
Appendix545

A Reproducibility546

Our code and data can be downloaded from https://anonymous.4open.science/r/547

conflict-awareness-00F0/README.md.548

B Broader Impacts549

Our analysis reveals the types of social links that, when added to the social network, can most550

effectively reduce polarization and disagreement. While this result itself is for a good cause, a551

potential risk exists when one interprets it into the opposite direction: we now know certain types of552

links that, when removed from the social network, can most effectively increase polarization and553

disagreement. This could be abused by an (authoritative) adversarial to increase polarization and554

disagreement by diminishing social ties among certain people, or even disconnecting them.555

To mitigate this risk, we suggest social platforms take more cautious steps when deciding to reduce the556

exposure of one person’s content feed to another, such as additional algorithmic check in background,557

as well as more security measures to guard against the hacking of platform’s administrative authority.558

Researchers are also encouraged to study network structures that are more robust to attacks of such559

kind, as well as defense measures to be taken when such attacks actually happen.560

C Proofs561

C.1 Proof of Theorem 1562

Proof. Let L+e denote the Laplacian matrix of the new social network after adding a new link563

e = (i, j). To prove Eq.(2), we invoke the Sherman-Morrison Formula [54] for computing the inverse564

of rank-1 update to an invertible matrix. Notice that G+e = L + bebTe . Therefore,565
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L is positive semidefinite, so (I +L)−1 is also positive semidefinite. Therefore, 1 + bTe (I +L)
−1be is566

positive, and so − (zi−zj)2
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To prove Eq.(3), we further note that568

Es[C(G+e, s) − C(G,s)] = Es[−s
T (I +L)

−1beb
T
e (I +L)

−1

1 + bTe (I +L)
−1be

s]

= Es[−
bTe (I +L)

−1ssT (I +L)−1be
1 + bTe (I +L)

−1be
]

= −
bTe (I +L)

−1Es[ss
T ](I +L)−1be

1 + bTe (I +L)
−1be

= −
bTe (I +L)

−1(σ2I)(I +L)−1be
1 + bTe (I +L)

−1be

= −
σ2∣(I +L)−1be∣

2
2

1 + bTe (I +L)
−1be

≤ 0.

569

13

https://anonymous.4open.science/r/conflict-awareness-00F0/README.md
https://anonymous.4open.science/r/conflict-awareness-00F0/README.md
https://anonymous.4open.science/r/conflict-awareness-00F0/README.md


C.2 Proof of Theorem 3570

Proof. Let M = I+L, and let matrix C be the co-factor matrix of M , then (I+L)−1 =M−1 = ∣M ∣−1C.571

Therefore, bTe (I +L)
−1be = ∣M ∣

−1(Cii +Cjj −Cij −Cji). ∣M ∣ is the determinant of matrix M . [55]572

presents a result that ∣M ∣ equals the total number of spanning rooted forests of G, and Cxy equals the573

total number of spanning rooted forests of G, in which node x and y belong to the same tree rooted at x.574

The theorem is proved by substituting this previous result back into ∣M ∣−1(Cii+Cjj −Cij −Cji).575

C.3 Proof of Theorem 4576

Proof.
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Since M is symmetric, we have Cik +Nik = Cki +Nki = Ckk, Cjk +Njk = Ckj +Nkj = Ckk, where577

Ckk according to [55] is equal to the total number of spanning rooted forests where node k is at the578

root of the tree to which k belongs. Joining the two equations, we have Cik − Cjk = Nik − Njk.579

Therefore,580
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581

C.4 Proof of Corollary 1582

Proof. The correctness quickly follows from substituting Equations (5, 6) into Equation (2).583

C.5 Proof of Proposition 1584

Proof. To show that the objective is convex, we resort to the result in [56], Example 9: X−1 is a585

matrix convex on the set of all nonnegative invertible Hermitian matrices. Obviously I +L +Lf is586

nonnegative, invertible and symmetric, so it is a matrix convex. Therefore, the objective is convex.587

Any convex combination of Laplacians is still a Lapalacian. The trace of any convex combination of588

of matrices cannot exceed the trace of any members. Therefore, the feasible region is also convex.589

C.6 Expected Conflict Awareness590

Definition 2. Given a social network G and a budget β > 0, the conflict awareness over Expectation591

(CAE) of a link addition function f(e;G,β) is likewise defined as:592

CAE(f) ≡
∆fEs[C]

∆f∗Es[C]
(14)

where593

∆fEs[C] ≡ σ2
[Tr((I +L +Lf)

−1
) − Tr((I +L)−1)] (15)

∆f∗Es[C] ≡ min
Lf

∆fEs[C] (16)

subject to Lf ∈ L (Laplacian constraint) (17)
Tr(Lf) ≤ 2β (budget constraint) (18)

Proposition 2. The definition of ∆fEs[C] above is consistent with that of ∆fC in Definition 1 in the594

sense that they satisfy ∆fEs[C] ≡ ∫s ρ(s)∆fC ds.595

Proof. Let A be any square matrix of the same shape as L. Then ∫s ρ(s)s
TAsds =596

∫s ρ(s)s
T (As)ds = ∫s ρ(s)Tr((As)sT )ds = ∫s ρ(s)Tr(A(ssT ))ds = Tr(A ∫s ρ(s)(ss

T )ds) =597

Tr(A(σ2I)) = σ2Tr(A). By substituting A = (I + L + Lf)
−1 and A = (I + L)−1 into Eq. (9)598

respectively, the proposition is proved.599

600
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Proposition 3. In Definition 2, ∆f∗Es[C] is also the objective of a convex optimization problem.601

Proof. From the proof for Proposition 1, it suffices to only show that the ∆fEs[C] in Equation 15602

is convex in Lf given other variables fixed. Notice that we mentioned ∆fEs[C] ≡ ∫s ρ(s)∆fC ds,603

in which ρ(s) ≥ 0, ∆fC can be viewed as a function of Lf and s, and is convex in Lf given s to be604

further fixed. Therefore, the integral ∆fEs[C] is also convex in Lf .605

C.7 Proof of Theorem 2606

Proof. Let 0 = λ1 ≤ λ2 ≤ ... ≤ λn be eigenvalues of L in ascending order; the eigen decomposition of607

L = UΛUT where Λ = diag([λ1, ...λn]) and U is the corresponding orthornormal matrix satisfying608

UUT = I . Notice that (I +L)−1 = U(I +Λ)−1UT .609
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=
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let s′ = UT s, and further notice that since we have assumed s to be zero-centered (see Section2),610

s′1 = 1
T s = 0. We can further rewrite:611
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It is not hard to see that612

1 + λn ≥
C(G0, s)

C(G,s)
≥ 1 + λ2

For the upper bound, [57] shows that λn ≤max(i,j)∈E(di + dj); for the lower bound, we know from613

Lemma A.1 of [38] that λ2 ≥
1
2
dminh

2
G, where dmin is the minimum node degree in G; hG is the614

Cheeger constant of G. Substituting these back into expression above, we have 1 +max(i,j)∈E(di +615

dj) ≥
C(G0,s)
C(G,s) ≥ 1 +

1
2
dminh

2
G ≥ 1.616

C.8 Proof of Theorem 5617

Proof. Notice that C = sT (I + L)−1s, and U = P + I = sT (I + L)−2s + sT (I − (I + L)−1)2s =618

sT (I − (I +L)−1)s. Therefore, C + U = sT s which is a constant.619

D Experiments620

D.1 Verifying the Direction of Conflict Change (Theorem 1)621

We computationally verify that opinion conflict always gets reduced when a new link is added to the622

network. We use six datasets, including three synthetic networks and three real-world social networks.623

The synthetic networks are, a Erdős–Rényi Graph (n = 100, p = 0.5), a path graph (n = 100), a 10 by624

10 2D-grid graph. The real-world networks are, the Karate club social network, Reddit, and Twitter625

(as introduced in Sec.D.3). For each network, we compute the amount of conflict change caused by626

adding a link between every pair of disconnected node in the graph, with each link replaced one at627

a time. Figure 4 shows the distributions of the amounts of conflict conflict for all the six datasets.628

We can see that they are all on the negative side of the axis. This result validates the negative sign in629

Theorem 1 and demonstrates its broad applicability.630

D.2 Verifying Conflict Contraction (Theorem 2)631

We start with an empty graph with N nodes. In each iteration, one edge is randomly added between632

two disconnected nodes; we then compute the the lower bound, the upper bound, and the conflict633

contraction rate as given in Theorem 2. The iterations stop when no pair of nodes are left disconnected634

(i.e. the graph is complete). We choose N = 20 in this experiment as computing the Cheeger constant635

term is NP-hard.636
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Figure 4: Computational validation for Theorem 1.

Figure 5 plots the lower bounds, the lower bounds, the upper bounds, and the conflict contraction637

rates, with respect to the increasing numbers of edges in the graph. We can see that the conflict638

contraction rates are indeed lying in between the two bounds. The gap exists because we cannot639

exhaust all the possible graphs on 20 nodes. Nevertheless, this experiment provides a good piece of640

evidence that Theorem 2 is correct.641

Figure 5: Computational validation for Theorem 2.

D.3 Dataset and Preprocessing642

Twitter. The dataset is extracted from a number of tweets relevant to the Delhi Assembly elections643

2013. In the preprocessing, only the largest strongest-connected component (SCC) gets retained,644

which contains 548 users and 3638 undirected edges; each edge represents a pair of follower and645

followee. The initial opinions (s) were mapped by a sentiment analysis tool designed for Twitter [58],646

based on each user’s first-hour tweets in the record window.647

Reddit. The dataset is extracted from the subreddit of “Politics” between 07/2013 and 12/2013.648

Similar to Twitter, only the largest SCC is retained, containing 556 users and 8969 edges. An edge649

exists between two users if both of them posted in the same subreddit other than “Politics” during the650

aforementioned time period. The initial opinions were mapped using the standard linguistic analytics651

tool LIWC [59].652
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D.4 Linear Scaling of the Output653

To make sure that the weights of all recommended links sum up to β, we linearly scale each link654

recommendation algorithm’s output by a normalizing constant: Notice that each link recommendation655

algorithms is essentially a scoring function on the links. For a model h, its output weight wh(e)656

of each recommended link e follows the normalized form wh(e) = β
sh(e)
∑e sh(e) , where sh(e) is the657

original score that model h assigns to link e.658

D.5 Precision@10659

Figure 7: Precision@10 of 13 link recommendation algorithms on samples of Reddit (upper) and
Twitter (lower) social network. These plots supplement the recall measurement in Fig. 2 as another
proxy for “relevance”.
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