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Supplementary Materials
This is the Supplementary Material (SI) for our smart Intelligent Knee Sleeves. The SI is formatted
as the following: Appendix A provides more details on the analysis of the wearable knee sleeve data.
Equation 1 is the equation we used to quantify the distance between prediction values and ground
truth. Figure A1 and Figure A2 is the motion capture outputs and corresponding sensor reaction from
our stretchable Knee Sleeves under the scenario that some issues happened to the optical system.
Table A1 highlights our contribution to related applications. Table A2 offers a detailed breakdown of
how each modality contributes to the overall performance. Figure A4 illustrates the labeling process
to obtain the ground truth from a camera-based commercial system. Figure A3 shows the time shift
in prediction due to the Bluetooth latency issues. Figure A5 shows the results of unseen tasks in the
leg raise pose with seeing 10% of the unseen task’s data. Appendix B is the detailed information in
the data structure, dimension, and accessibility. Table B5 shows the specific dimension and data we
input to the model for training. Table B6 is the number of sessions for each pose and each subject on
each day. Table B7 summarizes the list of different exercises we conducted during the data collection
process.

Please access the data at https://feel.ece.ubc.ca/smartkneesleeve/. All the data, code, and instructions
are stored and can be accessed online in long-term storage repositories. Our work is published under
GNU General Public License v3.0.

A Dataset Analysis

Equation 1 is the quaternion distance [1] that we used to quantify the model performance on joints’
angel predictions. The D(qpred, qgrd) is the normalized quaternions presenting the motion of joints
of prediction results and ground truth values.



D(qpred, qgrd) = 1−< qpred, qgrd >2

< qpred, qgrd >=< a1a2 + b1b2 + c1c2 + d1d2 >

qpred = a1x+ b1y + c1z + d1w

qgrd = a2x+ b2y + c2z + d2w

a21 + b21 + c21 + d21 = 1

a22 + b22 + c22 + d22 = 1

(1)
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Outcome from motion capture system with good performance

Outcome from motion capture system with issues

(a)

(b)

Figure A1 Quaternion example from MoCap system of squatting exercise. The environment
can significantly impact the performance of the motion capture system, as shown in this illustration.
Panel (a) presents ground truth values obtained from a motion capture system that functions smoothly
without any hindrances, while panel (b) shows ground truth measurements obtained from the motion
capture system that faces various challenges, such as occlusion. The corresponding sensor reaction of
the panel (b) is displayed in the Figure A2
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Figure A2 Normalized sensor reaction to the level of pressure applied. Pressure sensor response
of the exercise displayed in Figure A1 (b). The strain reaction from the smart Knee Sleeve matches
perfectly with the performed exercise without being affected by any environmental issues.

Under adverse environmental conditions, the MoCap system is susceptible to disturbances caused by
ambient noise, leading to unstable output. We observed lost and crashed data in the data collection
process, as is shown in the Figure A1. Both Figure A1 (a) and (b) are the quaternion outcome from
the MoCap system during squatting exercise. Panel (a) demonstrates distinct and coordinated joint
motion during the exercise, whereas (b) exhibits a higher level of noise and lacks clear depictions of
the quaternion alteration throughout the exercise. The corresponding sensor reaction extracted from
our wearable Knee Sleeves after data pre-processing is displayed in Figure A2. The sensor reaction
agrees with the squatting exercise, displaying similar patterns as shown in the quaternions illustrated
in Figure A1 (a). This validates the failure of the MoCap system to record the joint movements in the
exercise during certain environmental conditions. When including labels from MoCap systems like
Figure A1 (b) as supervised information in the training, the model training will be affected by less
accurate parameters. Conversely, when employing the data represented in Figure A1 (b) as part of the
testing set to assess the effectiveness of our baseline model, inaccuracies in the ground truth values
will result in higher reported errors compared to the actual values.

Our Smart Knee Sleeve is a stretchable, user-friendly device suitable for long-term outdoor use. We
compare our device with a range of wearable devices, highlighting our innovations in Table A1,
which includes comparisons with works using only IMUs, textile, and sensor systems fused with
IMUs and other flexible sensors. We emphasize our device’s simplified setup, cost-effectiveness, and
robustness, and its potential for more challenging tasks such as dancing and home fitness.

In our study, we utilize both IMUs and pressure sensors to enhance the accuracy of data measurement
and reliability of pose estimation tasks. IMUs, while effective, may experience drift caused by
minor errors in acceleration data that accumulate over time. Conversely, pressure sensors are highly
sensitive to the kinesthetic feedback of joints, even with micro-movements. They can directly detect
local deformations, including stretches and pressures of the skin and muscle tissues, caused by
joint movements. The fusion of data from IMUs and pressure sensors in our algorithm provides a
more comprehensive understanding of the poses. A crucial factor to consider is that IMUs located
around the knee joints alone are insufficient to support the predictions of other joints. The pressure
sensor we employ can detect muscle activities around the thigh and shank, thereby supporting the
prediction of nearby joint activity, such as the hip and ankle. Furthermore, both IMUs and pressure
sensors are reliable sources of kinesthetic information under a wide range of conditions, including
outdoor, low-light, noisy, and cluttered environments. For a direct comparison demonstrating how
the combination of IMU and pressure sensor data results in superior prediction accuracy, We carried
out an experiment demonstrating that by integrating multimodal data from both IMUs and pressure
sensors, we achieve enhanced accuracy in Table A2.
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Table A1 Comparison table of related work.

Sensors
Type

Integrated
Device

Wireless
Steaming Task Multi-person

scenario issue
Avg

RMSE

Our work IMUs,
textile y y Joint orientation

inference n
7.21 deg

(Avg angle
error)

Luo et al. (2021)
[2] Textile y n Pose

classification n na

DelPreto et al.
(2022) [3]

IMU,EMG
tactile,
camera

n n
Activity

classification
in ketch

n na

Luo et al.
(2021) [4] Tactile y n

21 keypoint
estimation,

activity
classification

y
6.9 cm

(Avg location
error)

Tan et al.
(2022) [5] IMUs n nm knee flexion/extension

prediction n
9.52 deg

(Avg angle
error)

Huang et al.
(2018) [6] IMUs n nm Pose estimation n

15.84 deg
(Avg angle

error)
* na: not applicable; nm: not mentioned.

Table A2 RMSE in degree unit for smart Knee Sleeve performance. This supplementary materi-
als provide detailed information on how the multimodal data contributes to the model performance.
When training with synthesized data from both IMUs and pressure sensors, we achieved the highest
accuracy in the prediction task.

Training Data LHip LKnee LAnkel LToe RHip RKnee RAnkel RToe
IMUs

Pressure sensor 9.03 11.8 6.23 3.81 9.31 7.69 7.04 2.77

Pressure sensor 14.06 15.76 15.60 4.80 13.32 14.54 8.01 5.49
IMUs 11.76 11.17 14.80 4.79 10.85 11.29 6.63 5.54

The latency and shift in predictions caused by Bluetooth and communication systems are illustrated in
the Figure A3. The utilization of Bluetooth technology can introduce irregular intervals in wearable
recordings, consequently impacting the precision of predictions due to discrepancies between the data
extracted from our flexible electronics and the ground truth values from MoCap. The comparison
of predictions and ground truth data in Figure A3 shows that while the estimated amplitude and
frequency of quaternion alteration match well with the ground truth data, there is a noticeable phase
shift over time that becomes more severe as time passes by.

Figure A4 illustrates the label generation process as we mentioned in the section 3. We collect the
time-series data recording joints movement from the MoCap system as the supervision information
for the later training process.

We illustrate a noticeable decline in model performance when dealing with unseen tasks, as shown
in in Figure 6(g-i), and additionally, we perform experiments where the model is exposed to only
a restricted portion of labels in Figure A5. We split 90% of the leg raise data as testing and let the
model see 10% of leg raise data during the training process. The Figure A5 (a) is the result of our
baseline model that hasn’t seen any leg raise data, while Figure A5 (b) shows the outcome from the
model that is trained with 10% of leg raise data. We can observe an obvious improvement in the
major joints such as the knee and thigh ankle for the left and right sides separately after only seeing a
small portion of the data that comes from the leg raise pose.

We summarized the RMSE in degrees for more details in the seen and unseen task as a supplementary
for the Table 1. In all seen scenarios, Bend squat may only take a small portion in the test set due to
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Table A3 RMSE in degree unit for smart Knee Sleeve performance. This supplementary
materials provide detailed information in the Table 1, including the separate RMSE errors for squat,
hamstring, and leg raise poses for all seen scenarios.

Scene Poses LHip LKnee LAnkel LToe RHip RKnee RAnkel RToe Avg

All_seen

Squat 9.90 10.20 5.18 3.96 9.59 7.91 7.39 3.14 7.16
Hamstring

Curl 5.59 18.21 7.01 3.40 9.59 4.41 4.86 1.19 6.78

Leg Raise 8.26 8.09 8.97 3.57 7.45 9.55 7.65 2.30 6.98
Avg 9.03 11.8 6.23 3.81 9.31 7.69 7.04 2.77 7.21

Unseen
Tasks

BendSquat 17.5 14.20 12.30 4.25 17.90 15.10 12.10 5.12 12.31
Hamstring

Curl 12.7 18.00 6.13 2.71 12.40 16.90 6.49 4.13 9.93

Leg Raise 10.20 19.80 9.05 2.56 9.55 16.20 9.29 5.50 10.27
Avg 12.91 18.13 9.20 3.06 12.70 16.16 9.32 5.05 10.82

Ground truth

X Y Z W

Predicted

X Y Z W

Time(s) Time(s)

Figure A3 Quaternion comparison from ground truth and predictions in time unit (second).
Due to the Bluetooth issue, the predictions are subject to shifting caused by wireless communication
latency, and this shift becomes progressively more severe over time.

random sampling, we use overall squatting pose for error calculation here. The joint predictions for
different poses display close values in all seen scenarios.

We provide videos with 3D human models from MoCap ground truth values and our smart Knee
Sleeve recordings for comparison in the attachment. The pink dummy in the video is reconstructed
from the MoCap values and serves as the ground truth in the video. The blue figure is restored from
our smart Knee Sleeve predictions. We provide examples for squatting, hamstring curl, and leg raise
poses separately. In the squatting poses, we present RGB camera views, MoCap software recordings,
and 3D human model predictions for reference. While the ground truth and our model prediction
comparisons are provided for leg raise and hamstring curl poses. The evident correspondence between
the ground truth and prediction reconstructions of 3D human model visualizations provides validation
for the efficacy of our hardware and model in accurately tracking human activities.
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Data Collection Motion Capture Time Series Lables

Figure A4 Overview of the label generation process (Squat pose). We obtain the ground truth
label by utilizing a camera-based MoCap system that incorporates markers attached to the primary
joints of the lower body. The outcome of this system is 16-dimensional quaternion data that accurately
represents the motion of the major joints.

Figure A5 Quaternion distance comparison from unseen tasks. When we feed in a limited
number of leg raise data (10%) with setting position as a start point, the outcomes increased compared
to the performance that hasn’t seen any leg raise data.

We provide the Mean Squared Derivative (MSD) and derivative of prediction quaternions in Table A4
and Figure A7 to measure the smoothness of our model performance. Our prediction data are
quaternions scaled from 0-1, and the MSD for each orientation is at the scale of 10−4, which proves
our prediction results don’t have abrupt changes and are smoothly transitioned.

B Dataset Summary and Accessibility

Structure of the dataset: Our dataset provides information on synchronized wearable data recordings
for smart stretchable Knee Sleeves and camera-based annotations from the MoCap system. The
main exercises we focus on are squatting, hamstring curl, and leg raise pose. The structure of the
folder is arranged as follows. The data structure is displayed in the Table B5. We have a total of
32-dimensional data collected from the smart Knee Sleeves. The output is 21-dimensional data
representing the quaternions of major joints on the lower body.

Table A4 Mean Squared Derivative results for quaternion predictions on all orientations

Orientation x y z w
MSD 6.92e-05 9.82e-09 7.08e-09 5.46e-04
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Comparsion of ground truth values and predictions

Predicted Ground truth

X Y Z X Y Z WW

a b

Figure A6 Estimation results comparison. (a). The model’s overall performance in Euler angles.
(b). The quaternion output from the models. The knee angle prediction showed the highest level
of accuracy across all joints. The toe angle was found to be mostly stable with minimal movement
during the squat exercise.

• dataset/
– D0/-D11/
– This folder contains the data files collected from various days.
Since each day includes independent calibration of the MoCap
system, this may bring in extra noise.

* P0/-P5/
* In this directory, we include files collected on the same
day from various subjects. It’s worth noting that different
participants wore knee sleeves of varying sizes on that
particular day.

* This folder contains three types of files:
· Exercise.csv. Example: BendSquat.csv
· Exercise_l.csv. Example: BendSquat_l.csv
· Exercise_r.csv. Example: BendSquat_r.csv
· Exercise.csv files are ground truth annotations collected
from the motion capture system, while Exercise_l.csv and
Exercise_r.csv are readouts from the smart Knee Sleeves of
the left and right sides of the body separately. The data
structure is displayed in Table B5

The summary of Table B6 contains the content of the number of tasks performed by each subject
and the number of subjects collected each day. Squatting exercises usually are comprised of several
different types of tasks, but we term them as squat together in this table. Please refer to the Table B7
for details of a full list of various exercises we have conducted. In Table B7, Exercise column is the
name of the exercise we guide the participant to do during the data collection process. #Total-files
column is the total number of files we have with each corresponding exercise, which contains Mocap
ground truth data, and the smart Knee Sleeve data for the left and right sides separately. We have
one missing side file for the hamstring pose due to battery issues. #Session column summarizes the
sessions we have for each exercise.
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Table B5 Data Structure for the wearable benchmarks used in this paper. The last quaternion
columns are the relative values calculated from Quat0 and Quat1 attached to the thigh and shank
separately.

Data Time Pressure Sensor Pins Acc0 Quat0 Gyro0 Acc1 Quat1 Gyro1 Quat

Dimension 1 14 3 4 3 3 4 4 4

Table B6 Details about our smart Knee Sleeve dataset including data collection dates, number of
subjects, and tasks. Squatting tasks usually contain multiple categories of tasks, but we refer to them
as squatting in general. Please refer to Table B7 for a full list of exercises.

Date Subject Tasks SummarySquat Hamstring Curl Leg Raise

D0 P0 6 1 1 8
D1 P0 5 1 2 8
D2 P0 7 2 2 11

D3 P0 5 1 2 8
P3 6 0 2 8

D4 P0 7 2 2 11
D5 P0 4 2 2 8

D6 P0 1 1 0 2
P1 2 0 2 4

D7 P0 8 2 2 12
P2 6 1 2 9

D8
P0 8 2 2 12
P1 5 2 2 9
P4 3 2 1 6

D9 P0 5 1 2 8
P1 8 2 2 12

D10 P0 7 2 1 10
P1 5 2 2 9

D11
P0 6 0 0 6
P1 2 0 0 2
P5 1 0 0 1

Table B7 Detailed list of exercises collected with our smart Knee Sleeve dataset.

Exercise # Total files # Sessions
AppFastSquat 3 1
AppSlowSquat 3 1
FollowSquat 3 1

HamstringCurlLeft 44 15
LegRaiseLeft 48 16
StepwiseSquat 45 15

TiredSquat 27 9
ToeOutSquat 3 1
BendSquat 48 16

LegRaiseRight 45 15
SlowSquat 45 15

Squat 75 25
WeightSquat 48 16

HamstringCurlRight 33 11
StaggeredRightSquat 9 3

PulseSquat 6 2
StaggeredLeftSquat 6 2

Rest-l 2 1
Rest-r 2 1
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Figure A7 Derivative for quaternion predictions on all orientations.

C Ethical Considerations

Participants were fully informed of the study’s purpose, potential risks, and benefits. Personal
information was kept confidential, and data were used exclusively for research purposes. Our
wearable sensors were designed to be safe, minimizing discomfort and skin irritation. We monitored
participants to prevent extended use of sensors that could cause skin irritation. We also complied with
data protection laws by securely storing all collected data and taking measures to prevent unauthorized
access. Our study was conducted ethically and responsibly. The product of our Intelligent Knee
sleeves and its related data are the intellectual property of Texavie Technologies Inc. Please refer to
Texavie for more details.
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