bi-objective minimum spanning tree
[18, 28] and constrained submodular optimization [21, 22, 5, 23]. In recent years, theoretical analyses
of state of the art approaches such as NSGA-II and MOEA/D have been conducted [12, 14, 13, 34, 6].
However, these run-time results have only been given for artificial benchmark problems.

In this paper, we present for the first time rigorous results on MOEA/D for a classical multi-objective
optimization problem, namely the multi-objective minimum weight base problem. This problem,
falling under the matroid optimization category, significantly generalizes the previously studied
bi-objective minimum spanning tree problem. In this work, we focus on approximating the non-
dominated front, as its size can be exponential in the problem size. In particular, we show that
MOEA/D obtains a factor 2-approximation for two objectives in expected polynomial time. Previous
analyses for the special case of graphic matroid (i.e. spanning forests) were only able to show a
pseudo-polynomial run-time for GSEMO and NSGA-II to obtain this approximation [18, 4]. We
further extend the analyses by deriving a fixed-parameter polynomial expected run-time in instances
with 𝑘 ≥ 2 objectives to reach a 𝑘-approximation. That is, unlike the previous runtime bounds, ours
is both polynomial and weight-free under fixed 𝑘 in light of the findings by Rechel et. al. [27].

Instrumental to our analyses is a deeper understanding of the problem, and as such, we formally
examine certain properties of the multi-objective minimum weight base problem. We first prove a
tight approximation guarantee from computing the convex hull of the non-dominated front, extending
the known guarantee for two objectives [18]. With this in mind, we explore insight regarding this
convex hull, including its vertex complexity and the structural relation among solutions whose weights
constitute said convex hull. In addition, we briefly formulate an efficient deterministic approach to
enumerate extreme points, which achieves a smaller approximation factor in lower (and weight-free)
runtime than a recently proposed framework for general multi-objective minimization instances [1].
These findings may be of interest in areas beyond runtime analysis.

2 Preliminaries & Problem

First, we give an overview of relevant matroid theory concepts, with terminologies adopted from the
well-known text book [20] on the subject.

Definition 1. A tuple 𝑀 = (𝐸,I ⊆ 2𝐸) is a matroid if a) ∅ ∈ I, b) ∀𝑥 ⊆ 𝑦 ⊆ 𝐸,𝑦 ∈ I =⇒ 𝑥 ∈ I,
c) ∀𝑥,𝑦 ∈ I, |𝑥 | < |𝑦 | =⇒ ∃𝑒 ∈ 𝑦 \ 𝑥, 𝑥 ∪ {𝑒} ∈ I. The set 𝐸 is the ground set, and I is the
independence collection. A base of 𝑀 is a maximal set in I.

Definition 2. Given a matroid 𝑀 = (𝐸,I), its rank function, 𝑟 : 2𝐸 → ℕ, is defined as 𝑟 (𝑥) =
max{|𝑦 | : 𝑦 ∈ 2𝑥 ∩ I}, and the rank of 𝑀 is 𝑟 (𝐸). A matroid is completely characterized by its rank
function.

To give examples, a 𝐾-rank uniform matroid over 𝐸 admits the independence collection I = {𝑥 ⊆ 𝐸 :
|𝑥 | ≤ 𝐾}, characterizing a cardinality constraint. In linear algebra, a representable matroid describes
linear independence among a vector set. In graph theory, given an undirected graph 𝐺 = (𝑉 , 𝐸), a
graphic matroid 𝑀 = (𝐸,I) defined by 𝐺 is such that I contains all edge sets 𝑥 forming a forest
subgraph in 𝐺 . A base of a graphic matroid is a spanning forest, which itself is an object of much
interest. Dual to the graphic matroid, the bond matroid 𝑀∗ = (𝐸,I∗) is such that I∗ contains all edge
sets 𝑥 whose removal from 𝐸 preserves every pairwise connectivity in 𝐺 . The matroid properties
emerge in many combinatorial structures of various optimization problems [20].

A classical application of matroids in optimization is in the minimum weight base (MWB) problem.
Given a weighted matroid (𝐸, 𝑟,𝑤), this problem asks to find a base in this matroid minimizing 𝑤 .
The most arguably well-known special case of MWB problem is the minimum spanning tree (MST)
problem. It is known that the classical Greedy algorithm minimizes (and maximizes) arbitrary weight
over a base collection of any matroid [24, 9, 8]. From the exchange property between independent sets
(specifically the symmetric-exchange property proven in [3]), we see that Greedy can also enumerate
all minimum weight bases, thus characterizes the optimality of any MWB instance. A proof of this
quality is also included in [8].
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The multi-objective minimum weight base (MOMWB) is a natural multi-objective extension to MWB.
Given a 𝑘-weighted1 matroid (𝐸, 𝑟,𝑤 ∈ (ℕ∗)𝑘×|𝐸 | ) where 𝐸 is the ground set, 𝑟 is the rank function of
the matroid, and the weight vector of a solution 𝑥 ∈ {0, 1} |𝐸 | is𝑤𝑥 (also called the image of 𝑥 under
𝑤), the multi-objective problem asks to find a non-dominated set of bases in (𝐸, 𝑟 ) minimizing 𝑤 .
Here, 𝑘 is the number of objectives.

We denote 𝑚 := |𝐸 |, 𝑛 := 𝑟 (𝐸), and observe that 𝑥 is a base in (𝐸, 𝑟 ) implies |𝑥 | = 𝑛. Given
an objective vector function 𝑓 and solutions 𝑥 and 𝑦, 𝑥 dominates 𝑦, denoted with 𝑥 ⪯𝑓 𝑦, iff
𝑓 (𝑦) − 𝑓 (𝑥) ∈ ℝ𝑘

≥0. We see that 𝑥 ⪯𝑓 𝑦 iff min𝜆∈[0,1]𝑘 𝜆⊺ (𝑓 (𝑦) − 𝑓 (𝑥)) ≥ 0, i.e. 𝑦 has greater
scalarized objective value than 𝑥 across all linear trade-offs. We denote the set of images of non-
dominated solutions with 𝐹 , and vertices of its convex hull Conv(𝐹 ) are called extreme points. For
convenience, let Conv(𝐹 ) contain only points in 𝐹 and that its faces be conventionally defined, i.e. as
continuous Euclidean subspaces.

Since 𝐹 can be exponentially large, we consider instead approximating it by finding solutions mapped
to Conv(𝐹 ). Such a set is known to guarantee a 2-approximation of the non-dominated set for 𝑘 = 2
[18] under the following definition.
Definition 3 (Minimization). Given 𝑘 non-negative objective functions 𝑓 := (𝑓𝑖 )𝑘𝑖=1, a solution 𝑥
𝑐-approximates a solution 𝑦 for some 𝑐 ≥ 0 if 𝑐 𝑓 (𝑦) − 𝑓 (𝑥) ∈ ℝ𝑘

≥0. A solution set 𝑋 𝑐-approximates
(or is a 𝑐-approximation of) a solution set 𝑌 if every 𝑦 ∈ 𝑌 is 𝑐-approximated by at least a 𝑥 ∈ 𝑋 .

We formally describe categories of solutions of interest. Here, we only consider feasible solutions, e.g.
bases in a MWB or MOMWB instance. Furthermore, a subset of 𝐸 is characterized by a bit-string in
{0, 1} |𝐸 | , so both set and bit operations on solutions are well-defined, and we use both representations
throughout the paper.
Definition 4. A solution 𝑥 is a supported solution to an instance with objective functions 𝑓 = (𝑓𝑖 )𝑘𝑖=1
and a solution set 𝑆 if there is a linear trade-off 𝜆 ∈ [0, 1]𝑘 \ {0} where 𝑥 ∈ argmin𝑦∈𝑆 𝜆⊺ 𝑓 (𝑦). A
trade-off set Λ is complete if

⋃
𝜆∈Λ argmin𝑦∈𝑆 𝜆⊺ 𝑓 (𝑦) contains all supported solutions. A supported

solution 𝑧 is extreme if there is 𝜆′ ∈ [0, 1]𝑘 where for all 𝑥 ∈ argmin𝑦∈𝑆 𝜆′⊺ 𝑓 (𝑦), 𝑓 (𝑧) = 𝑓 (𝑥). A set
containing a trade-off for each extreme solution is called sufficient.

Note we assume that every instance admits a solution minimizing 𝜆⊺ 𝑓 for every 𝜆 ∈ [0, 1]𝑘 . Of
course, this holds for MOMWB due to the solution set being finite. We see that supported solutions are
precisely the solutions whose images lie on Conv(𝐹 ). Intuitively, a complete trade-off set decomposes
the multi-objective instance in such a way to allow enumerating all supported solutions via exactly
solving scalarized instances. Since supported solutions that are not extreme are mapped to points on
the faces of Conv(𝐹 ), we have the following observation.
Observation 1. For each supported solution minimizing 𝜆⊺ 𝑓 , there is an extreme solution minimizing
𝜆⊺ 𝑓 . For every 𝜆 ∈ [0, 1]𝑘 , there is an extreme solution minimizing 𝜆⊺ 𝑓 .

However, for linear functions, the number of supported solutions can be very large, so we also
consider finding a representative subset which, as we will see, is sufficient to give an approximation
guarantee.
Definition 5. A solution set 𝑋 is sufficient to an instance with objective functions 𝑓 if for every
extreme solution 𝑦, there is 𝑥 ∈ 𝑋 where 𝑓 (𝑥) = 𝑓 (𝑦). The analogy for supported solutions is called
a complete solution set.

With this definition, the set of solutions that are mapped to the extreme points is sufficient. In fact, the
size of a minimal sufficient set is exactly the number of extreme points. Note that while the set of all
supported solutions is unique, there can be multiple distinct minimal sufficient sets due to duplicate
images. We briefly prove an approximation factor by any sufficient set, which is not restricted to
MOMWB.
Theorem 1 (Minimization). Given 𝑘 ≥ 1 and a non-negative 𝑘-objective instance where for each
objective 𝑖 there is 𝛿𝑖 > 0 so that 𝑓𝑖 (𝑥) ∉ (0, 𝛿𝑖 ] for all solutions 𝑥 , every sufficient solution set 𝑃
𝑘-approximates all solutions. This factor is tight for all 𝑘 , even if 𝑃 is a complete solution set.

1The integrality does not affect the algorithms’ behaviors, and is used only to ease the analysis. The positivity
assumption ensures that approximation factors are meaningful.
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We denote the weight scalarization with trade-off 𝜆 with𝑤 (𝜆) := 𝜆⊺𝑤 , so (𝐸, 𝑟,𝑤 (𝜆) ) is a scalarized
instance at 𝜆. All proofs, including the one for the above result, are included in the Appendix.

3 Properties of Conv(𝐹 ) in Multi-Objective Minimum Weight Base Problem

Here, we derive various properties of Conv(𝐹 ) with implications on the complexity of approximating
𝐹 . Since these solutions are optima of linearly scalarized instances, we use the properties of the
Greedy algorithm, known to guarantee and characterize optimality in linear optimization over a
matroid.

The Greedy algorithm starts from an empty set and adds elements to it in increasing weight order
while maintaining its independence, until a base is reached. In essence, Greedy operates on a
permutation over 𝐸 and produces a unique solution so we can characterize its outputs via permutations.
We say a permutation 𝜏 over 𝐸, 𝜏 : 𝐸 → {1, . . . ,𝑚}, sorts the weight 𝑤 if, for all 𝑖 = 1, . . . ,𝑚 − 1,
𝑤𝜏−1 (𝑖 ) ≤ 𝑤𝜏−1 (𝑖+1) . As mentioned, Greedy run on a permutation that sorts the weight to be minimized
returns a minimum weight base. More importantly, all minimum weight bases can be obtained by
running Greedy on all sorting permutations. This allows us to derive properties of any solution
mapped onto Conv(𝐹 ) using Greedy’s behaviors. In particular, we can circumvent the difficulty of
examining weights by examining permutations instead, essentially looking at the weight-induced
rankings rather than the weights themselves. As such, all results in this section are weight-free and
hold for arbitrary real weights. We refer to [1] for a weight-dependent algorithmic treatment of
Conv(𝐹 ) under general settings.

Observation 2. A MOMWB instance defined over a ground set 𝐸 satisfies the following: (1) its
objective functions are linear, and (2) there is a surjective mapping from the set of permutations over
𝐸 to the set of supported solutions.

To simplify analysis, we restrict the trade-off space to non-negative 1-norm unit vectors 𝑈 ={
𝑎 ∈ [0, 1]𝑘 :

∑𝑘
𝑖=1 𝑎𝑖 = 1

}
, let 𝜋𝜆 be a permutation sorting 𝑤 (𝜆) for 𝜆 ∈ 𝑈 . For each 𝑖 ∈ 𝐸, let

𝕨𝑖 = (𝑤 𝑗,𝑖 )𝑘𝑗=1, and for each pair 𝑖, 𝑗 ∈ 𝐸, let 𝛿𝑖, 𝑗 = 𝕨𝑖 − 𝕨𝑗 and Δ𝑖, 𝑗 =

{
𝑎 ∈ 𝑈 : 𝛿⊺

𝑖, 𝑗
𝑎 = 0

}
be the

(𝑘 − 2)-dimensional set characterized by the fact that for all 𝜆 ∈ 𝑈 ,𝑤 (𝜆)
𝑖

= 𝑤
(𝜆)
𝑗

iff 𝜆 ∈ Δ𝑖, 𝑗 . Finally,
let 𝐴 be the multiset of non-empty Δ𝑖, 𝑗 where 𝛿𝑖, 𝑗 ≠ 0, 𝐻𝐴 be the multiset of convex (𝑘 − 1)-polytopes
in 𝑈 defined by intersections of half-spaces bounded by hyperplanes in 𝐴 and the boundary of 𝑈 ,
and 𝐴′ be the set of points in 𝑈 where each point lies in the interior of a polytope in 𝐻𝐴, we show
that 𝐴 and 𝐴′ encompass complete solution set and sufficient solution set, respectively. Note that if
𝛿𝑖, 𝑗 = 𝕨𝑖 − 𝕨𝑗 = 0, the inclusion of either 𝑖 or 𝑗 in a solution does not change its image under𝑤 .2

Lemma 1. For any𝑄 ∈ 𝐻𝐴, the set of all bases minimizing𝑤 (𝜆) remains constant for all 𝜆 ∈ Int(𝑄)3,
and these bases share an image under𝑤 . Furthermore, they also minimize𝑤 (𝜆) for all 𝜆 ∈ 𝑄 .

This immediately gives the upper bound on the number of extreme points, which is the maximum
number of space partitions by hyperplanes; the formula for this is given in [32]. Note that Lemma
1 only requires properties in Observation 2, which hold for the broader class of set systems that is
matroid embeddings since all minimum weight bases in such a system are exactly Greedy bases [11].

Corollary 1. The size of a minimal sufficient solution set to a 𝑘-objective instance satisfying properties
in Observation 2 is at most

∑𝑘
𝑖=1

(𝑚 (𝑚−1)/2
𝑖−1

)
, and 𝐴′ is a sufficient trade-off set.

We remark that we deliberately choose each trade-off in 𝐴′ from the interior of each polytope. This is
because if a zero trade-off coefficient is assigned to an objective, then bases minimizing the weight
scalarized by such a trade-off may not be non-dominated. Furthermore, such scalarized weights
admit optima whose images under𝑤 are identical, which is necessary to ensure that the first optimum
an optimization algorithm finds using these trade-offs is an extreme solution. Moreover, this trade-off

2We include polytopes with empty interiors in 𝐻𝐴 to account for overlapping hyperplanes in 𝐴. Furthermore,
we assume these hyperplanes are ordered arbitrarily along their normal direction for the purpose of defining
interior-free polytopes: ℎ such hyperplanes form ℎ − 1 polytopes.

3Given a set 𝐴 in a metric space, Int(𝐴) is the set of its interior points.
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selection scheme also guarantees that said algorithm does not discard vertices of Conv(𝐹 ) over time,
unless it stores all found optima.

Given a solution set 𝑆 , the 𝑙-Hamming neighborhood graph of 𝑆 is an undirected graph 𝐺𝑙 =

(𝑆, {{𝑎, 𝑏} : |𝑎 ⊗ 𝑏 | ≤ 𝑙}), and 𝑆 is 𝑙-Hamming connected if 𝐺𝑙 is connected. Neumann [18] proved
for spanning trees that given the non-dominated front being strongly convex, the set of supported
solutions is 2-Hamming connected. We show that this even holds for matroid bases without the
convexity assumption. For simplicity, we assume, for the rest of the analysis, fixed orderings among
each class of elements 𝑖 ∈ 𝐸 sharing 𝕨𝑖 . We will see that the existence of such elements does not
affect the 2-Hamming connectivity among supported solutions.

We first show that as the trade-off moves continuously within𝑈 , the permutation sorting the scalarized
weight is transformed incrementally by exchanging two adjacent positions, which we call an adjacent
swap.
Lemma 2. For any 𝑎, 𝑎′ ∈ 𝑈 , let 𝐴∗ = {𝑎𝑖 }ℎ𝑖=1 be the multiset of intersections between the line
segment connecting 𝑎 and 𝑎′ and hyperplanes in 𝐴, indexed in the order from 𝑎 to 𝑎′, there is a
shortest sequence of adjacent swaps from 𝜋𝑎 to 𝜋𝑎′ , (𝜋𝑎, 𝜏1, . . . , 𝜏ℎ, 𝜋𝑎′ ), where for all 𝑖 = 1, . . . , ℎ, 𝜏𝑖
sorts𝑤 (𝑎𝑖 ) . If𝑤 (𝑎) or𝑤 (𝑎

′ ) can be sorted by multiple permutations, the claim holds assuming that
𝜋𝑎 and 𝜋𝑎′ have maximum Kendall distance4.

Next, we show that an adjacent swap on the sorting permutation incurs an at most 2-bit change in the
minimum weight base.
Lemma 3. Let 𝜏 and 𝜏 ′ be permutations over 𝐸 that are one adjacent swap apart, and 𝑥 and 𝑥 ′
are Greedy solutions on them, respectively, then |𝑥 ⊗ 𝑥 ′ | ≤ 2. Furthermore, let 𝑢, 𝑣 ∈ 𝐸 where
𝜏 (𝑣) = 𝜏 (𝑢) + 1 and 𝜏 ′ (𝑣) = 𝜏 ′ (𝑢) − 1, |𝑥 ⊗ 𝑥 ′ | = 2 iff 𝑥 ′ = 𝑥 \ {𝑢} ∪ {𝑣}.

Lemma 2 and 3 indicate that there is a sequence of 2-bit flips between any pair of supported solutions
such that every step also gives a supported solution. Therefore, starting from a supported solution,
we can compute the rest of Conv(𝐹 ) with 2-bit variations.

Regarding weight-sharing elements, for a supported solution 𝑥 minimizing𝑤 (𝜆) , if there is a class
of equal-weight elements 𝑍 partially intersecting 𝑥 , then all supported solutions minimizing 𝑤 (𝜆)
containing different elements in 𝑍 can be reached from 𝑥 by a sequence of 2-bit flips, each step in
which produces a supported solution also minimizing𝑤 (𝜆) . This is because 𝑍 is located consecutively
in 𝜋𝜆 and can be arranged arbitrarily (leading to the Greedy solution minimizing 𝑤 (𝜆) ), and there
is a sequence of adjacent swaps between any two such permutations touching only elements in
𝑍 . Furthermore, if there are multiple such classes whose elements share a scalarized weight at
some trade-off 𝜆, the relative inter-class orderings in any valid 𝜋𝜆 can be shuffled arbitrarily with an
adjacent swap sequence that neither, at any step, changes any pairwise intra-class ordering, nor breaks
the sorting property. For these two reasons, the set of permutations sorting all scalarized weights
is 1-Kendall connected (Kendall-distance equivalence to Hamming connectivity), thus the relative
intra-class orderings, and consequentially the presence of multiple elements within each such class,
does not affect 2-Hamming connectivity.
Corollary 2. Given solutions 𝑥 and 𝑦 where {𝑤𝑥,𝑤𝑦} ⊆ Conv(𝐹 ), there is a non-empty set of
solutions {𝑧𝑖 }ℎ𝑖=1 where 𝑥 = 𝑧1, 𝑦 = 𝑧ℎ , |𝑧𝑖 ⊗ 𝑧𝑖+1 | = 2 for all 𝑖 = 1, . . . , ℎ−1 and {𝑤𝑧𝑖 }ℎ𝑖=1 ⊆ Conv(𝐹 ).

Lemma 3 also lets us derive a stronger bound on the number of distinct Greedy solutions as the
trade-off moves in a straight line, giving an upper bound on the number of extreme points in case
𝑘 = 2.
Theorem 2. Given 𝑛 ∈ (0,𝑚), 𝑎, 𝑏 ∈ 𝑈 and 𝑋 is a minimal set of extreme solutions such that for
each 𝜃 ∈ [0, 1], 𝑋 contains a solution minimizing 𝑤 ( (1−𝜃 )𝑎+𝜃𝑏 ) , |𝑋 | ≤ ℎ𝑚 − ℎ(ℎ + 1)/2 + 1 where
ℎ :=

⌈√︁
2 min{𝑛,𝑚 − 𝑛} − 1

⌉
.

Corollary 3. A bi-objective MWB instance (i.e. 𝑘 = 2) admits at most𝑂 (𝑚
√︁

min{𝑛,𝑚 − 𝑛}) extreme
points.

We remark that aside from the trivial cases 𝑛 ∈ {1,𝑚 − 1}, we did not find an instance where this
bound is tight. As far as we are aware, it is an open question whether this bound is optimal.

4Kendall distance between two permutations equals the minimum number of adjacent swaps needed to
transform one into the other [17].
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Algorithm 1: Finding extreme points and a complete trade-off set (adapted from [10])
Input: Multi-weighted matroid (𝐸, 𝑟,𝑤)
Output: 𝑆 , Λ

1 𝑆,Λ′ ← ∅;
2 Λ← {𝑒𝑖 }𝑘𝑖=1;
3 𝑃 ← all permutations over {1, . . . , 𝑘};
4 while Λ \ Λ′ ≠ ∅ do
5 for 𝜆 ∈ Λ \ Λ′ do
6 ∀𝑝 ∈ 𝑃, 𝑎𝑝 ← base minimizing𝑤 (𝜆) prioritizing weights ranked by 𝑝;
7 𝑆 ← 𝑆 ∪ {𝑎𝑝 }𝑝∈𝑃 ;
8 Λ′ ← Λ′ ∪ Λ;
9 Λ← non-negative normal vectors to facets of Conv({𝑤𝑥 : 𝑥 ∈ 𝑆});

Algorithm 2: Special case of Algorithm 1 for 𝑘 = 2
Input: Bi-weighted matroid (𝐸, 𝑟,𝑤1,𝑤2)
Output: 𝑆 , Λ

1 𝑆,Λ′ ← ∅;
2 Λ← {0, 1};
3 while Λ \ Λ′ ≠ ∅ do
4 for 𝜆 ∈ Λ \ Λ′ do
5 𝑎, 𝑏 ← bases minimizing (1 − 𝜆)𝑤1 + 𝜆𝑤2 prioritizing𝑤1 and𝑤2, respectively;
6 𝑆 ← 𝑆 ∪ {𝑎, 𝑏};
7 Λ′ ← Λ′ ∪ Λ;
8 Λ← ∅;
9 𝜋 ← element indexes of 𝑆 in increasing𝑤1 (·) order;

10 for 𝑖 ∈ {1, . . . , |𝑆 | − 1} do
11 𝛿1, 𝛿2 ← 𝑤1𝑆𝜋 (𝑖+1) −𝑤1𝑆𝜋 (𝑖 ) ,𝑤2𝑆𝜋 (𝑖 ) −𝑤2𝑆𝜋 (𝑖+1) ;
12 Λ← Λ ∪ {𝛿1/(𝛿1 + 𝛿2)};

4 Exact Computation of Extreme Points

In this section, we describe a deterministic framework that finds a solution for each extreme point, as
well as a complete trade-off set. This framework, modified from the algorithm proposed in [10] for
bi-objective MST, is outlined in Algorithm 1. It calls another algorithm (e.g. Greedy) to find MWB to
scalarized weights, and iteratively computes new extreme points based on information from previous
ones. Intuitively, each subset of extreme points 𝑍 is such that its convex hull is “inside” Conv(𝐹 ) and
contains, for each extreme point 𝑦 ∉ 𝑍 , a facet separating 𝑍 from 𝑦. This means 𝑦 can be discovered
by minimizing the weight scalarized along the normal direction of this facet, essentially expanding
Conv(𝑍 ) to “touch” 𝑦. This iterative process begins with an optimum in each objective, and ends
when all new normal vectors are duplicates of ones found previously, indicating that the current
convex hull cannot be expanded further and equals Conv(𝐹 ). The special case of this algorithm for
𝑘 = 2 is given in Algorithm 2 which treats trade-offs as scalars.

Algorithm 1, naively implemented, requires𝑂 (#(poly(𝑘) +𝑘!𝑚 log𝑚)) operations and𝑂 (𝑘!#𝑚) calls
to the matroid rank oracle where # is the number of extreme points. Each iteration in the main loop
adds at least one extreme point, and redundant points are excluded from future iterations via Λ′. Here,
we assume updating trade-off for each new vertex takes poly(𝑘) operations.

We remark that exhaustive tie-breaking over all objectives is done at line 6 to ensure that the computed
points are the vertices of Conv(𝐹 ) instead of interior points of its faces, and that all extreme points
are accounted for when the termination criterion is met. Furthermore, if the trade-off assigns zero
value to some objectives, this also guarantees that the resulted solutions are non-dominated. This
subroutine can be improved by grouping together objectives whose sorting permutations agree (in
relative orderings) among elements tied by𝑤 (𝜆) .
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Algorithm 3: MOEA/D for MOMWB
Input: A MOMWB instance, trade-off set Λ, neighborhood size 𝑁 ≥ 1
Output: 𝑆

1 ∀𝜆 ∈ Λ, 𝐵𝜆 ← 𝑁 nearest neighbors of 𝜆 in Λ (Euclidean distance);
2 ∀𝜆 ∈ Λ, 𝑃𝜆 ← a random sample from {0, 1}𝑚;
3 𝑆 ← ∅;
4 while stopping conditions not met do
5 for 𝜆 ∈ Λ do
6 𝑥 ← uniformly sampled from 𝑃𝜆;
7 𝑦 ← independent bit flips on 𝑥 with probability 1/𝑚;
8 𝐷 ← {𝑙 ∈ 𝐵𝜆 : ∀𝑧 ∈ 𝑃𝑙 , 𝑓𝑙 (𝑦) < 𝑓𝑙 (𝑧)};
9 𝑇 ← {𝑙 ∈ 𝐵𝜆 : ∀𝑧 ∈ 𝑃𝑙 , 𝑓𝑙 (𝑦) = 𝑓𝑙 (𝑧)};

10 ∀𝑙 ∈ 𝐷, 𝑃𝑙 ← {𝑦};
11 ∀𝑙 ∈ 𝑇, 𝑃𝑙 ← 𝑃𝑙 ∪ {𝑦} removing solutions with duplicate images;
12 𝑆 ← non-dominated individuals in 𝑆 ∪ {𝑦} under relation ⪯𝑔;

5 MOEA/D With Weight Scalarization

Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), introduced in [33],
is a co-evolutionary framework characterized by simultaneous optimization of single-objective
subproblems in a multi-objective problem. While there are many approaches to decompose the
multi-objective into single-objectives, we consider the classical approach that is weight scalarization
[15], as hinted in preceding sections. This simple scheme is sufficient in approximating 𝐹 and even
enumerating Conv(𝐹 ).

5.1 Description

MOEA/D uses two fitness functions, a scalar function formulated by the decomposition scheme
and a vector function for dominance checking [33]. To account for the matroid base constraint, we
use the penalty term formulated in [26], which was adapted from prior work on MST [19]. Letting
𝑤𝑚𝑎𝑥 := max(𝑖,𝑒 ) ∈{1,...,𝑘 }×𝐸 𝑤𝑖,𝑒 , we have the fitness 𝑓𝜆 of 𝑥 ∈ {0, 1}𝑚 at trade-off 𝜆, and the fitness
vector 𝑔 for dominance checking where 𝟙 is the one vector.

𝑓𝜆 (𝑥) :=𝑚(𝑛 − 𝑟 (𝑥))𝑤𝑚𝑎𝑥 +𝑤 (𝜆)𝑥, 𝑔(𝑥) :=𝑚(𝑛 − 𝑟 (𝑥))𝑤𝑚𝑎𝑥𝟙 +𝑤𝑥 (1)

The MOEA/D for the MOMWB problem is outlined in Algorithm 3. The fitness functions defined in
Eq. (1) and the input trade-off set realize the decomposition, and the algorithm evolves a population
for each scalarized subproblem with potential neighborhood-based collaboration. During the search,
it maintains a non-dominated solution set 𝑆 , which does not influence the search and is returned as
output. An optimum to each scalarized subproblem is a supported solution. Note in this formulation,
MOEA/D keeps ties in each subproblem, allowing all found optima to participate in mutation
operations. This is to avoid having to flip more than two bits to jump from a supported solution to an
uncollected point in Conv(𝐹 ). We will see that while this may increase the population size, it does
not affect the run-time to reach optimality in each subproblem.

5.2 Expected Time To Minimize Scalarized Weights

In the following, we do not assume a particular value of 𝑁 , and the results hold for any 𝑁 ≥ 1.
Furthermore, we exclude the trivial instances with 𝑛 =𝑚 and 𝑛 = 0, which admit exactly one base
each.
Lemma 4. MOEA/D working on trade-off set Λ finds a base’s superset for each 𝜆 ∈ Λ within
𝑂 ( |Λ|𝑚 log𝑛) expected search points.

Let𝑂𝑃𝑇𝜆 be the optimal value to (𝐸, 𝑟,𝑤 (𝜆) ), we have the following drift argument proven in [26] for
the standard bit mutation in the MWB problem.
Lemma 5 ([26], Proposition 9). Given a trade-off 𝜆 ∈ [0, 1] and 𝑥 ∈ {0, 1}𝑚 , if 𝑥 supersets a base,
then there are 𝑛 2-bit flips and𝑚 −𝑛 1-bit flips on 𝑥 reducing 𝑓𝜆 (𝑥) on average by (𝑓𝜆 (𝑥) −𝑂𝑃𝑇𝜆)/𝑚.
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We use the same ideas as the proof of Theorem 2 in [26], while sharpening an argument to derive a
slightly tighter bound.

Theorem 3. MOEA/D working on trade-off set Λ finds MWBs to instances scalarized by trade-
offs in Λ in𝑂

(
|Λ|𝑚 log𝑛 +∑𝜆∈Λ𝑚

2 (log(𝑚 − 𝑛) + log𝑤𝑚𝑎𝑥 + log𝑑𝜆)
)

expected search points where
𝑑𝜆 := min{𝑎 > 0 : 𝑎𝜆, 𝑎(1 − 𝜆) ∈ ℕ}.

In order for MOEA/D to reach a 𝑘-approximation and not lose it afterwards, it suffices that Λ is
sufficient and each scalarized subproblem admits optima with a unique image. As mentioned and
from Lemma 1, this can be obtained by sampling from the interiors of convex polytopes in 𝐻𝐴. For
𝑘 = 2, this can be done by taking a complete scalar trade-off set 𝐴 (e.g. as returned by Algorithm
2) and include (𝑎 + 𝑏)/2 (which is an interior point) for each non-empty interval (𝑎, 𝑏) bounded by
consecutive elements in 𝐴 ∪ {0, 1}. Under the integer weights assumption, this method gives rational
trade-offs whose integral denominators are𝑂 (𝑤2

𝑚𝑎𝑥 ), so we have the following bound from Corollary
3.

Corollary 4. For a bi-objective instance, MOEA/D working on a minimal sufficient trade-off set finds
a sufficient solution set within 𝑂 (𝑚2

√︁
min{𝑛,𝑚 − 𝑛}(𝑚(log(𝑚 − 𝑛) + 3 log𝑤𝑚𝑎𝑥 ) + log𝑛)) expected

number of search points.

This method can be generalized to higher dimensions. Instead of taking an average of two consecutive
elements, we can take the average of the vectors normal to 𝑘 facets of Conv(𝐹 ) that meet at an
extreme point, as this ensures the resulted trade-off 𝜆 is not normal5 to any ℎ-faces of Conv(𝐹 ) for all
ℎ ∈ [1, 𝑘], and that said extreme point minimizes𝑤 (𝜆) . Since each facet is determinable by 𝑘 points
with integral coordinates, each such (1-norm unit) vector admits rational coordinates with denominator
at most 𝑘𝑤𝑚𝑎𝑥 . Therefore, the trade-offs derived by this method admit rational representations
whose denominators are 𝑂 (𝑘𝑘+1𝑤𝑘

𝑚𝑎𝑥 ), giving the run-time upper bound from Corollary 1 under the
assumption that 𝑘 is sufficiently small.

Corollary 5. Given a 𝑘-obbjective instance where 𝑘 ∈ 𝑜 (𝑚) and 𝑘 ∈ 𝑜 (𝑤𝑚𝑎𝑥 ), MOEA/D working on
a minimal sufficient trade-off set guarantees 𝑘-approximation within 𝑂 (𝑚2𝑘−1 (𝑚(log(𝑚 − 𝑛) + (𝑘 +
1) log𝑤𝑚𝑎𝑥 ) + log𝑛)) expected number of search points.

As a side note, since MOEA/D uses standard bit mutation, we can replace𝑤𝑚𝑎𝑥 with𝑚𝑚 and remove
log𝑑𝜆 from the bound in Theorem 3 to arrive at weight-free asymptotic bounds [27].

5.3 Expected Time To Enumerate Conv(𝐹 )

We see from Corollary 2 that MOEA/D with a complete trade-off set can collect all points in Conv(𝐹 )
with 2-bit flips starting from an optimum to each subproblem. As mentioned, this is afforded by
allowing all found optima to undergo mutation.

Theorem 4. Assuming distinct supported solutions have distinct images under𝑤 , MOEA/D working
on a minimal complete trade-off set Λ, and starting from an optimum for each 𝜆 ∈ Λ enumerates
𝐶 := Conv(𝐹 ) in 𝑂 ( |Λ| |𝐶 |2𝑚2) expected number of search points.

With this, Theorem 3 and Corollary 3 and 1, we have the following expected run-time bounds under
the distinct image assumption. Note this assumption can be removed by having MOEA/D keep
duplicate images at line 11.

Corollary 6. For a bi-objective instance, MOEA/D working on a minimal complete trade-off set
enumerates𝐶 := Conv(𝐹 ) in expected time𝑂 (𝑚2

√︁
min{𝑛,𝑚 − 𝑛}(𝑚(log(𝑚−𝑛)+3 log𝑤𝑚𝑎𝑥 +|𝐶 |2)+

log𝑛)).
Corollary 7. Given a 𝑘-objective instance where 𝑘 ∈ 𝑜 (𝑚) and 𝑘 ∈ 𝑜 (𝑤𝑚𝑎𝑥 ), MOEA/D working on
a minimal complete trade-off set enumerates 𝐶 := Conv(𝐹 ) in expected time 𝑂 (𝑚2𝑘−1 (𝑚(log(𝑚 −
𝑛) + (𝑘 + 1) log𝑤𝑚𝑎𝑥 + |𝐶 |2) + log𝑛)).

5If 𝜆 is normal to a face of Conv(𝐹 ), then all points in this face minimize𝑤 (𝜆) . A convex combination of
vectors normal to some faces is normal to their (assumed non-empty) intersection, the intersection of ℎ adjacent
𝑑-faces is a (𝑑 − ℎ + 1)-face, and an extreme point or vertex is a 0-face.
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6 Experimental Investigation

In this section, we perform computational runs of MOEA/D on various bi-objective minimum
spanning tree instances. Spanning trees in a connected graph 𝐺 = (𝑉 , 𝐸) are bases of the graphic
matroid defined by 𝐺 admitting the ground set 𝐸. The rank of such a matroid (i.e. the size of the
spanning tree) equals |𝑉 | − 1 and its rank function is defined with 𝑟 (𝑥) = |𝑉 | − 𝑐𝑐 (𝑥) where 𝑐𝑐 (𝑥) is
the number of connected components in (𝑉 , 𝑥). In notations, we have 𝑛 = |𝑉 | − 1 and𝑚 = |𝐸 |. We
use simple undirected graphs in our experiments, and the edge-set representation of solutions in the
implementations of the algorithms [25].

6.1 Setting and Performance Metrics

We uniformly sample graphs with |𝑉 | ∈ {26, 51, 101} and |𝐸 | ∈ {150, 300}. In this procedure, edges
are added randomly into an empty graph up to the desired edge count, and this is repeated until a
connected graph is obtained. Each edge weight is an integer sampled independently fromU(1, 100).
We generate two weighted graphs with each setting, making 12 instances in total.

With this experiment, we aim to measure the algorithms’ performances in finding solutions mapped to
all extreme points, we denote this set of target points with 𝑅. We compare MOEA/D against GSEMO,
previously studied for its performance in bi-objective MST [18]. For GSEMO, we use the fitness
function 𝑔 defined in Eq. (1). Since GSEMO checks for dominance in each iteration across its entire
population, we set 𝑁 := |Λ| for MOEA/D to match. Here, the input Λ to MOEA/D is derived from
a complete trade-off set output by Algorithm 2 in the manner described in Section 5.2. The points
given by Algorithm 1 are the target points 𝑅, and each run is terminated if all target points are hit.
Additionally, each run is terminated after at most ⌈3|𝑅 |𝑚2 log(𝑚 − 𝑛)⌉ evaluations (each evaluation
is a call to function 𝑔). Each algorithm is run on each instance 10 times. Their performances are
measured with the followings (𝑆 is the final population returned by the algorithm):

• Success rate: The number of runs where all target points are hit within the evaluation budget.

• Cover rate: The proportion of hit target points after termination, |𝑅 ∩ {𝑤𝑥 : 𝑥 ∈ 𝑆}|/|𝑅 |. A run is
successful if this reaches 100%.

• Modified inverted generational distance (IGD+): The distance between the output and the target

points [16],
∑

𝑦∈𝑅 min𝑥∈𝑆
√︃∑𝑘

𝑖=1 (max{(𝑤𝑥)𝑖 − 𝑦𝑖 , 0})2/|𝑅 |. A run is successful if this reaches 0.

• T: The number of evaluations until all target points are hit.

We remark that the fitnesses 𝑓𝜆 can be quickly computed alongside 𝑔, incurring minimal overheads.
In fact, the run-time bottleneck is in checking the number of connected components.

6.2 Experimental Results

The results are shown in Table 1, with IGD+ and cover rate from MOEA/D omitted due to them being
0 and 100% across all instances, respectively. These are contextualized by the listed instance-specific
parameters. Of note is the number of target points |𝑅 | which is smaller than the upper bound in
Theorem 2 in all instances.

Immediately, we see the GSEMO failed to hit all target points within the evaluation budget in most
runs, while MOEA/D succeeded in every run. In most cases, GSEMO hit at most one target point.
Inspecting the output points and IGD+ reveals that its population converged well to the non-dominated
front, yet somehow misses most extreme points. In contrast, MOEA/D hit all target points within up
to 92% of the evaluation budget, though there are significant relative variances in the run-times.

Inspecting the run-times of MOEA/D in relation to the evaluation budgets, we see that the means of
ratios remain fairly stable across instances. This suggests the asymptotic bound in Theorem 3 is not
overly pessimistic. Instances 5 and 6 are particularly interesting as they are ostensibly the easiest
due to the small number of extreme points, yet MOEA/D seems to require the most fractions of the
budget. Given that these instances exhibit the smallest𝑚−𝑛, this can be explained by the interference
of lower-order terms in the asymptotic bound, which are not counted in the budgets.
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Table 1: Means and standard deviations of performance statistics from GSEMO and MOEA/D on
bi-objective MST instances. Means and standard deviations of 𝑇 are computed over successful runs
only. All differences are statistically significant.

Id 𝑚 𝑛 |𝑅 | max eval. GSEMO MOEA/D

Suc. rate Cover rate IGD+ T/max eval. Suc. rate T/max eval.

1 150 25 39 12710536 2/10 2.5±0.06% 0.13±0.11 79±11% 10/10 50±15%
2 150 25 31 10103247 0/10 3.1±0.14% 0.25±0.32 N/A 10/10 43±11%
3 150 50 45 13988205 0/10 1.9±0.1% 1.7±0.7 N/A 10/10 52±11%
4 150 50 45 13988205 0/10 2±0.083% 0.92±0.23 N/A 10/10 47±12%
5 150 100 35 9242155 0/10 2.5±0.13% 2.6±1.2 N/A 10/10 63±15%
6 150 100 36 9506216 0/10 2.2±0.21% 3.7±2.3 N/A 10/10 58±11%
7 300 25 45 68243769 3/10 2.2±0.031% 0.06±0.072 86±13% 10/10 41±11%
8 300 25 49 74309882 1/10 2±0.031% 0.076±0.083 94±0% 10/10 40±8.1%
9 300 50 66 98392434 0/10 1.4±0.048% 0.49±0.13 N/A 10/10 50±11%
10 300 50 63 93920051 0/10 1.5±0.045% 0.8±0.24 N/A 10/10 60±15%
11 300 100 79 113013110 0/10 1.1±0.043% 2±0.53 N/A 10/10 60±8.3%
12 300 100 80 114443656 0/10 1.1±0.072% 3.1±1 N/A 10/10 58±11%

7 Conclusion

In this study, we contribute to the theoretical analyses of evolutionary multi-objective optimization
in the context of non-trivial combinatorial problems. We give the first run-time analysis of the
MOEA/D algorithm for a broad problem class that is multi-objective minimum weight base problem.
In particular, we show a fixed-parameter polynomial expected run-time for approximating the non-
dominated front, simultaneously extending existing pseudo-polynomial bounds for GSEMO to
arbitrary number of objectives and broader combinatorial structures. Our experiments in random
bi-objective minimum spanning tree instances indicate that MOEA/D significantly outperforms
GSEMO in the computing extreme points under an appropriate decomposition. Along the way, we
prove properties that give further insight into the problem of interest.
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A Omitted proofs

Proof of Theorem 1. Let 𝑓 := (𝑓𝑖 )𝑘𝑖=1 be the objective function vector, 𝑧 be any solution, 𝑍 = {𝑖 :
𝑓𝑖 (𝑧) = 0}, if |𝑍 | = 𝑘 then 𝑧 is an extreme solution, so 𝑃 1-approximates 𝑧. Assume otherwise,
we define 𝜆 ∈ (0, 1]𝑘 where 𝜆𝑖 := 𝜖/𝛿𝑖 if 𝑖 ∈ 𝑍 and 𝜆𝑖 := 𝜖/[(𝑘 − |𝑍 |) 𝑓𝑖 (𝑧)] otherwise for some
sufficiently small 𝜖 > 0. By definition of sufficient solution set and Observation 1, there is 𝑥 ∈ 𝑃
minimizing 𝜆⊺ 𝑓 , i.e. 𝜆⊺ 𝑓 (𝑥) ≤ 𝜆⊺ 𝑓 (𝑧) = 𝜖. If 𝑓𝑖 (𝑥) > 0 for some 𝑖 ∈ 𝑍 or 𝑓𝑖 (𝑥) > (𝑘 − |𝑍 |) 𝑓𝑖 (𝑧)
for some 𝑖 ∉ 𝑍 , then since 𝑓 (𝑥) ∈ ℝ𝑘

≥0, we have 𝜆⊺ 𝑓 (𝑥) > 𝜖, a contradiction. Therefore, 𝑥 , and by
extension 𝑃 , (𝑘 − |𝑍 |)-approximates 𝑧. Since 𝑧 can assume positive values in all objectives6, this
factor simplifies to 𝑘 .

We show tightness by construction. Let 𝜖 ∈ (0, 𝑘), 𝑚 := 𝑘2, 𝜃𝑖 :=
∑𝑘−1

𝑗=0 𝑒𝑖𝑘− 𝑗 for 𝑖 = 1, . . . , 𝑘
where 𝑒 𝑗 is the 𝑗 th unit vector in ℝ𝑚 , we define a non-negative 𝑘-objective instance over {0, 1}𝑚:
min𝑥 {𝑓 (𝑥) := (𝜃⊺

𝑖
𝑥 − 𝜖∏𝑘−1

𝑗=0 𝑥𝑖𝑘− 𝑗 )𝑘𝑖=1 : |𝑥 | ≥ 𝑘}. We see that the set of all supported solutions
is precisely 𝑆 := {𝜃𝑖 }𝑘𝑖=1. Let 𝑧 :=

∑𝑘−1
𝑖=0 𝑒𝑖𝑘+1 be a solution, for all 𝑖 = 1, . . . , 𝑘, 𝑓𝑖 (𝜃𝑖 ) = 𝑘 − 𝜖 ≥

(𝑘 − 𝜖) 𝑓𝑖 (𝑧) (equality holds if 𝑘 > 1). This means 𝑆 fails to (𝑘 − 𝜖 − 𝜀)-approximate 𝑧 for any 𝜀 > 0,
and 𝜖 can be arbitrarily small. Since 𝑆 is a complete solution set, the claim follows. □

Proof of Lemma 1. Let 𝑐 be any point in Int(𝑄), by definition of 𝐴,𝑤 (𝑐 )
𝑖

= 𝑤
(𝑐 )
𝑗

iff 𝛿𝑖, 𝑗 = 0, and𝑤 (𝑐 )

admits multiple minima iff they contain different elements among those sharing weights in 𝑤 (𝑐 ) ,
while sharing all other elements. Indeed, let 𝑥 and 𝑦 be a pair of minima violating this condition, they
must contain different sets of weights so for all bijection 𝛾 between 𝑥 \ 𝑦 and 𝑦 \ 𝑥 , there is 𝑢 ∈ 𝑥 \ 𝑦
where𝑤 (𝑐 )𝑢 ≠ 𝑤

(𝑐 )
𝛾 (𝑢 ) ; this leads to a contradiction when combined with the base exchange property.

This means these optima share image under𝑤 , and bases not having the same image do not minimize
𝑤 (𝑐 ) .

Let 𝑏 be any point on the boundary of 𝑄 and 𝐿 be the set of points between 𝑏 and 𝑐 excluding
endpoints, we show that 𝜋𝑐 also sorts𝑤 (𝑏 ) . Let 𝑖 . 𝑗 ∈ 𝐸 where𝑤 (𝑐 )

𝑖
< 𝑤

(𝑐 )
𝑗

, then𝑤 (𝑏 )
𝑖

> 𝑤
(𝑏 )
𝑗

implies

𝑤
(𝑑 )
𝑖

= 𝑤
(𝑑 )
𝑗

for some 𝑑 ∈ 𝐿, meaning 𝐿 meets a hyperplane in 𝐴, a contradiction as 𝐿 ⊆ Int(𝑄).
For all pairs 𝑖, 𝑗 ∈ 𝐸 where 𝑤 (𝑐 )

𝑖
= 𝑤

(𝑐 )
𝑗

, 𝛿𝑖, 𝑗 = 0 so 𝑤 (𝑏 )
𝑖

= 𝑤
(𝑏 )
𝑗

. With this, every pair is accounted
for, so 𝜋𝑐 sorts𝑤 (𝑏 ) . Therefore, since Greedy guarantees optimality, any base minimizing𝑤 (𝑐 ) also
minimizes𝑤 (𝑏 ) , yielding the claim. □

Proof of Corollary 1. We see that |𝐴′ | = |𝐻𝐴 |, which is upper bounded by the number of half-space
intersections from hyperplanes in 𝐴. Since these are (𝑘 − 2)-dimensional hyperplanes, applying the
formula in [32] gives |𝐻𝐴 | ≤

∑𝑘
𝑖=1

( |𝐴 |
𝑖−1

)
which is increasing in |𝐴|, so the claim follows from |𝐴| ≤

𝑚(𝑚 − 1)/2. We have 𝐴′ is a sufficient trade-off set following from Lemma 1 and
⋃

𝑄∈𝐻𝐴
𝑄 = 𝑈 . □

Proof of Lemma 2. Let 0 < 𝜆𝑐 , < 𝜆𝑑 < 1 such that 𝑏 := (1 − 𝑏)𝑎 + 𝑏𝑎′ ∈ 𝐴∗ and for all 𝜆 ∈ [𝜆𝑐 , 𝜆𝑏),
(1 − 𝜆)𝑎 + 𝜆𝑎′ ∉ 𝐴∗, and let 𝑐 := (1 − 𝜆𝑐 )𝑎 + 𝜆𝑐𝑎′, then elements sharing weight in 𝑤 (𝑏 ) must be
mapped to consecutive positions in 𝜋𝑐 . Indeed, let 𝑝, 𝑞 ∈ 𝐸 (𝜋𝑐 (𝑝) < 𝜋𝑐 (𝑞)) where 𝑤 (𝑏 )𝑝 = 𝑤

(𝑏 )
𝑞 ,

if there is 𝑜 ∈ 𝐸 where 𝜋𝑐 (𝑜) ∈ (𝜋𝑐 (𝑝), 𝜋𝑐 (𝑞)) and 𝑤 (𝑏 )𝑜 ≠ 𝑤
(𝑏 )
𝑝 , then since the former implies

𝑤
(𝑐 )
𝑜 ∈ (𝑤 (𝑐 )𝑝 ,𝑤

(𝑐 )
𝑞 ), we have 𝑤 (𝑑 )𝑜 = 𝑤

(𝑑 )
𝑝 or 𝑤 (𝑑 )𝑜 = 𝑤

(𝑑 )
𝑞 for some 𝑑 in the open line segment

connecting 𝑏 and 𝑐 which implies 𝑑 ∈ 𝐴∗, a contradiction. Each such consecutive sequence of 𝑙
positions contains 𝑙 (𝑙 − 1)/2 pairs. From here, we consider two cases:

• If such a sequence contains no pair (𝑖, 𝑗) where 𝛿𝑖, 𝑗 = 0, then the aforementioned pairs correspond
to 𝑙 (𝑙 − 1)/2 duplicates of 𝑏 in 𝐴∗. Furthermore, since the weights are transformed linearly w.r.t.
trade-off, for all sufficiently small 𝜖 > 0, these sequences are reversed between 𝜋𝑐 and 𝜋𝑏+𝜖 (𝑏−𝑐 ) ,
whereas positions not in these sequences are stationary. Reversing 𝑙 consecutive positions requires
𝑙 (𝑙 − 1)/2 adjacent swaps, so the Kendall distance between 𝜋𝑐 and 𝜋𝑏+𝜖 (𝑏−𝑐 ) equals the multiplicity
of 𝑏 in 𝐴∗.
6If |𝑍 | ≥ 𝑘′ for all solutions 𝑧, the instance is reducible to (𝑘 − 𝑘′)-objective instances, and the guarantee

factor is likewise tight.
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• If such a sequence contains ℎ > 1 elements with the same weight at all trade-off, then these must
occupy consecutive positions in 𝜋𝑐 . As we assumed, the relative ordering among these elements is
fixed, so exactly ℎ(ℎ − 1)/2 swaps are saved. Furthermore, any pair (𝑖, 𝑗) among these elements is
such that Δ𝑖, 𝑗 ∉ 𝐴, meaning these ℎ(ℎ − 1)/2 pairs are already subtracted from 𝐴∗.

In any case, we can assign to each duplicate of 𝑏 in 𝐴∗ a permutation sorting𝑤 (𝑏 ) so that these form
a sequence of adjacent swap from 𝜋𝑐 to 𝜋𝑏+𝜖 (𝑏−𝑐 ) including 𝜋𝑏+𝜖 (𝑏−𝑐 ) and not 𝜋𝑐 . This directly yields
the claim if 𝑎 and 𝑎∗ are not in 𝐴∗.

Assume otherwise, then for all hyperplanes Δ𝑖, 𝑗 containing 𝑎, 𝑤 (𝑎)
𝑖

= 𝑤
(𝑎)
𝑗

, so for every such pair
(𝑖, 𝑗), we arrange 𝜋𝑎 so that their pairwise ordering in 𝜋𝑎 is the reverse of that in 𝜋𝑎′ . We likewise
give 𝑎′ the same treatment7. With this, the Kendall distance between 𝜋𝑎 and 𝜋𝑎′ is maximized and
equal to |𝐴∗ |. □

Proof of Lemma 3. Let 𝐸𝑜 := {𝑎 ∈ 𝐸 : 𝜏 (𝑎) < 𝜏 (𝑜)} be the set of elements Greedy considers adding
to 𝑥 before 𝑜 ∈ 𝐸 when run on 𝜏 , we have 𝑥 ∩ 𝐸𝑢 = 𝑥 ′ ∩ 𝐸𝑢 . If 𝑣 ∈ 𝑥 or 𝑣 ∉ 𝑥 ′ or 𝑢 ∉ 𝑥 or 𝑢 ∈ 𝑥 ′ then
𝑥 = 𝑥 ′, as can be seen from how Greedy selects elements:

• If 𝑣 ∈ 𝑥 , then 𝑣 ∈ 𝑥 ′ since Greedy observes 𝑣 before 𝑢 when run on 𝜏 ′. Whether Greedy adds 𝑢 to
𝑥 only depends on whether there is a circuit in (𝑥 ∩ 𝐸𝑢) ∪ {𝑢} = (𝑥 ′ ∩ 𝐸𝑢) ∪ {𝑢}, so it makes the
same decision when run on 𝜏 ′. Afterwards, it proceeds identically on both permutations, leading to
the same outcome, so 𝑥 = 𝑥 ′. By symmetry, the same follows from 𝑢 ∈ 𝑥 ′.

• If 𝑢 ∉ 𝑥 , then there is a circuit in (𝑥 ∩ 𝐸𝑢) ∪ {𝑢} = (𝑥 ′ ∩ 𝐸𝑢) ∪ {𝑢}, so 𝑢 ∉ 𝑥 ′. By the same
argument, Greedy makes the same decision regarding 𝑣 on both permutations, leading to 𝑥 = 𝑥 ′.
By symmetry, the same follows from 𝑣 ∉ 𝑥 ′.

Assume otherwise, it is a known property of bases [20] that 𝑥 ∪ {𝑣} contains a unique circuit 𝐶
and that 𝑣 ∈ 𝐶. Greedy not adding 𝑣 to 𝑥 implies that 𝐶 ⊆ (𝑥 ∩ 𝐸𝑣) ∪ {𝑣} = (𝑥 ′ ∩ 𝐸𝑣) ∪ {𝑢, 𝑣}.
Let 𝑣 ′ be the first element after 𝑣 that 𝑥 and 𝑥 ′ differ at and assume w.l.o.g. 𝑣 ′ ∈ 𝑥 \ 𝑥 ′, we have
(𝑥 ′ ∩ 𝐸𝑣′ ) ∪ {𝑢} = (𝑥 ∩ 𝐸𝑣′ ) ∪ {𝑣} and since 𝑣 ′ is not added into 𝑥 ′ before Greedy terminates, there
must be another circuit in (𝑥 ′ ∩ 𝐸𝑣′ ) ∪ {𝑣 ′} ⊂ 𝑥 ∪ {𝑣} containing 𝑣 ′, which is distinct from the unique
circuit 𝐶. The contradiction implies that 𝑥 and 𝑥 ′ do not differ after 𝑣 , so 𝑥 ⊗ 𝑥 ′ = {𝑢, 𝑣}. □

Proof of Theorem 2. We define 𝑙𝑐 := (1 − 𝑐)𝑎 + 𝑐𝑏 for 𝑐 ∈ [0, 1], let 0 ≤ 𝜃 ≤ 𝜃 ′ ≤ 1 where 𝜋𝑙𝜃 and
𝜋𝑙𝜃 ′ are an adjacent swap apart8 and the Greedy solutions on them, 𝑥 and 𝑥 ′, are such that |𝑥 ⊗ 𝑥 ′ | = 2.
Let 𝑢, 𝑣 ∈ 𝐸 where 𝑥 ∩ {𝑢, 𝑣} = {𝑢} and 𝑥 ′ ∩ {𝑢, 𝑣} = {𝑣}, Lemma 3 implies 𝜋𝑙𝜃 (𝑢) < 𝜋𝑙𝜃 (𝑣)
and 𝜋𝑙𝜃 ′ (𝑢) > 𝜋𝑙𝜃 ′ (𝑣), so 𝜋𝑎 (𝑢) < 𝜋𝑎 (𝑣). This means as the trade-off moves from 𝑎 to 𝑏, the
Greedy solution minimizing the scalarized weight changes incrementally by having exactly one
element shifted to the right on 𝜋𝑎 (to a position not occupied by the current solution). Since at most
ℎ𝑚 −ℎ(ℎ + 1)/2 such changes can be done sequentially, Greedy produces at most ℎ𝑚 −ℎ(ℎ + 1)/2+ 1
distinct solutions in total across all trade-offs between 𝑎 and 𝑏.

To show this upper bound, we keep track of the following variables as the trade-off moves from
𝑎 to 𝑏. Since each solution contains 𝑛 elements, let 𝑝𝑖 be the 𝑖th leftmost position on 𝜋𝑎 among
those occupied by the current Greedy solution for 𝑖 = 1, . . . , 𝑛, we see that upon each change, there
is at least a 𝑗 ∈ {1, . . . , 𝑛} where 𝑝 𝑗 increases. Furthermore, for all 𝑖, 𝑝𝑖 can increase by at most
𝑚 − 𝑛 since it cannot be outside of [𝑖,𝑚 − 𝑛 + 𝑖], so the quantity 𝑝 :=

∑𝑛
𝑖=1 𝑝𝑖 can increase by at

most 𝑛(𝑚 − 𝑛). We see that 𝑝 increases by 𝑙 when the change is incurred by a swap in the Greedy
solution such that the added element is positioned 𝑙 to the right of the removed element on 𝜋𝑎, we
call this a 𝑙-move. Furthermore, each element pair participates in at most one swap, so 𝑝 can be
increased by at most𝑚 − 𝑙 𝑙-moves for every 𝑙 = 1 . . . ,𝑚 − 1. Therefore, to upper bound the number
of moves, we can assume smallest possible distance in each move, and the increase in 𝑝 from using
all possible 𝑙-moves for all 𝑙 = 1, . . . , ℎ is

∑ℎ
𝑗=1 𝑗 (𝑚 − 𝑗) ≥ 𝑛(𝑚 − 𝑛). This means no more than∑ℎ

𝑗=1 (𝑚 − 𝑗) = ℎ𝑚 − ℎ(ℎ + 1)/2 moves can be used to increase 𝑝 by at most 𝑛(𝑚 − 𝑛). □

7This is also done for any Δ𝑖, 𝑗 containing both 𝑎 and 𝑎′.
8If 𝜃 = 𝜃 ′, we assume 𝜋𝑙𝜃 is closer to 𝜋𝑎 in Kendall distance.
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Proof of Lemma 4. First, we observe that a set supersets a base iff its rank is 𝑛. We see that for all
𝜆 ∈ [0, 1] and 𝑥,𝑦 ∈ {0, 1}𝑚 , 𝑟 (𝑥) > 𝑟 (𝑦) implies 𝑓𝜆 (𝑥) < 𝑓𝜆 (𝑦). Thus, for each 𝜆 ∈ Λ, MOEA/D
performs (1+1)-EA search toward a base’s superset with fitness 𝑓𝜆, which concludes in 𝑂 (𝑚 log𝑛)
expected steps [26]. The claim follows from the fact that MOEA/D produces |Λ| search points in
each step. □

Proof of Theorem 3. We assume each solution in 𝑃𝜆 supersets a base for all 𝜆 ∈ Λ; this occurs within
expected time 𝑂 ( |Λ|𝑚 log𝑛), according to Lemma 4. Since for each 𝜆 ∈ Λ, the best improvement
in 𝑓𝜆 is retained in each step, the expected number of steps MOEA/D needs to minimizes 𝑓𝜆 is at
most the expected time (1+1)-EA needs to minimizes 𝑓𝜆. We thus fix a trade-off 𝜆 and assume the
behaviors of (1+1)-EA. Note that we use 𝑑𝜆 ·𝑤 (𝜆) in the analysis instead for integral weights; we
scale 𝑓𝜆 and 𝑂𝑃𝑇𝜆 accordingly.

We call the bit flips described in Lemma 5 good flips. Let 𝑠 be the current search point, if good
1-bit flips incur larger total weight reduction than good 2-bit flips on 𝑠, we call 𝑠 1-step, and 2-
step otherwise. If at least half the steps from 𝑠 to the MWB 𝑧 are 1-steps, Lemma 5 implies the
optimality gap of 𝑠 is multiplied by at most 1 − 1/2(𝑚 − 𝑛) on average after each good 1-bit flip.
Therefore, from 𝑓𝜆 (𝑠) ≤ 𝑑𝜆 (𝑚 − 𝑛)𝑤𝑚𝑎𝑥 +𝑂𝑃𝑇𝜆 , the expected difference 𝐷𝐿 after 𝐿 good 1-bit flips
is 𝐸 [𝐷𝐿] ≤ 𝑑𝜆 (𝑚 − 𝑛)𝑤𝑚𝑎𝑥 (1 − 1/2(𝑚 − 𝑛))𝐿. At 𝐿 = ⌈(2 ln 2) (𝑚 − 𝑛) log(2𝑑𝜆 (𝑚 − 𝑛)𝑤𝑚𝑎𝑥 + 1)⌉,
𝐸 [𝐷𝐿] ≤ 1/2 and by Markov’s inequality and the fact that 𝐷𝐿 ≥ 0, Pr[𝐷𝐿 < 1] ≥ 1/2. Since
weights are integral, 𝐷𝐿 < 1 implies that 𝑧 is reached. The probability of making a good 1-bit flip is
Θ((𝑚 − 𝑛)/𝑚), so the expected number of steps before 𝐿 good 1-bit flips occur is 𝑂 (𝐿𝑚/(𝑚 − 𝑛)) =
𝑂 (𝑚(log(𝑚 − 𝑛) + log𝑤𝑚𝑎𝑥 + log𝑑𝜆)). Since 1-steps take up most steps between 𝑠 and 𝑧, the bound
holds.

If at least half the steps from 𝑠 to 𝑧 are 2-steps, Lemma 5 implies the optimality gap of 𝑠 is multiplied
by at most 1 − 1/2𝑛 on average after each good 2-bit flip. Repeating the argument with 𝐿 =

⌈(2 ln 2)𝑛 log(2𝑑𝜆 (𝑚 − 𝑛)𝑤𝑚𝑎𝑥 + 1)⌉ and the probability of making a good 2-bit flip being Θ(𝑛/𝑚2),
we get the bound 𝑂 (𝑚2 (log(𝑚 − 𝑛) + log𝑤𝑚𝑎𝑥 + log𝑑𝜆)). Summing this over all 𝜆 ∈ Λ gives the
total bound. □

Proof of Theorem 4. From Corollary 2, to collect a new point in 𝐶, it is sufficient to perform a 2-bit
flip on some supported solution. In worst-case, there can be only one trade-off 𝜆 ∈ Λ such that all
non-extreme supported solutions minimize𝑤 (𝜆) , so the correct solution is mutated with probability
at least 1/𝑙 in each iteration, where 𝑙 is the number of already collected points. Since |Λ| search
points are generated in each iteration, the expected number of search points required to enumerate 𝐶
is 𝑂 ( |Λ|𝑚2 ∑ |𝐶 |

𝑙=1 𝑙) = 𝑂 ( |Λ| |𝐶 |
2𝑚2). □
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