
Appendix
A Theory

In this section, we show the proofs of the results in the main body.

A.1 Triangle Inequality of the Expected Adversarial Margin Loss

Lemma A.1. For any distribution P over X , the expected adversarial margin loss R̃(ρ)
P defined in

Eq. (1) satisfies the triangle inequality, i.e., for any scoring functions f1, f2, f3 ∈ F , the following
inequalities hold:

R̃
(ρ)
P (f1, f3) ≤ R̃

(ρ)
P (f1, f2) + R̃

(ρ)
P (f2, f3)

R̃
(ρ)
P (f1, f2) ≤ R̃

(ρ)
P (f1, f3) + R̃

(ρ)
P (f2, f3)

Proof of Lemma A.1. Recall that R̃(ρ)
P (f, f ′) ≜ E

x∼P
max

∥δ∥q≤ϵ
Θρ ◦ ρf (x+ δ, hf ′(x)).

(I). For the first inequality, we prove that for any data point x ∈ X , the following holds:

max
∥δ∥q≤ϵ

Θρ◦ρf1(x+δ, hf3(x)) ≤ max
∥δ∥q≤ϵ

Θρ◦ρf1(x+δ, hf2(x))+ max
∥δ∥q≤ϵ

Θρ◦ρf2(x+δ, hf3(x)) (3)

We prove it from two possible cases:

• If there exits a perturbation ∥δ∥q ≤ ϵ, such that hf1(x+δ) ̸= hf2(x) or hf2(x+δ) ̸= hf3(x),
then Θρ ◦ρf1(x+δ, hf2(x))+Θρ ◦ρf2(x+δ, hf3(x)) ≥ 1 by the definition of the expected
adversarial margin loss. On the other hand, Θρ ◦ ρf1(x+ δ, hf3(x)) ≤ 1, since Θρ(m) ≤ 1
for any m. Thus the inequality holds.

• If for any perturbation ∥δ∥q ≤ ϵ, we have hf1(x+δ) = hf2(x) and hf2(x+δ) = hf3(x), by
setting δ = 0, we then obtain that hf2(x) = hf3(x). Then we can derive that hf1(x+ δ) =
hf2(x) = hf3(x) for any ∥δ∥q ≤ ϵ, and

max
∥δ∥q≤ϵ

Θρ ◦ ρf1(x+ δ, hf3(x))

≤ max
∥δ∥q≤ϵ

Θρ ◦ ρf1(x+ δ, hf3(x)) + max
∥δ∥q≤ϵ

Θρ ◦ ρf2(x+ δ, hf3(x))

≤ max
∥δ∥q≤ϵ

Θρ ◦ ρf1(x+ δ, hf2(x)) + max
∥δ∥q≤ϵ

Θρ ◦ ρf2(x+ δ, hf3(x))

Then take expectation over the distribution P on both sides of Eq. (3) and we get the first inequality.

(II). For the second inequality, we prove it similarly. We first prove that for any data point x ∈ X , the
following holds:

max
∥δ∥q≤ϵ

Θρ◦ρf1(x+δ, hf2(x)) ≤ max
∥δ∥q≤ϵ

Θρ◦ρf1(x+δ, hf3(x))+ max
∥δ∥q≤ϵ

Θρ◦ρf2(x+δ, hf3(x)) (4)

We prove it from two possible cases:

• If there exits a perturbation ∥δ∥q ≤ ϵ, such that hf2(x + δ) ̸= hf3(x), then Θρ ◦ ρf2(x +
δ, hf3(x)) = 1 by the definition of the expected adversarial margin loss. On the other hand,
Θρ ◦ ρf1(x+ δ, hf2(x)) ≤ 1, since Θρ(m) ≤ 1 for any m. Thus the inequality holds.

• If for any perturbation ∥δ∥q ≤ ϵ, we have hf2(x+ δ) = hf3(x), by setting δ = 0, we then
obtain that hf2(x) = hf3(x). We can derive that

max
∥δ∥q≤ϵ

Θρ ◦ ρf1(x+ δ, hf2(x))

≤ max
∥δ∥q≤ϵ

Θρ ◦ ρf1(x+ δ, hf2(x)) + max
∥δ∥q≤ϵ

Θρ ◦ ρf2(x+ δ, hf3(x))

≤ max
∥δ∥q≤ϵ

Θρ ◦ ρf1(x+ δ, hf3(x)) + max
∥δ∥q≤ϵ

Θρ ◦ ρf2(x+ δ, hf3(x))
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Then take expectation over the distribution P on both sides of Eq. (3) and we get the second
inequality.

A.2 Proofs of Theorem 4.4

Theorem 4.4. Let ⟨P, fP ⟩ and ⟨Q, fQ⟩ be two domains with gradual shifts. Suppose we have a
scoring function f pre-trained on domain ⟨P, fP ⟩, and a data set S of n unlabeled data points drawn
i.i.d. according to distribution Q. f ′ is the adapted scoring function by AST algorithm over S, i.e.,
f ′ = AST (f, S). Then, for any α ≥ 0, the following holds with probability of at least 1− α over
data points S:

R̃
(ρ)
Q (f ′) ≤ R̃

(ρ)
P (f) + γ̃∗ + λ∗ + df,F (P,Q) +

2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n
,

where γ̃∗ = min
f ′∈F

R̃
(ρ)
Q (f ′, f) and λ∗ = min

f∈F
R

(ρ)
P (f) +R

(ρ)
Q (f).

Before we present the proof of the theorem, we first provide some lemmas.

We now provide a lemma which uses the Rademacher complexity to connect the population and
empirical error.

Lemma A.2 (Rademacher Bound [4]). Suppose that G is a class of functions mapping X to [0,1].
Then, for any α > 0, with probability at least 1− α over samples S of size n, the following holds for
all g ∈ G:

Ex∼P g(x) ≤ Ex∼P̂ g(x) + R̂S(G) + 3

√
log 2

α

2n
, (5)

where Ex∼P g(x) is the expectation of a function g, and Ex∼P̂ g(x) is its empirical average over the
samples S drawn i.i.d. according to the distribution P .

The next lemma says that the empirically trained classifier gets closer to the optimal classifier that
minimizes the population error when the sample size is large. We characterize this by bounding the
generalization error of the classifier.

Lemma A.3. Let f ′ ∈ F be a scoring function and P be a distribution over X . Let f̂ be the
empirically trained model: f̂ = argmin

f∈F
R̃

(ρ)

P̂
, and f∗ be the optimal model that minimizes the

population error: f∗ = argmin
f∈F

R̃
(ρ)
P . Then, for any α ≥ 0, the following holds with the probability

at least 1− α over the data set S of size n,

R̃
(ρ)
P (f̂ , f ′) ≤ R̃

(ρ)
P (f∗, f ′) +

2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n
,

where ρ̃FF ≜ {x 7→ max
∥δ∥q≤ϵ

ρf ′(x+ δ, hf (x)) : f, f
′ ∈ F}.

Proof of Lemma A.3. By applying Lemma A.2, the following holds with probability at least 1− α:

R̃
(ρ)
P (f̂ , f ′)

≤R̃
(ρ)
P (f̂ , f ′)− R̃

(ρ)

P̂
(f̂ , f ′) + R̃

(ρ)

P̂
(f̂ , f ′)

≤R̂S( ˜Θρ ◦ ρFF) + 3

√
log 2

α

2n
+ R̃

(ρ)

P̂
(f̂ , f ′)

(6)
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Apply Lemma A.2 again, the following holds with probability at least 1− α:

R̂S( ˜Θρ ◦ ρFF) + 3

√
log 2

α

2n
+ R̃

(ρ)

P̂
(f̂ , f ′)

≤R̂S( ˜Θρ ◦ ρFF) + 3

√
log 2

α

2n
+ R̃

(ρ)

P̂
(f̂ , f ′)− R̃

(ρ)

P̂
(f∗, f ′) + R̃

(ρ)

P̂
(f∗, f ′)

(i)

≤R̂S( ˜Θρ ◦ ρFF) + 3

√
log 2

α

2n
+ R̃

(ρ)

P̂
(f∗, f ′)

≤R̂S( ˜Θρ ◦ ρFF) + 3

√
log 2

α

2n
+ R̃

(ρ)

P̂
(f∗, f ′)− R̃

(ρ)
P (f∗, f ′) + R̃

(ρ)
P (f∗, f ′)

(ii)

≤ 2R̂S( ˜Θρ ◦ ρFF) + 6

√
log 2

α

2n
+ R̃

(ρ)
P (f∗, f ′)

(7)

where (i) is because f̂ = argmin
f∈F

R̃
(ρ)

P̂
and (ii) is from Lemma A.2.

Combining Eq. (6) and Eq. (7) using union bound, the following holds with probability at least
1− 2α′:

R̃
(ρ)
P (f̂ , f ′) ≤ 2R̂S( ˜Θρ ◦ ρFF) + 6

√
log 2

α′

2n
+ R̃

(ρ)
P (f∗, f ′)

Set α′ = α/2 and the following holds with probability at least 1− α:

R̃
(ρ)
P (f̂ , f ′) ≤ 2R̂S( ˜Θρ ◦ ρFF) + 6

√
log 4

α

2n
+ R̃

(ρ)
P (f∗, f ′).

Since the function Θρ is 1
ρ -Lipschitz, by Talagrand’s contraction Lemma [28], R̂S( ˜Θρ ◦ ρFF) is

bounded by 1
ρR̂S(ρ̃FF). Thus we have:

R̃
(ρ)
P (f̂ , f ′) ≤ R̃

(ρ)
P (f∗, f ′) +

2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n
.

The next lemma shows that the MDD can control the error difference of the model on different
domains.
Lemma A.4. Let ⟨P, fP ⟩ and ⟨Q, fQ⟩ be two domains. For any scoring function f ∈ F , the
following holds:

RQ(hf ) ≤ R
(ρ)
P (f) + λ∗ + d

(ρ)
f,F (P,Q) ≤ R̃

(ρ)
P (f) + λ∗ + d

(ρ)
f,F (P,Q),

where λ∗ = min
f∈F

{R(ρ)
P (f) +R

(ρ)
Q (f)}.

Proof of Lemma A.4. Recall that RQ(hf ) = RQ(hf , hQ) and R
(ρ)
P (f) = R

(ρ)
P (f, fP ). Let f∗ be

the optimal that achieves minimal margin loss on both P and Q: f∗ = argmin
f∈F

{R(ρ)
P (f)+R

(ρ)
Q (f)},

then we have:
RQ(hf ) = RQ(hf , hQ)

= E
x∼Q

1[hf (x) ̸= hQ(x)]

≤ E
x∼Q

1[hf∗(x) ̸= hf (x)] + E
x∼Q

1[hf∗(x) ̸= hQ(x)]

≤ R
(ρ)
Q (f∗, f) +R

(ρ)
Q (f∗, fQ)

≤ R
(ρ)
Q (f∗, f) +R

(ρ)
Q (f∗, fQ) +R

(ρ)
P (f∗, f)−R

(ρ)
P (f∗, f)

≤ R
(ρ)
Q (f∗, fQ) +R

(ρ)
P (f∗, f) + d

(ρ)
f,F (P,Q)

(8)
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where the last inequality is from the definition of the MDD in Eq. (2). By setting ϵ = 0 in Lemma
A.1, we can get that the margin loss satisfies the triangle inequality. Then we have:

R
(ρ)
Q (f∗, fQ) +R

(ρ)
P (f∗, f) + d

(ρ)
f,F (P,Q)

≤R
(ρ)
Q (f∗, fQ) +R

(ρ)
P (f∗, fP ) +R

(ρ)
P (f, fP ) + d

(ρ)
f,F (P,Q)

≤R
(ρ)
P (f, fP ) +R

(ρ)
Q (f∗, fQ) +R

(ρ)
P (f∗, fP ) + d

(ρ)
f,F (P,Q)

=R
(ρ)
P (f) + λ∗ + d

(ρ)
f,F (P,Q)

(9)

where λ∗ = min
f∈F

{R(ρ)
P (f) +R

(ρ)
Q (f)}.

Combining (8) and (9), we then get :

RQ(hf ) ≤ R
(ρ)
P (f) + λ∗ + d

(ρ)
f,F (P,Q).

Finally, since the adversarial margin loss is larger than the standard margin loss, we have:

RQ(hf ) ≤ R̃
(ρ)
P (f) + λ∗ + d

(ρ)
f,F (P,Q).

The next lemma says that if we have two labeling functions with similar prediction, then for any
scoring function f , the adversarial margin loss of f according to these two labeling functions are
close.
Lemma A.5. Let f, f1, f2 ∈ F be scoring functions and P be a distribution over X . Then we have

R̃
(ρ)
P (f, f1) ≤ R̃

(ρ)
P (f, f2) +RP (f1, f2)

Proof of Lemma A.5. By the definition of the expected adversarial margin loss,

R̃
(ρ)
P (f, f1) = E

x∼P
max

∥δ∥q≤ϵ
Θρ ◦ ρf (x+ δ, hf1(x))

= E
x∼P

max
∥δ∥q≤ϵ

Θρ ◦ ρf (x+ δ, hf1(x)) · 1[hf1(x) = hf2(x)]

+ E
x∼P

max
∥δ∥q≤ϵ

Θρ ◦ ρf (x+ δ, hf1(x)) · 1[hf1(x) ̸= hf2(x)]

≤ E
x∼P

max
∥δ∥q≤ϵ

Θρ ◦ ρf (x+ δ, hf1(x)) · 1[hf1(x) = hf2(x)] + E
x∼P

1[hf1(x) ̸= hf2(x)]

≤ E
x∼P

max
∥δ∥q≤ϵ

Θρ ◦ ρf (x+ δ, hf2(x)) · 1[hf1(x) = hf2(x)] + E
x∼P

1[hf1(x) ̸= hf2(x)]

≤ E
x∼P

max
∥δ∥q≤ϵ

Θρ ◦ ρf (x+ δ, hf2(x)) + E
x∼P

1[hf1(x) ̸= hf2(x)]

=R̃
(ρ)
P (f, f2) +RP (f1, f2)

Based on the previous lemmas, we now present our proof of Theorem 4.4.

Proof of Theorem 4.4. We denote the optimal scoring function that minimizes the adversarial margin
loss on the pseudo-labeled distribution of Q as f∗ = argmin

f ′∈F
R̃

(ρ)
Q (f ′, f). The adversarial margin

loss of f∗ is γ̃∗ = R̃
(ρ)
Q (f∗, f) = min

f ′∈F
R̃

(ρ)
Q (f ′, f).

By Lemma A.4, we have

RQ(hf ) ≤ R̃
(ρ)
P (f) + λ∗ + d

(ρ)
f,F (P,Q), (10)

where RQ(hf ) represents the labeling error of the function hf on domain ⟨Q, hQ⟩.

17



Then, by Lemma A.3, the empirically trained model f ′ on the pseudo-labeled distribution has a
controlled expected adversarial margin loss. The following holds with probability at least 1− α:

R̃
(ρ)
Q (f ′, f) ≤ min

f ′∈F
R̃

(ρ)
Q (f ′, f) +

2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n

= γ̃∗ +
2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n

(11)

Finally, by Lemma A.5, we have

R̃
(ρ)
Q (f ′, fQ) ≤ R̃

(ρ)
Q (f ′, f) +RQ(hf )

≤ R̃
(ρ)
P (f) + γ̃∗ + λ∗ + df,F (P,Q) +

2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n
,

where the last inequality is from (10) and (11).

A.3 Proofs of Corollary 4.6

Corollary 4.6. Given a sequence of domains ⟨Pt, fPt
⟩, t ∈ {0, . . . , T} with gradual shifts, each

intermediate domain has an unlabeled data set St drawn i.i.d. from Pt. The model is successively
trained by AST method, i.e., ft = AST (ft−1, St), t ∈ {1, . . . , T}. Then, for any α ≥ 0, the
following holds with probability of at least 1− α over the unlabeled data points {St}Tt=1,

R̃PT
(hfT ) ≤ R̃

(ρ)
P0

(f0) +

T∑
t=1

κt +
2T

ρ
R̂S(ρ̃FF) + 6T

√
log 4T

α

2n
,

where κt = dft−1,F (Pt−1, Pt) + min
f∈F

R̃
(ρ)
Pt

(f, ft−1) + min
f∈F

{
R

(ρ)
Pt−1

(f) +R
(ρ)
Pt

(f)
}

.

Proof of Corollary 4.6. By Theorem 4.4, the following holds for any t ∈ {1, . . . , T} with probability
at least 1− α:

R̃
(ρ)
Pt

(ft) ≤ R̃
(ρ)
Pt−1

(ft−1) + γ̃∗ + λ∗ + dft−1,F (Pt−1, Pt) +
2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n
,

where γ̃∗ = min
f∈F

R̃
(ρ)
Pt

(f, ft−1) and λ∗ = min
f∈F

{
R

(ρ)
Pt−1

(f) +R
(ρ)
Pt

(f)
}

.

By summing this inequality over t ∈ {1, . . . , T} and applying union bound, the following holds with
probability at least 1− α:

R̃
(ρ)
PT

(fT ) ≤ R̃
(ρ)
P0

(f0) +

T∑
t=1

κt +
2T

ρ
R̂S(ρ̃FF) + 6T

√
log 4T

α

2n
,

Finally, the margin loss can be lower bounded by the 0-1 loss, i.e., R̃PT
(hfT ) ≤ R̃

(ρ)
PT

(fT ) hence we
get the result:

R̃PT
(hfT ) ≤ R̃

(ρ)
P0

(f0) +

T∑
t=1

κt +
2T

ρ
R̂S(ρ̃FF) + 6T

√
log 4T

α

2n
,

where κt = dft−1,F (Pt−1, Pt) + min
f∈F

R̃
(ρ)
Pt

(f, ft−1) + min
f∈F

{
R

(ρ)
Pt−1

(f) +R
(ρ)
Pt

(f)
}

.

18



A.4 Standard Error Bounds for AST

Theorem A.6. Let ⟨P, fP ⟩ and ⟨Q, fQ⟩ be two domains with gradual shifts. f, f ′, and S are defined
as the same as in Theorem 4.4. Then, for any α ≥ 0, the following holds with probability of at least
1− α over data points S:

R
(ρ)
Q (f ′) ≤ R

(ρ)
P (f) + γ̃∗ + λ∗ + df,F (P,Q) +

2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n
,

where γ̃∗ = min
f ′∈F

R̃
(ρ)
Q (f ′, f) and λ∗ = min

f∈F

{
R

(ρ)
P (f) +R

(ρ)
Q (f)

}
.

Proof of Theorem A.6. Recall that f ′ = AST (f, S) = argmin
f ′∈F

R̃
(ρ)

Q̂
(f ′, f). We denote the optimal

scoring function that minimizes the adversarial margin loss on the pseudo-labeled distribution of Q as
f∗ = argmin

f ′∈F
R̃

(ρ)
Q (f ′, f). The adversarial margin loss of f∗ is γ̃∗ = R̃

(ρ)
Q (f∗, f) = min

f ′∈F
R̃

(ρ)
Q (f ′, f).

Then we have

R
(ρ)
Q (f ′)−R

(ρ)
P (f) ≤ R

(ρ)
Q (f ′)−RQ(f) +RQ(f)−R

(ρ)
P (f)

(i)

≤ R̃
(ρ)
Q (f ′)−RQ(f) +RQ(f)−R

(ρ)
P (f)

(ii)

≤ R̃
(ρ)
Q (f ′)−RQ(f) + λ∗ + d

(ρ)
f,F (P,Q)

(iii)

≤ R̃
(ρ)
Q (f ′, fQ) + R̃

(ρ)
Q (f ′, f)− R̃

(ρ)
Q (f ′, fQ) + λ∗ + d

(ρ)
f,F (P,Q)

≤ R̃
(ρ)
Q (f ′, f) + λ∗ + d

(ρ)
f,F (P,Q)

(iv)

≤ γ̃∗ + λ∗ + df,F (P,Q) +
2

ρ
R̂S(ρ̃FF) + 6

√
log 4

α

2n

where (i) is because the adversarial margin loss is larger than the standard margin loss; (ii) is from
Lemma A.4; (iii) is from Lemma A.5; (iv) is from (11) and holds with probability at least 1−α.

Remark A.7. Based on Theorem A.6, the following standard error bound for gradual AST can be
derived similarly to Corollary 4.6. With the notations defined in Corollary 4.6, for any α ≥ 0, the
following holds with the probability at least 1− α over the unlabeled data points {St}Tt=1,

RPT
(hfT ) ≤ R

(ρ)
P0

(f0) +

T∑
t=1

κt +
2T

ρ
R̂S(ρ̃FF) + 6T

√
log 4T

α

2n
.

The result shows that the standard risk on target domain can be controlled by the standard margin
loss on source domain and the discrepancy [53] between the intermediate domains.

A.5 Proofs of Theorem 4.9

Theorem 4.9. Given two distributions P and Pη over X × Y with the corresponding probability
mass vectors p and pη . The following bound holds for any classifier h ∈ HF .

RP (h) ≤ R̃Pη (h) + Ψ∗(p, pη, e,Πϵ),

where e is the risk vector ei = 1[h(xi) ̸= yi], and Πϵ = {i : ∃ ∥δi∥q ≤ ϵ, h(xi + δi) ̸= h(xi)}.

Proof of Theorem 4.9. Recall that the standard risk RP (h) on real data distribution is defined as
follows:

RP (h) =
∑

(x,y)∈X×Y

p(x, y)1[h(x) ̸= y],
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and the adversarial risk R̃Pη (h) on noisy-data distribution is defined as follows:

R̃Pη
(h) =

∑
(x,y)∈X×Y

pη(x, y) max
∥δ∥q≤ϵ

1[h(x+ δ) ̸= y].

We then have:

RP (h)− R̃Pη (h) ≤
∑

(x,y)∈X×Y

p(x, y)1[h(x) ̸= y]−
∑

(x,y)∈X×Y

pη(x, y) max
∥δ∥q≤ϵ

1[h(x+ δ) ̸= y]

=
∑

(x,y)∈X×Y

[
p(x, y)1[h(x) ̸= y]− pη(x, y) max

∥δ∥q≤ϵ
1[h(x+ δ) ̸= y]

]
= min

∥δ∥q≤ϵ

∑
(x,y)∈X×Y

[
p(x, y)1[h(x) ̸= y]− pη(x, y)1[h(x+ δ) ̸= y]

]
We denote the risk vector as ei = 1[h(xi) ̸= yi] and denote the adversarial risk vector as ẽi =
1[h(xi + δ) ̸= yi]. By the definition of Πϵ:

Πϵ = {i : ∃ ∥δi∥q ≤ ϵ, h(xi + δi) ̸= h(xi)},
we can get that ẽi ̸= ei only if i ∈ Πϵ. Then, we obtain that

RP (h)− R̃Pη
(h) ≤ min

ẽ∈{0,1}N

∣∣pηT ẽ− pT e
∣∣ , s.t. ẽi = ei,∀i ∈ {1, . . . , N}\Π

= Ψ∗(p, pη, e,Πϵ).

A.6 Proofs of Theorem 4.11

Theorem 4.11. For the real data distribution P defined in Example 4.10, the optimal classifier
that minimizes the standard risk RP (h) and adversarial risk R̃P (h) is h0(·) = sgn(·). For the
pseudo-labeled distribution Pη defined in Example 4.10, the standardly trained classifier hstd that
minimizes the standard risk RPη

(h) is hstd = hw; the adversarially trained classifier hadv that
minimizes the adversarial risk R̃Pη

(h) has the following corresponding threshold badv ,

badv =

{
w + ϵ, if w < −ϵ

0, if − ϵ < w < ϵ
w − ϵ, if w > ϵ

Before we provide the proof, we first prove a lemma about the convex function.
Lemma A.8. Let t(x) be a convex function over R. Given four points a1, a2, a3, a4 ∈ R such that
a1 < a2 < a3 < a4 and a1 + a4 = a2 + a3, then the following holds:

t(a1) + t(a4) ≥ t(a2) + t(a3).

Proof of Lemma A.8. Let a ≜ a1+a4

2 = a2+a3

2 , r ≜ a2 − a1 and s ≜ a− a2.

Since a1+a4 = a2+a3, we then have a4−a3 = a2−a1 = r and a3−a = a3− a2+a3

2 = a3−a2

2 =
a2+a3

2 − a2 = s. It is easy to see that:

a2 =
2s

r + 2s
a1 +

r

r + 2s
a3

(i)⇒ t(a2) ≤
2s

r + 2s
t(a1) +

r

r + 2s
t(a3),

a3 =
2s

r + 2s
a4 +

r

r + 2s
a2

(ii)⇒ t(a3) ≤
2s

r + 2s
t(a4) +

r

r + 2s
t(a2),

where (i) and (ii) are from the definition of convexity [7].

By combining these two inequalities, we have

t(a2) + t(a3) ≤
2s

r + 2s
(t(a1) + t(a4)) +

r

r + 2s
(t(a3) + t(a2)) .

By rearranging the terms, we obtain the result
t(a1) + t(a4) ≥ t(a2) + t(a3).
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Proof of Theorem 4.11. (I). We first prove the results for real data distribution P .

For the real data distribution P defined in Example 4.10, the standard risk of a classifier hb ∈ H can
be written as follows:

RP (hb) =
1

2
E

x∼PX|Y =1

1[hb(x) ̸= 1] +
1

2
E

x∼PX|Y =−1

1[hb(x) ̸= −1].

By the definition of the classifier hb, we have:

RP (hb) =
1

2
E

x∼PX|Y =1

1[x ≤ b] +
1

2
E

x∼PX|Y =−1

1[x ≥ b] =
1

2
Φ+(b) +

1

2
(1− Φ−(b))

where Φ+(b) = 1
σ
√
2π

∫ b

−∞ exp{− (x−µ)2

2σ2 }dx is the cumulative distribution function (CDF) of

the Gaussian distribution N (µ, σ2) and Φ−(b) = 1
σ
√
2π

∫ b

−∞ exp{− (x+µ)2

2σ2 }dx is the CDF of the
Gaussian distribution N (−µ, σ2). By the symmetry of Gaussian distribution, we then have:

RP (hb) =
1

2
Φ+(b) +

1

2
Φ−(−2µ− b).

The standard risk can be viewed as a function of b. By the rule of derivation for composition function,
the derivative of the standard risk is

R′
P (hb) =

1

2σ
√
2π

exp

{
−1

2

(
b− µ

σ

)2
}

− 1

2σ
√
2π

exp

{
−1

2

(
b+ µ

σ

)2
}

When b > 0, we can find that the derivative R′
P (hb) is larger than 0:

b > 0 ⇒
(
b− µ

σ

)2

<

(
b+ µ

σ

)2

⇒ exp

{
−1

2

(
b− µ

σ

)2
}

> exp

{
−1

2

(
b+ µ

σ

)2
}

⇒ R′
P (hb) > 0.

When b < 0, we can find that the derivative R′
P (hb) is smaller than 0:

b < 0 ⇒
(
b− µ

σ

)2

>

(
b+ µ

σ

)2

⇒ exp

{
−1

2

(
b− µ

σ

)2
}

< exp

{
−1

2

(
b+ µ

σ

)2
}

⇒ R′
P (hb) < 0.

When b = 0, it is easy to see that R′
P (hb) = 0. Then we conclude that the standard risk RP (hb) of

the classifier hb achieves the minimal at b = 0 and the optimal classifier that minimizes the standard
risk RP (h) is h0(·) = sgn(·).
The adversarial risk of a classifier hb ∈ H over the real data distribution P can be written as follows:

R̃P (hb) =
1

2
E

x∼PX|Y =1

1 [∃δ, |δ| ≤ ϵ, hb(x+ δ) ̸= 1] +
1

2
E

x∼PX|Y =−1

1 [∃δ, |δ| ≤ ϵ, hb(x+ δ) ̸= −1] .

By the definition of the classifier hb, we have:

R̃P (hb) =
1

2
E

x∼PX|Y =1

1[x ≤ b+ ϵ]+
1

2
E

x∼PX|Y =−1

1[x ≥ b− ϵ] =
1

2
Φ+(b+ ϵ)+

1

2
(1−Φ−(b− ϵ)).

By the symmetry of Gaussian distribution, we then have:

R̃P (hb) =
1

2
Φ+(b+ ϵ) +

1

2
Φ−(−2µ− b+ ϵ).

By the rule of derivation for composition function, the derivative of the adversarial risk is

R̃′
P (hb) =

1

2σ
√
2π

exp

{
−1

2

(
b+ ϵ− µ

σ

)2
}

− 1

2σ
√
2π

exp

{
−1

2

(
b+ µ− ϵ

σ

)2
}
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Note that we have the assumption that ϵ ≪ µ, which means ϵ− µ < 0. Similarly, when b > 0, we
can find that R̃′

P (hb) > 0; when b < 0, we can find that R̃′
P (hb) < 0; when b = 0, R̃′

P (hb) = 0.
Hence, the adversarial risk of the classifier hb over the real data distribution P achieves minimal at
the point b = 0. We conclude that the optimal classifier that minimizes the adversarial risk for the
real data distribution is also h0(·) = sgn(·).
(II). We next prove the results for the pseudo-labeled distribution Pη .

It easy to see that the function hb achieves zero standard risk over the pseudo-labeled distribution Pη

if and only if b = w. Based on the assumption that the learner is provided with infinite samples, we
can conclude that the standardly trained classifier hstd that minimizes the standard risk is hstd = hw.

For the adversarially trained classifier hadv that minimizes the adversarial risk R̃Pη
(hb) over the

pseudo-labeled distribution Pη , we first prove that the corresponding threshold satisfies:

badv ∈ [w − ϵ, w + ϵ].

The adversarial risk R̃Pη
(hb) over the pseudo-labeled distribution Pη can be written as follows:

R̃Pη (hb) = E
(x,y)∼Pη

1 [∃δ, |δ| ≤ ϵ, hb(x+ δ) ̸= y] .

We denote the marginal distribution over X of Pη as PX
η . Then we have:

R̃Pη (hb) = E
x∼PX

η

1 [b− ϵ < x ∩ x < w] + E
x∼PX

η

1[w < x ∩ x < b+ ϵ], (12)

where ∩ is the AND operation in logistical expressions.

When b ≤ w − ϵ, the second term in Eq. (12) equals 0 since there does not exist an x such that
w < x < b+ ϵ. Then we derive that

R̃Pη (hb) = E
x∼PX

η

1 [b− ϵ < x ∩ x < w]

= E
x∼PX

η

1 [b− ϵ < x < w]

=
1

2
{Φ−(w)− Φ−(b− ϵ) + Φ+(w)− Φ+(b− ϵ)}

By the rule of derivation for composition function, the derivative of the adversarial risk is

R̃′
Pη
(hb) = − 1

2σ
√
2π

exp

{
−1

2

(
b− ϵ+ µ

σ

)2
}

− 1

2σ
√
2π

exp

{
−1

2

(
b− ϵ− µ

σ

)2
}

Since the exponential function is positive, we have R̃′
Pη
(hb) < 0. The adversarial risk over the

pseudo-labeled distribution is a decreasing function on (−∞, w− ϵ] and the adversarial risk achieves
minimal at point b = w − ϵ when b ≤ w − ϵ.

On the other hand, when b ≥ w + ϵ, the first term in Eq. (12) equals 0 since there does not exist an x
such that b < x < w + ϵ. Then we derive that

R̃Pη
(hb) = E

x∼PX
η

1 [w < x ∩ x < b+ ϵ]

= E
x∼PX

η

1 [w < x < b+ ϵ]

=
1

2
{Φ−(b+ ϵ)− Φ−(w) + Φ+(b+ ϵ)− Φ+(w)}

By the rule of derivation for composition function, the derivative of the adversarial risk is

R̃′
Pη
(hb) =

1

2σ
√
2π

exp

{
−1

2

(
b+ ϵ+ µ

σ

)2
}

+
1

2σ
√
2π

exp

{
−1

2

(
b+ ϵ− µ

σ

)2
}
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Since the exponential function is positive, we have R̃′
Pη
(hb) > 0. The adversarial risk over the

pseudo-labeled distribution is an increasing function on [w+ ϵ,+∞) and the adversarial risk achieves
minimal at point b = w + ϵ when b ≥ w + ϵ.

By these two cases, we conclude that badv ∈ [w − ϵ, w + ϵ].

Now, we focus on the case where b ∈ [w − ϵ, w + ϵ]. Then the adversarial risk can be written as
follows:

R̃Pη
(hb) = E

x∼PX
η

1 [b− ϵ < x < w] + E
x∼PX

η

1[w < x < b+ ϵ] = E
x∼PX

η

1[b− ϵ < x < b+ ϵ].

By the definition of the Gaussian distribution, we have

R̃Pη
(hb) =

1

2
{Φ−(b+ ϵ)− Φ−(b− ϵ) + Φ+(b+ ϵ)− Φ+(b− ϵ)} .

Similarly, the derivative of the adversarial risk is

R̃′
Pη
(hb) =

1

2σ
√
2π

exp

{
−1

2

(
b+ ϵ+ µ

σ

)2
}

− 1

2σ
√
2π

exp

{
−1

2

(
b− ϵ+ µ

σ

)2
}

+
1

2σ
√
2π

exp

{
−1

2

(
b+ ϵ− µ

σ

)2
}

− 1

2σ
√
2π

exp

{
−1

2

(
b− ϵ− µ

σ

)2
}

=
1

2σ
√
2π

exp

{
−
(
µ+ b+ ϵ√

2σ

)2
}

− 1

2σ
√
2π

exp

{
−
(
µ+ b− ϵ√

2σ

)2
}

+
1

2σ
√
2π

exp

{
−
(
µ− b− ϵ√

2σ

)2
}

− 1

2σ
√
2π

exp

{
−
(
µ− b+ ϵ√

2σ

)2
}

(13)

Let φ(a) = e−a2

be a function defined over R. The first-order derivative of φ(a) is φ′(a) = −2ae−a2

.
And the second-order derivative of φ(a) is φ′′(a) = 2e−a2

(
√
2a+1)(

√
2a−1). By the second-order

derivative condition for convexity [7], we have

• When a < −
√
2
2 or a >

√
2
2 , φ′′(a) > 0. The function φ(a) is convex on the interval

(−∞,−
√
2
2 ) ∪ (

√
2
2 ,+∞).

• When −
√
2
2 < a <

√
2
2 , φ′′(a) < 0. The function φ(a) is concave on the interval

(−
√
2
2 ,

√
2
2 ).

To simplify our notations, we use four points to denote the four terms in (13):

a1 =
µ+ b+ ϵ√

2σ
, a2 =

µ+ b− ϵ√
2σ

, a3 =
µ− b+ ϵ√

2σ
, a4 =

µ− b− ϵ√
2σ

.

Next we discuss the value of b in two cases.

If b > 0: By the assumption that µ is much larger than b, ϵ and µ is also larger than σ, we have:
√
2

2
< a4 < a3 < a1,

√
2

2
< a4 < a2 < a1 and a1 + a4 = a2 + a3.

By applying the Lemma A.8, we can obtain that R̃′
Pη
(hb) > 0, which means R̃′

Pη
(hb) is an increasing

function of b when b > 0.

If b < 0: By the assumption that µ is much larger than b, ϵ and µ is also larger than σ, we have:
√
2

2
< a2 < a1 < a3,

√
2

2
< a2 < a4 < a3 and a1 + a4 = a2 + a3.

By applying the Lemma A.8, we can obtain that R̃′
Pη
(hb) < 0, which means R̃′

Pη
(hb) is a decreasing

function of b when b < 0.

Based on the analysis, we conclude that:
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Table 1: The performance (%) of gradual AST method on MNIST with various perturbation bound
(ϵ). The results in parentheses represent the improvement compared to the vanilla gradual self-training
method. We use a 3-layer convolutional neural network.

ϵ 0.15 0.2 0.3

Acle 97.11 (+8.17) 96.65 (+7.71) 96.59 (+8.65)
Aadv 88.07 (+87.21) 83.90 (+83.58) 83.47 (+83.15)

Table 2: The performance (%) of gradual AST method on portraits with various perturbation bound
(ϵ). The results in parentheses represent the improvement compared to the vanilla gradual self-training
method. We use a 3-layer convolutional neural network.

ϵ 0.01 0.02 0.04 0.05

Acle 83.89 (+2.50) 85.19 (+3.80) 84.16 (+2.77) 84.92 (+3.53)
Aadv 79.90 (+9.01) 77.94 (+19.80) 75.65 (+52.94) 71.63 (+61.86)

• When w ≤ −ϵ, R̃Pη
(hb) is a decreasing function of b on the interval [w − ϵ, w + ϵ]. Hence

the optimal threshold badv = w + ϵ.

• When −ϵ < w ≤ ϵ, R̃Pη
(hb) is a decreasing function of b on the interval (w − ϵ, 0] and is

an increasing function of b on the interval (0, w + ϵ]. Hence the optimal threshold badv = 0.

• When ϵ < w, R̃Pη
(hb) is an increasing function of b on the interval [w − ϵ, w + ϵ]. Hence

the optimal threshold badv = w − ϵ.

badv =

{
w + ϵ, if w < −ϵ

0, if − ϵ < w < ϵ
w − ϵ, if w > ϵ

As we analyzed in part (I), the optimal classifier that minimizes the standard risk and the adversarial
risk over the real data distribution is h0(·) = sgn(·). Compared to the standard training, the
adversarial training has an effect of moving the threshold close to the optimal threshold b = 0.

B Additional Experiments

B.1 Results of Methods with Varying Perturbation Radius ϵ

In this section, we provide more experimental results of the methods with varying perturbation radius
ϵ. For the Rotating MNIST dataset, the perturbation radius is chosen from {0.15, 0.2, 0.3}; for the
Portraits dataset, the perturbation radius is chosen from {0.01, 0.02, 0.04, 0.05}. The results are
shown in Tables 1 and 2. As we can see from the tables, the proposed gradual AST method can
consistently improve clean accuracy and adversarial robustness using various values of ϵ.

B.2 Results of Methods with Varying Domain Numbers

We split the Rotating MNIST and Portraits datasets with different lengths of interval and conduct an
ablation study. For MNIST, the numbers of intermediate domains are 24, 30, and 42, respectively; for
portraits, the numbers of intermediate domains are 8, 10, and 14, respectively. The results can be
found in Tables 3 and 4, which show that our gradual AST method is nonsensitive to the choice of
the number of intermediate domains.

B.3 Results of Methods on Varying Neural Networks

In this section, we use ResNet-18 and ResNet-50 [21] as the backbones to validate the effectiveness
of our proposed method. The results are presented in Tables 5 and 6, which show that complex
networks can further improve performance (both clean accuracy and adversarial robustness).
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Table 3: The performance (%) of gradual AST method on MNIST with various intermediate domain
numbers (num.). The results in parentheses represent the improvement compared to the vanilla
gradual self-training method. We set perturbation bound ϵ = 0.1 and use a 3-layer convolutional
neural network.

num. 24 30 42

Acle 97.09 (+10.27) 97.40 (+6.65) 97.31 (+6.79)
Aadv 90.24 (+84.45) 90.72 (+84.94) 90.30 (+82.22)

Table 4: The performance (%) of gradual AST method on portraits with various intermediate domain
numbers (num.). The results in parentheses represent the improvement compared to the vanilla
gradual self-training method. We set perturbation bound ϵ = 0.031 and use a 3-layer convolutional
neural network.

num. 8 10 14

Acle 84.84 (+2.72) 85.99 (+0.26) 84.44 (+1.60)
Aadv 76.43 (+35.45) 75.05 (+32.43) 76.16 (+33.59)

B.4 Results of Methods with Varying Filtration Ratios ζ

In this section, we provide more experimental results of the methods with varying filtration ratios
ζ and starting domains τ . For both of the Rotating MNIST and Portraits datasets, we chose the
filtration ratios ζ from {0, 0.01, 0.02, 0.05, 0.1, 0.2}. In order to show the specific values, we present
the results in the form of tables.

For Rotating MNIST dataset, we present the results of models with ζ = 0.2, 0.1, 0.05, 0.02, 0.01, 0,
in Tables 7, 8, 9, 10, 11, 12, respectively. As the tables show, the optimal filtration ratio ζ for gradual
self-training (τ = 22) is 0.1, which is used in previous work [26]. However, the gradual AST methods
prefer smaller ζ which enables more data to be included. The optimal filtration ratio ζ for gradual
AST (with the best starting domain τ ) is 0.05. When we set ζ = 0.05, the gradual AST method with
τ = 9 achieves clean accuracy of 97.15% and adversarial accuracy of 90.44%. This phenomenon
indicates that AT has stronger anti-noisy ability than standard training.

For Portraits dataset, we present the results of models with ζ = 0.2, 0.1, 0.05, 0.02, 0.01, 0, in Tables
13, 14, 15, 16, 17, 18, respectively. From the tables, we can draw a similar conclusion that the gradual
AST methods prefer smaller ζ.

B.5 Training with Labeled Intermediate Domains

In this section, we conduct experiments where the learner is provided with labeled intermediate data.
Although the learner has access to the ground-truth intermediate labels, we still keep the filtering
process, since we need to control the same data size for comparison. We present the results of the
models with varying τ in Table 19 and Table 20. Since the results in Section 3.3 show that ζ = 0.05 is
the optimal filtration ratio for gradual AST methods, we set ζ = 0.05 in this section. From Table 19,
we can see that, if the learner is provided with labeled intermediate domains, the gradual self-training
method (τ = 22) achieves clean accuracy of 98.44% on Rotating MNIST. Recall the results in Table
9 showing that the proposed gradual AST method (τ = 0) achieves clean accuracy of 95.12%. The

Table 5: The performance (%) of gradual AST method on MNIST with various backbone networks.
The results in parentheses represent the improvement compared to the vanilla gradual self-training
method. We set perturbation bound ϵ = 0.1.

backbone ResNet18 ResNet50

Acle 98.70 (+0.02) 98.47 (+0.44)
Aadv 96.57 (+89.11) 96.13 (+22.05)
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Table 6: The performance (%) of gradual AST method on portraits with various backbone networks.
The results in parentheses represent the improvement compared to the vanilla gradual self-training
method. We set perturbation bound ϵ = 0.031.

backbone ResNet18 ResNet50

Acle 86.52 (+0.52) 87.09 (+0.0)
Aadv 78.12 (+52.08) 79.01 (+47.24)

performance (95.12%) of the proposed gradual AST is close to the optimal performance (98.44%) of
the gradual self-training where the learner is provided with labeled intermediate domains.

B.6 Visualization of the Filter

In order to better demonstrate the filtering effect, we use the t-distributed stochastic neighbor
embedding (t-SNE) to visualize the data in each domain. t-SNE [13] is a statistical method for
visualizing high-dimensional data by giving each data point a location in a two or three-dimensional
map.

We present the t-SNE visualizations for each intermediate domain on Rotating MNIST in Figure 3-6.
Each sub-figure represents a domain. We use red points to denote the correctly pseudo-labeled data
predicted by the model. We use blue and green points to denote the data with incorrect pseudo-labels,
where the blue points are successfully filtered by filtration and the green points are retained.

As we can see in the figures, the blue and green points are only a small part of the whole, which
indicates most pseudo-labels of the intermediate data generated by the model are correct. Furthermore,
the blue points make up a large portion of the non-red dots, which means the incorrect pseudo-labels
are effectively filtered out.

26



Table 7: The results of methods with varying
starting domains τ on Rotating MNIST. The
filtration ratio ζ is set to 0.2. We use Acle to
denote the clean accuracy (%) and use Aadv to
denote the adversarial accuracy (%). Results
in bold indicate the best performance.

τ0 Acle Aadv ϵ ζ

0 90.23 81.06 0.1 0.2
1 93.15 82.59 0.1 0.2
2 93.67 83.96 0.1 0.2
3 92.59 81.94 0.1 0.2
4 93.97 83.50 0.1 0.2
5 94.78 85.00 0.1 0.2
6 92.14 82.47 0.1 0.2
7 94.51 84.77 0.1 0.2
8 94.18 83.32 0.1 0.2
9 91.37 81.35 0.1 0.2

10 95.00 85.14 0.1 0.2
11 94.57 84.15 0.1 0.2
12 95.08 84.82 0.1 0.2
13 95.10 83.84 0.1 0.2
14 94.82 84.17 0.1 0.2
15 91.42 80.89 0.1 0.2
16 92.26 81.64 0.1 0.2
17 91.68 80.49 0.1 0.2
18 91.48 79.85 0.1 0.2
19 91.76 79.63 0.1 0.2
20 90.13 77.00 0.1 0.2
21 88.52 73.44 0.1 0.2
22 87.42 8.73 0.1 0.2

Table 8: The results of methods with varying
starting domains τ on Rotating MNIST. The
filtration ratio ζ is set to 0.1. We use Acle to
denote the clean accuracy (%) and use Aadv to
denote the adversarial accuracy (%). Results
in bold indicate the best performance.

τ0 Acle Aadv ϵ ζ

0 90.59 83.54 0.1 0.1
1 95.65 88.03 0.1 0.1
2 95.52 88.02 0.1 0.1
3 95.28 87.11 0.1 0.1
4 96.66 89.16 0.1 0.1
5 96.09 88.13 0.1 0.1
6 95.98 88.70 0.1 0.1
7 96.58 89.04 0.1 0.1
8 96.01 88.85 0.1 0.1
9 96.66 88.86 0.1 0.1

10 96.65 88.48 0.1 0.1
11 96.82 88.79 0.1 0.1
12 96.10 88.25 0.1 0.1
13 96.51 88.27 0.1 0.1
14 95.59 86.65 0.1 0.1
15 95.70 86.55 0.1 0.1
16 95.00 85.70 0.1 0.1
17 94.92 85.02 0.1 0.1
18 94.25 84.44 0.1 0.1
19 93.82 83.14 0.1 0.1
20 91.50 80.19 0.1 0.1
21 91.05 76.50 0.1 0.1
22 90.06 6.00 0.1 0.1
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Table 9: The results of methods with varying
starting domains τ on Rotating MNIST. The
filtration ratio ζ is set to 0.05. We use Acle to
denote the clean accuracy (%) and use Aadv to
denote the adversarial accuracy (%). Results in
bold indicate the best performance.

τ0 Acle Aadv ϵ ζ

0 95.12 89.00 0.1 0.05
1 96.30 90.14 0.1 0.05
2 95.54 88.70 0.1 0.05
3 96.41 89.53 0.1 0.05
4 95.96 89.73 0.1 0.05
5 96.58 89.82 0.1 0.05
6 96.53 89.65 0.1 0.05
7 96.89 90.06 0.1 0.05
8 96.99 89.63 0.1 0.05
9 97.14 90.44 0.1 0.05

10 96.88 89.62 0.1 0.05
11 95.76 88.06 0.1 0.05
12 95.52 87.94 0.1 0.05
13 95.72 88.47 0.1 0.05
14 95.50 87.27 0.1 0.05
15 93.41 84.81 0.1 0.05
16 92.60 83.96 0.1 0.05
17 92.48 83.84 0.1 0.05
18 92.77 83.00 0.1 0.05
19 89.24 78.77 0.1 0.05
20 90.33 79.44 0.1 0.05
21 89.93 76.39 0.1 0.05
22 88.96 7.01 0.1 0.05

Table 10: The results of methods with varying
starting domains τ on Rotating MNIST. The
filtration ratio ζ is set to 0.02. We use Acle to
denote the clean accuracy (%) and use Aadv to
denote the adversarial accuracy (%). Results in
bold indicate the best performance.

τ0 Acle Aadv ϵ ζ

0 96.05 90.20 0.1 0.02
1 96.31 90.01 0.1 0.02
2 96.13 89.47 0.1 0.02
3 96.87 90.31 0.1 0.02
4 95.32 88.67 0.1 0.02
5 96.50 90.25 0.1 0.02
6 96.79 90.04 0.1 0.02
7 96.41 89.53 0.1 0.02
8 96.67 89.52 0.1 0.02
9 96.77 89.82 0.1 0.02

10 95.53 88.26 0.1 0.02
11 96.18 88.71 0.1 0.02
12 91.10 83.05 0.1 0.02
13 90.52 83.36 0.1 0.02
14 90.00 82.27 0.1 0.02
15 91.34 82.78 0.1 0.02
16 89.61 80.45 0.1 0.02
17 87.60 78.39 0.1 0.02
18 85.88 76.03 0.1 0.02
19 85.88 75.15 0.1 0.02
20 84.35 72.23 0.1 0.02
21 83.83 69.12 0.1 0.02
22 82.43 6.44 0.1 0.02
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Table 11: The results of methods with varying
starting domains τ on Rotating MNIST. The
filtration ratio ζ is set to 0.01. We use Acle to
denote the clean accuracy (%) and use Aadv to
denote the adversarial accuracy (%). Results in
bold indicate the best performance.

τ0 Acle Aadv ϵ ζ

0 95.20 89.55 0.1 0.01
1 96.14 89.88 0.1 0.01
2 96.00 89.74 0.1 0.01
3 96.60 89.82 0.1 0.01
4 96.29 90.02 0.1 0.01
5 96.82 90.49 0.1 0.01
6 96.69 90.11 0.1 0.01
7 96.53 89.69 0.1 0.01
8 96.74 90.31 0.1 0.01
9 96.83 89.70 0.1 0.01

10 96.37 88.71 0.1 0.01
11 95.42 87.79 0.1 0.01
12 94.43 86.20 0.1 0.01
13 95.42 87.32 0.1 0.01
14 94.25 85.95 0.1 0.01
15 93.31 85.18 0.1 0.01
16 93.08 84.44 0.1 0.01
17 92.74 83.49 0.1 0.01
18 92.45 82.66 0.1 0.01
19 91.85 80.71 0.1 0.01
20 91.47 79.47 0.1 0.01
21 90.25 75.84 0.1 0.01
22 88.57 6.49 0.1 0.01

Table 12: The results of methods with vary-
ing starting domains τ on Rotating MNIST.
The filtration ratio ζ is set to 0. We use
Acle to denote the clean accuracy (%) and
use Aadv to denote the adversarial accuracy
(%). Results in bold indicate the best perfor-
mance.

τ0 Acle Aadv ϵ ζ

0 94.86 89.26 0.1 0
1 95.48 90.47 0.1 0
2 95.67 89.69 0.1 0
3 95.96 89.95 0.1 0
4 96.58 90.90 0.1 0
5 96.60 90.74 0.1 0
6 95.84 88.69 0.1 0
7 96.87 90.16 0.1 0
8 95.97 89.75 0.1 0
9 92.35 85.78 0.1 0
10 96.66 90.05 0.1 0
11 92.50 85.46 0.1 0
12 94.86 87.91 0.1 0
13 94.08 86.41 0.1 0
14 91.03 83.52 0.1 0
15 90.63 82.80 0.1 0
16 91.16 82.61 0.1 0
17 88.64 79.38 0.1 0
18 90.34 80.50 0.1 0
19 89.94 79.30 0.1 0
20 87.99 76.25 0.1 0
21 86.90 72.24 0.1 0
22 84.88 3.97 0.1 0

Table 13: The results of methods with varying
starting domains τ on Portraits. The filtration
ratio ζ is set to 0.2. We use Acle to denote the
clean accuracy (%) and use Aadv to denote the
adversarial accuracy (%). Results in bold indi-
cate the best performance.

τ0 Acle Aadv ϵ ζ

0 84.09 74.53 0.031 0.2
1 82.94 73.83 0.031 0.2
2 84.62 75.44 0.031 0.2
3 84.65 74.95 0.031 0.2
4 82.80 72.59 0.031 0.2
5 81.51 69.10 0.031 0.2
6 82.02 69.33 0.031 0.2
7 82.82 68.55 0.031 0.2
8 81.79 40.54 0.031 0.2

Table 14: The results of methods with varying
starting domains τ on Portraits. The filtration
ratio ζ is set to 0.1. We use Acle to denote the
clean accuracy (%) and use Aadv to denote the
adversarial accuracy (%). Results in bold indi-
cate the best performance.

τ0 Acle Aadv ϵ ζ

0 84.77 77.64 0.031 0.1
1 84.28 76.07 0.031 0.1
2 85.45 76.27 0.031 0.1
3 83.20 74.61 0.031 0.1
4 81.93 71.68 0.031 0.1
5 81.05 69.82 0.031 0.1
6 82.23 71.88 0.031 0.1
7 84.77 73.93 0.031 0.1
8 82.03 40.23 0.031 0.1
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Table 15: The results of methods with varying
starting domains τ on Portraits. The filtration
ratio ζ is set to 0.05. We use Acle to denote the
clean accuracy (%) and use Aadv to denote the
adversarial accuracy (%). Results in bold indicate
the best performance.

τ0 Acle Aadv ϵ ζ

0 83.89 76.76 0.031 0.05
1 86.04 77.25 0.031 0.05
2 85.64 77.64 0.031 0.05
3 84.28 74.90 0.031 0.05
4 83.20 74.32 0.031 0.05
5 81.25 72.17 0.031 0.05
6 81.64 71.58 0.031 0.05
7 83.69 72.66 0.031 0.05
8 81.35 39.75 0.031 0.05

Table 16: The results of methods with varying
starting domains τ on Portraits. The filtration
ratio ζ is set to 0.02. We use Acle to denote the
clean accuracy (%) and use Aadv to denote the
adversarial accuracy (%). Results in bold indicate
the best performance.

τ0 Acle Aadv ϵ ζ

0 84.67 77.94 0.031 0.02
1 84.08 77.60 0.031 0.02
2 83.81 77.91 0.031 0.02
3 83.15 75.83 0.031 0.02
4 82.66 73.81 0.031 0.02
5 82.66 74.98 0.031 0.02
6 82.66 73.10 0.031 0.02
7 85.28 75.44 0.031 0.02
8 82.66 42.51 0.031 0.02

Table 17: The results of methods with varying
starting domains τ on Portraits. The filtration
ratio ζ is set to 0.01. We use Acle to denote the
clean accuracy (%) and use Aadv to denote the
adversarial accuracy (%). Results in bold indicate
the best performance.

τ0 Acle Aadv ϵ ζ

0 83.29 76.55 0.031 0.01
1 84.57 78.60 0.031 0.01
2 84.79 76.97 0.031 0.01
3 85.33 77.85 0.031 0.01
4 85.13 76.77 0.031 0.01
5 78.91 70.47 0.031 0.01
6 81.19 71.86 0.031 0.01
7 81.75 71.86 0.031 0.01
8 80.78 38.57 0.031 0.01

Table 18: The results of methods with varying
starting domains τ on Portraits. The filtration
ratio ζ is set to 0. We use Acle to denote the
clean accuracy (%) and use Aadv to denote
the adversarial accuracy (%). Results in bold
indicate the best performance.

τ0 Acle Aadv ϵ ζ

0 82.42 76.37 0.031 0
1 84.67 77.25 0.031 0
2 83.69 77.93 0.031 0
3 84.47 77.83 0.031 0
4 85.25 78.03 0.031 0
5 79.79 74.32 0.031 0
6 81.93 74.71 0.031 0
7 86.04 75.98 0.031 0
8 81.93 33.69 0.031 0
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Table 19: The results of methods with varying
starting domains τ on Rotating MNIST. The
learner is provided with labeled intermediate
data. The filtration ratio ζ is set to 0.05. We use
Acle to denote the clean accuracy (%) and use
Aadv to denote the adversarial accuracy (%).
Results in bold indicate the best performance.

τ0 Acle Aadv ϵ ζ

0 98.65 93.67 0.1 0.05
1 98.52 93.49 0.1 0.05
2 98.53 93.53 0.1 0.05
3 98.54 93.02 0.1 0.05
4 98.68 92.65 0.1 0.05
5 98.73 93.00 0.1 0.05
6 98.61 93.21 0.1 0.05
7 98.72 92.92 0.1 0.05
8 98.85 93.13 0.1 0.05
9 98.71 92.62 0.1 0.05

10 98.73 92.54 0.1 0.05
11 98.82 92.15 0.1 0.05
12 98.80 91.98 0.1 0.05
13 98.87 92.01 0.1 0.05
14 98.71 91.64 0.1 0.05
15 98.69 91.46 0.1 0.05
16 98.67 91.37 0.1 0.05
17 98.73 90.67 0.1 0.05
18 98.63 90.04 0.1 0.05
19 98.67 89.03 0.1 0.05
20 98.51 88.25 0.1 0.05
21 98.44 85.70 0.1 0.05
22 98.44 3.59 0.1 0.05

Table 20: The results of methods with varying
starting domains τ on Portraits. The learner is
provided with labeled intermediate data. The
filtration ratio ζ is set to 0.05. We use Acle to
denote the clean accuracy (%) and use Aadv to
denote the adversarial accuracy (%). Results in
bold indicate the best performance.

τ0 Acle Aadv ϵ ζ

0 89.55 78.22 0.031 0.05
1 90.33 79.69 0.031 0.05
2 90.72 79.10 0.031 0.05
3 90.43 79.10 0.031 0.05
4 90.33 78.91 0.031 0.05
5 90.53 79.69 0.031 0.05
6 90.43 78.91 0.031 0.05
7 89.55 78.13 0.031 0.05
8 91.99 19.82 0.031 0.05
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6

Figure 3: Visualization (I) of the data points in each domain using t-SNE. We use red points to denote
the correctly pseudo-labeled data predicted by the model. We use blue and green points to denote the
data with incorrect pseudo-labels, where the blue points are successfully filtered by the filter and the
green points are retained. Best viewed in color.
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(a) t = 7 (b) t = 8

(c) t = 9 (d) t = 10

(e) t = 11 (f) t = 12

Figure 4: Visualization (II) of the data points in each domain using t-SNE. We use red points to
denote the correctly pseudo-labeled data predicted by the model. We use blue and green points to
denote the data with incorrect pseudo-labels, where the blue points are successfully filtered by the
filter and the green points are retained. Best viewed in color.
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(a) t = 13 (b) t = 14

(c) t = 15 (d) t = 16

(e) t = 17 (f) t = 18

Figure 5: Visualization (III) of the data points in each domain using t-SNE. We use red points to
denote the correctly pseudo-labeled data predicted by the model. We use blue and green points to
denote the data with incorrect pseudo-labels, where the blue points are successfully filtered by the
filter and the green points are retained. Best viewed in color.
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(a) t = 19 (b) t = 20

(c) t = 21

Figure 6: Visualization (IV) of the data points in each domain using t-SNE. We use red points to
denote the correctly pseudo-labeled data predicted by the model. We use blue and green points to
denote the data with incorrect pseudo-labels, where the blue points are successfully filtered by the
filter and the green points are retained. Best viewed in color.
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