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Abstract

In this research, we investigate the high-dimensional linear contextual bandit prob-
lem where the number of features 𝑝 is greater than the budget 𝑇 , or it may even
be infinite. Differing from the majority of previous works in this field, we do not
impose sparsity on the regression coefficients. Instead, we rely on recent find-
ings on overparameterized models, which enables us to analyze the performance
of the minimum-norm interpolating estimator when data distributions have small
effective ranks. We propose an explore-then-commit (EtC) algorithm to address
this problem and examine its performance. Through our analysis, we derive the
optimal rate of the ETC algorithm in terms of 𝑇 and show that this rate can be
achieved by balancing exploration and exploitation. Moreover, we introduce an
adaptive explore-then-commit (AEtC) algorithm that adaptively finds the optimal
balance. We assess the performance of the proposed algorithms through a series
of simulations.

1 Introduction

The multi-armed bandit problem [Robbins, 1952, Lai and Robbins, 1985] has been widely studied in
the field of sequential decision-making problems in uncertain environments, and it can be applied to a
variety of real-world scenarios. This problem involves an agent selecting one of𝐾 arms in each round
and receiving a corresponding reward. The agent aims to maximize the cumulative reward over rounds
by using a clever algorithm that balances exploration and exploitation. In particular, a version of this
problem called the contextual bandit problem [Abe and Long, 1999, Li et al., 2010] has attracted
significant attention in the machine learning community. By observing the contexts associated with
the arms, the agent can choose the best arm as a function of the contexts. This extension enables us
to model many personalized machine learning scenarios, such as recommendation systems [Li et al.,
2010, Wang et al., 2022] and online advertising [Tang et al., 2013], and personalized treatments
[Chakraborty and Murphy, 2014].
Most of the papers about stochastic linear bandits assume that the number of features 𝑝 is moderate
[Li et al., 2010, Chu et al., 2011, Abbasi-Yadkori et al., 2011]. When 𝑝 = 𝑜(

√
𝑇) to the number of

rounds 𝑇 , the model is identifiable, and the agent can choose the best arm for most rounds. However,
recent machine learning models desire to utilize an even larger number of features, and the theory
of bandit models under the identifiability assumption does not necessarily reflect the modern use of
machine learning. Several recent papers have overcome this limitation by considering sparse linear
bandit models [Wang et al., 2018, Kim and Paik, 2019, Bastani and Bayati, 2020, Hao et al., 2020,
Oh et al., 2021, Li et al., 2022, Jang et al., 2022]. Sparse linear bandit models accept a very large
number of features1 and suppress most of the coefficients by introducing the ℓ1 regularize.

1Typically, the number of feature 𝑝 can be exponential to the number of datapoints 𝑇 .
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That said, the sparsity imposed by such models limits the applicability of these models. For example,
in the case of recommendation models based on factorization, each user is associated with a dense
latent vector [Rendle, 2010, Agarwal et al., 2012, Wang et al., 2022], which implies the sparsity is
not unlikely the case. Another possible drawback of sparse models is that it requires the condition
number to be close to one (e.g., the restricted isometry property, see Van De Geer and Bühlmann
[2009] for review). This implies that the quality of the estimator is compromised by the noise on the
features that correspond to small eigenvalues. Furthermore, it is still non-trivial to select a proper
value of the penalty coefficient as a hyper-parameter. For example, Hara and Maehara [2017] claims
that small changes in the choice of coefficients significantly alter feature selection, and Miolane and
Montanari [2021] show a limitation of the conventional theory on the choice of penalty coefficients.
In this paper, We consider an alternative high-dimensional linear bandit problem without sparsity.
We allow 𝑝 to be as large as desired, and in fact, we even allow 𝑝 to be infinitely large. Such an
overparameterized model has more parameters than the number of training data points. A natural
estimator in such a case is an interpolating estimator, which perfectly fits the training data. We adopt
recent results that bound the error of the estimator in terms of the effective rank [Koltchinskii and
Lounici, 2017, Bartlett et al., 2020] on the covariance of the features. When the eigenvalues of the
covariance decay moderately fast, we can obtain a concentration inequality on the squared error of
the estimator.
The contributions of this paper are as follows: First, We consider explore-then-commit (EtC) strategy
for the stochastic bandit problem based on the minimum-norm interpolating estimator. We derive
the optimal rate of exploration that minimizes regret. However, EtC requires model-dependent
parameters on the covariance, which limits the practical utility. To address this limitation, we propose
an adaptive explore-then-commit (AEtC) strategy, which adaptively estimates these parameters and
achieves the optimal rate. We conduct simulations to verify the efficiency of the proposed method.

2 Preliminary

2.1 Notation

For 𝑧 ∈ N, [𝑧] := {1, 2, . . . , 𝑧}. For 𝑥 ∈ R, the notation ⌊𝑥⌋ here denotes the largest integer that
is less than or equal to a scalar 𝑥. For vectors 𝑋, 𝑋 ′ ∈ R𝑝 , ⟨𝑋, 𝑋 ′⟩ := 𝑋⊤𝑋 ′ is an inner product,
∥𝑋 ∥22 := ⟨𝑋, 𝑋⟩ is an ℓ2-norm. For a positive-definite matrix 𝐴 ∈ R𝑝 × R𝑝 , ∥𝑋 ∥2A := ⟨𝑋,A𝑋⟩ is a
weighted ℓ2-norm. ∥A∥op denotes an operator norm of A. 𝑂 (·), 𝑜(·),Ω(·), 𝜔(·) and Θ(·) denotes
Landau’s Big-O, little-o, Big-Omega, little-omega, and Big-Theta notations, respectively. 𝑂 (·), Ω̃(·),
and Θ̃(·) are the notations that ignore polylogarithmic factors.

2.2 Problem Setup

This paper considers a linear contextual bandit problem with𝐾 arms. We consider the fully stochastic
setting, where the contexts, as well as the rewards, are drawn from fixed distributions. For each
round 𝑡 ∈ [𝑇] and arm 𝑖 ∈ [𝐾], we define 𝑋 (𝑖) (𝑡) as a 𝑝-dimensional zero-mean sub-Gaussian
vector. We assume 𝑋 (𝑖) (𝑡) is independent among rounds (i.e., vectors in two different rounds 𝑡, 𝑡′ are
independent) but allow vectors 𝑋 (1) (𝑡), 𝑋 (2) (𝑡), . . . , 𝑋 (𝐾 ) (𝑡) to be correlated with each other. The
forecaster chooses an arm 𝐼 (𝑡) ∈ [𝐾] based on the 𝑋 (𝑖) (𝑡) values of all the arms, and then observes
a reward that follows a linear model as shown in

𝑌 (𝐼 (𝑡 ) ) (𝑡) = ⟨𝑋 (𝐼 (𝑡 ) ) (𝑡), 𝜃 (𝐼 (𝑡 ) )⟩ + 𝜉 (𝑡). (1)

The unknown true parameters 𝜃 (𝑖) for each arm 𝑖 ∈ [𝐾] lie in a parameter space Θ ⊂ R𝑝 , and
the independent noise term 𝜉 (𝑡) has zero mean and variance 𝜎2 > 0. We assume that 𝜉 (𝑡) is
sub-Gaussian, and for the sake of simplicity, we assume that it does not depend on the choice of
the arm. However, our results can be extended to the case where 𝜉 (𝑡) varies among arms. We
assume that each 𝜃 (𝑖) are bounded ∥𝜃 (𝑖) ∥2 ≤ 𝜃max. For each 𝑖 ∈ [𝐾], we define a covariance matrix
Σ (𝑖) = E[𝑋 (𝑖) (𝑡)𝑋 (𝑖) (𝑡)⊤] ∈ R𝑝×𝑝 .
We define 𝑖∗ (𝑡) := argmax𝑖∈[𝐾 ] ⟨𝑋 (𝑖) (𝑡), 𝜃 (𝑖)⟩ as the (ex ante) optimal arm at round 𝑡. Our goal is to
design an algorithm that maximizes the total reward, which is equivalent to minimizing the following
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expected regret [Lai and Robbins, 1985, Auer et al., 2002];

𝑅(𝑇) := E

[
𝑇∑︁
𝑡=1

(
⟨𝑋 (𝑖∗ (𝑡 ) ) (𝑡), 𝜃 (𝑖∗ (𝑡 ) )⟩ − ⟨𝑋 (𝐼 (𝑡 ) ) (𝑡), 𝜃 (𝐼 (𝑡 ) )⟩

)]
, (2)

where the expectation is taken with respect to the randomness of the contexts and (possibly) on the
choice of arm 𝐼 (𝑡).

2.3 Theory of Overparametrized Models

The primary focus of this paper is on scenarios where the number of arms 𝐾 is moderate, but the
number of features 𝑝 is greater than the budget 𝑇 , possibly to the point of being infinite. The
efficiency of linear regression models in such scenarios depends significantly on the covariance
matrix, Σ (𝑖) . Unlike sparsity, the theory of benign overfitting tightly examines errors using the
decay of the eigenvalues of the covariance matrix of the context. In particular, if the decay rate
of the eigenvalues is at a certain level, the error in linear regression converges to zero, even in
high-dimensional spaces. To provide a more rigorous analysis of eigenvalue decay, the concept of
effective rank is introduced in Section 2.4.
Remark 1. (Dependence on𝑇) In accordance with Bartlett et al. [2020], we permit the covariance ma-
trixΣ (𝑖) to depend on𝑇 . In other words, we consider the sequence of covariancesΣ (𝑖) (1), Σ (𝑖) (2), . . .
for each 𝑇 = 1, 2, . . . . The linear regression is consistent if the effective rank of Σ (𝑖) (𝑇) grows
sufficiently slow as a function of 𝑇 .

2.4 Effective Ranks of Covariance Matrix

For a covariance matrix Σ (𝑖) for 𝑖 ∈ [𝐾] and 𝑘 ∈ [𝑝], let 𝜆 (𝑖)
𝑘

be its 𝑘-th largest eigenvalue, such that
Σ (𝑖) =

∑𝑝

𝑘=1 𝜆
(𝑖)
𝑘
𝑢
(𝑖)
𝑘
(𝑢 (𝑖)
𝑘
)⊤ with order 𝜆 (𝑖)1 ≥ 𝜆

(𝑖)
2 ≥ · · · ≥ 𝜆

(𝑖)
𝑝 and eigenvectors 𝑢 (𝑖)

𝑘
. We define the

concept of effective rank as

𝑟𝑘 (Σ (𝑖) ) :=
∑
𝑗>𝑘 𝜆

(𝑖)
𝑗

𝜆
(𝑖)
𝑘+1

, and 𝑅𝑘 (Σ (𝑖) ) :=
(Σ 𝑗>𝑘𝜆 (𝑖)𝑗 )2

Σ 𝑗>𝑘 (𝜆 (𝑖)𝑗 )2
. (3)

The first quantity 𝑟𝑘 (Σ (𝑖) ) is related to the trace of Σ (𝑖) , and the second quantity 𝑅𝑘 (Σ (𝑖) ) is related
to the decay rate of the eigenvalues.
The effective rank is used as a measure of the intrinsic complexity of high-dimensional data, by
rigorously capturing a decay rate of eigenvalues. If the covariance matrix Σ (𝑖) is an identity matrix
of size 𝑝, then 𝑟0 (Σ (𝑖) ) and 𝑅0 (Σ (𝑖) ) are both equal to 𝑝 (the rank of Σ (𝑖) ). However, we anticipate
that these quantities will be less than 𝑝, which enables learning with fewer samples. In Figure 1,
we plot of the effective rank in 𝑘 with certain cases of eigenvalues {𝜆𝑘}𝑘 of Σ. Even though Σ is
full-rank, the effective rank 𝑅𝑘 (Σ) is sublinear in 𝑘 , which reflects the intrinsic low-complexity of
data.
Because of this property, the effective ranks are used in modern high-dimensional statistics. Koltchin-
skii and Lounici [2017] evaluated concentration inequalities for high-dimensional random matrices
using the notion. Bartlett et al. [2020], Tsigler and Bartlett [2020] evaluated the prediction error
of a high-dimensional linear regression using the effective ranks and showed the consistency of the
prediction.

3 Explore-then-Commit with Interpolation

The Explore-then-Commit (EtC) algorithm is a well-known approach for solving high-dimensional
linear bandit problems, and it has been shown to be effective in previous studies such as Hao et al.
[2020], Li et al. [2022]. The EtC algorithm operates by first conducting 𝑇0 = 𝑁𝐾 < 𝑇 rounds of
exploration, during which it uniformly explores all available arms to construct an estimator �̂� (𝑖) for
each arm 𝑖 ∈ [𝐾]. After the exploration phase, the algorithm proceeds with exploitation. Let 𝑁 be the
number of the draws of arm 𝑖, and X(𝑖) = (𝑋 (𝑖)1 , ..., 𝑋

(𝑖)
𝑁
)⊤ ∈ R𝑁×𝑝 and Y(𝑖) = (𝑌 (𝑖)1 , ..., 𝑌

(𝑖)
𝑁
)⊤ ∈ R𝑁

3



Figure 1: Eigenvalues 𝜆𝑘 (left), the effective rank 𝑟𝑘 (Σ) (middle), and the effective rank 𝑅𝑘 (Σ)
(right) with 𝑘 = 1, ..., 15 and 𝑇 = 3; Case 1: 𝜆𝑘 = 𝐶𝑘−1+1/𝑇0.99 , and Case 2: 𝜆𝑘 = 𝐶 (exp(−𝑘) +
𝑇 exp(−𝑇)/𝑝). Case 1 considers a decay that is slightly faster than 𝑘−1, whereas Case 2 considers
an exponentially fast decay. The slower increase of 𝑟𝑘 (Σ) and 𝑅𝑘 (Σ) in Case 2 reflects the impact of
the eigenvalues’ faster decay.

be the observed contexts and rewards of arm 𝑖, where (𝑋 (𝑖)𝑛 , 𝑌
(𝑖)
𝑛 ) is the corresponding values on

the 𝑛-th draw of arm 𝑖. Since we choose 𝐼 (𝑡) uniformly during the exploration phase, these are
independent and identically drawn samples from the corresponding distribution.

For estimating the parameter 𝜃 (𝑖) , we consider the minimum-norm interpolating estimator that
perfectly fits the data, which reveals its advantage in recent results on high-dimensions [Bartlett
et al., 2020]. Rigorously, we assume 𝑝 > 𝑁 and and consider the following definition:

�̂� (𝑖) := argmin
∥𝜃∥2

���� 𝜃 ∈ R𝑝 , 0 =
∑︁

(𝑌 (𝑖)𝑛 ,𝑋
(𝑖)
𝑛 ):𝑛≤𝑁

(𝑌 (𝑖)𝑛 − ⟨𝜃, 𝑋 (𝑖)𝑛 ⟩)2
 .

This estimator has a simple representation �̂� (𝑖) = (X(𝑖) )⊤ (X(𝑖) (X(𝑖) )⊤)−1Y(𝑖) . The EtC algorithm
is presented in Algorithm 1, which utilizes the aforementioned interpolating estimator. In the
subsequent sections, we will first discuss the assumptions on the data-generating process, followed
by an analysis of the accuracy of the estimator. We then present an upper bounds on the regret of the
EtC algorithm.

4 Theory of Explore-then-Commit

This section analyzes the EtC algorithm. If we were to fix the number of samples, this theory would
largely align with the existing literature [Bartlett et al., 2020, Tsigler and Bartlett, 2020]. However,
the unique challenge in our case arises from the fact that the EtC selects the number of samples used
to construct an estimator to balance between exploration and exploitation.

4.1 Assumption and Notion

We consider a spectral decomposition Σ (𝑖) = 𝑉 (𝑖)Λ(𝑖) (𝑉 (𝑖) )⊤ with the matrices (operators) 𝑉 (𝑖) and
Λ(𝑖) for each arm 𝑖 ∈ [𝐾], then impose the following assumptions.
Assumption 1 (sub-Gaussianity). For all 𝑡 ∈ N and 𝑖 ∈ [𝐾], the followings hold:
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Algorithm 1 Explore-then-Commit (EtC)
Require: Exploration duration 𝑇0.

for 𝑡 = 1, .., 𝑇0 do
Observe 𝑋 (𝑖) (𝑡) for all 𝑖 ∈ [𝐾].
Choose 𝐼 (𝑡) = 𝑡 − 𝐾 ⌊𝑡/𝐾⌋.
Receive a reward 𝑌 (𝐼 (𝑡 ) ) (𝑡).

end for
for 𝑖 ∈ [𝐾] do
�̂� (𝑖) ← (X(𝑖) )⊤ (X(𝑖) (X(𝑖) )⊤)−1Y(𝑖) .

end for
for 𝑡 = 𝑇0 + 1, ..., 𝑇 do

Observe 𝑋 (𝑖) (𝑡) for all 𝑖 ∈ [𝐾].
Choose 𝐼 (𝑡) = argmax𝑖∈[𝐾 ] ⟨𝑋 (𝑖) (𝑡), �̂� (𝑖)⟩.
Receive a reward 𝑌 (𝐼 (𝑡 ) ) (𝑡).

end for

• There exists a random vector 𝑍 (𝑖) (𝑡) such that 𝑋 (𝑖) (𝑡) = 𝑉 (𝑖) (Λ(𝑖) )1/2𝑍 (𝑖) (𝑡) which is
independent elements and sub-Gaussian with a parameter 𝜅2

𝑥 > 0, that is, for all 𝜆 ∈ R𝑝 ,
we have E[exp(⟨𝜆, 𝑍 (𝑖) (𝑡)⟩)] ≤ exp(𝜅2

𝑥 ∥𝜆∥22/2).

• Moreover, 𝜉 (𝑡) is conditionally sub-Gaussian with a parameter 𝜅2
𝜉
> 0, that is, for all

𝜆 ∈ R, we have E[exp(𝜆𝜉 (𝑡)) | 𝑋 (𝑖) (𝑡)] ≤ exp(𝜅2
𝜉
𝜆2/2).

The first bullet point of Assumption 1 requires that the features are multivariate sub-Gaussian and
their tail is not too heavy, which is important for concentration inequalities on random variables
[Vershynin, 2018]. The second bullet point of Assumption 1, which states that rewards involve
sub-Gaussian noise, is a common assumption in contextual bandit problems.

4.2 Benign Covariance

We impose a condition to be benign on the covariance matrix Σ (𝑖) for all 𝑖 ∈ [𝐾]. The condition
is described using the notion of effective/coherent rank, which is commonly applied to the study of
benign overfitting [Bartlett et al., 2020, Tsigler and Bartlett, 2020]. However, unlike those papers
that estimate using all 𝑇 samples, we only use a portion of the data for learning.

We first define the coherent rank of Σ (𝑖) with a number of samples 𝑁 as

𝑘∗𝑁 = 𝑘∗𝑁 (Σ (𝑖) , 𝑁) := min{𝑘 ∈ N ∪ {0} | 𝑟𝑘 (Σ (𝑖) ) ≥ 𝑁},
where we define min{∅} = +∞. By using the coherent rank, we decompose the error into two
quantities called effective bias/variance denoted as 𝐵 (𝑖)

𝑁,𝑇
and 𝑉 (𝑖)

𝑁,𝑇
, based on a budget of 𝑇 and the

number of samples 𝑁 used for estimation.

𝐵
(𝑖)
𝑁,𝑇

:= 𝜆 (𝑖)
𝑘∗
𝑁

, and 𝑉 (𝑖)
𝑁,𝑇

:=

(
𝑘∗
𝑁

𝑁
+ 𝑁

𝑅𝑘∗
𝑁
(Σ (𝑖) )

)
. (4)

Definition 1 (Benign covariance). Under Assumption 1, a covariance matrix Σ (𝑖) is benign, if
𝐵
(𝑖)
𝑁,𝑇

= 𝑜(1) and 𝑉 (𝑖)
𝑁,𝑇

= 𝑜(1) hold as 𝑁,𝑇 →∞ while 𝑁 = Θ(𝑇).

To put it differently, Assumption 1 and Definition 1 state that, if we can achieve consistent estimation
by using all the data for estimation, then the covariance matrix is considered benign.
Technically, the benign property implies that eigenvalues decay fast enough compared with 𝑇 . In
particular, the following examples have been considered in the literature.
Proposition 1 (Example of Benign Covariance, Theorem 31 in Bartlett et al. [2020]2 ). A covariance
matrix Σ (𝑖) with eigenvalues 𝜆 (𝑖)1 , 𝜆

(𝑖)
2 , ... is benign if it satisfies one of the following.

2It should be noted that Bartlett et al. [2020] only provided the variance term. Later on, Tsigler and Bartlett
[2020] described both the variance and bias terms, which we follow.
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• Example 1: Let 𝑎 ∈ (0, 1), 𝑝 = ∞ and 𝜆
(𝑖)
𝑘

= 𝑘−(1+1/𝑇
𝑎 ) . In this case, we have 𝐵

(𝑖)
𝑁,𝑇

=

𝑂 ((𝑇𝑎/𝑁)1+1/𝑇𝑎 ) and 𝑉 (𝑖)
𝑁,𝑇

= 𝑂 (𝑇𝑎/𝑁 + 𝑇−𝑎). For this model to be learnable, 𝑁 ≫ 𝑇𝑎 is
required, and the variance dominates the bias.

• Example 2: Let 𝜆
(𝑖)
𝑘

= 𝑘−𝑏 and 𝑝 = 𝑝𝑇 = 𝑂 (𝑇𝑐) with 𝑏 ∈ (0, 1) and 𝑐 ∈(
max

(
1, 2

2−𝑏 ,
1

1−𝑏2

)
, 1

1−𝑏

)
. In this case, we have 𝐵

(𝑖)
𝑁,𝑇

= 𝑂 (𝑇𝑐 (1−𝑏)/𝑁) and 𝑉
(𝑖)
𝑁,𝑇

=

𝑂 ((𝑁/𝑇𝑐)max(1, 1−𝑏
𝑏
) ). For this model to be learnable, 𝑁 ≫ 𝑇𝑐 (1−𝑏) is required, and the bias

dominates the variance.

The first example is when the decay rate is near 𝑘−1, but the trace is 𝑂 (𝑇𝑎). The second example is
when the decay rate is smaller than 𝑘−1, and the trace is 𝑂 (𝑇𝑐 (1−𝑏) ). Note that Bartlett et al. [2020]
provided two other examples of the benign covariance matrices.3 Our analysis mainly focuses on the
two examples in Proposition 1, but another example is also empirically tested in Section 6.

4.3 Estimation Error by Exploration

We evaluate an error in the estimator �̂� (𝑖) by its prediction quality. That is, with a covariance matrix
Σ (𝑖) and an identical copy 𝑋 (𝑖)∗ of 𝑋 (𝑖)1 , we study

∥𝜃 (𝑖) − �̂� (𝑖) ∥2
Σ (𝑖)

= E
𝑋
(𝑖)
∗

[
(⟨𝜃 (𝑖) , 𝑋 (𝑖)∗ ⟩ − ⟨�̂� (𝑖) , 𝑋 (𝑖)∗ ⟩)2

]
,

The following result bounds the error of the estimator �̂� (𝑖) in terms of bias and variance, which is
a slight extension of Tsigler and Bartlett [2020]. For 𝑘 ∈ [𝑝], we define an empirical submatrix
as X(𝑖)

𝑘:∞ ∈ R
𝑁×(𝑝−𝑘 ) as the 𝑝 − 𝑘 columns to the right of X(𝑖) , and define a Gram sub-matrix

𝐴
(𝑖)
𝑘

= X(𝑖)
𝑘:∞ (X

(𝑖)
𝑘:∞)

⊤ ∈ R𝑁×𝑁 .
Theorem 2. Suppose Assumption 1. If there exists 𝑐𝑈 > 1 such that 𝑘∗

𝑁
< 𝑁/𝑐𝑈 and a condition

number of 𝐴(𝑖)
𝑘

is positive with probability at least 1 − 𝑐𝑈𝑒−𝑁/𝑐𝑈 , then we have

∥�̂� (𝑖) − 𝜃 (𝑖) ∥2
Σ (𝑖)
≤ 𝐶𝑈

(
𝐵
(𝑖)
𝑁,𝑇
+𝑉 (𝑖)

𝑁,𝑇

)
, (5)

with some constant 𝐶𝑈 > 0 and probability at least 1 − 2𝑐𝑈𝑒−𝑁/𝑐𝑈 .

Theorem 2 implies that the estimation error converges to zero if Σ (𝑖) has the benign property. The
assumption on the condition number of 𝐴(𝑖)

𝑘
has a sufficient condition, which is provided in Lemma

3 in Tsigler and Bartlett [2020].
Moreover, the following lemma implies the tightness of the analysis in Theorem 2.
Lemma 3 (Lower bound of estimation error, Theorem 10 in Tsigler and Bartlett [2020]). Suppose
Assumption 1. These exist some constants 𝑐𝐿 , 𝐶𝐿 > 0 such that, with probability at least 1 −
𝑐𝐿𝑒

−𝑁/𝑐𝐿 , we have
∥�̂� (𝑖) − 𝜃 (𝑖) ∥2

Σ (𝑖)
≥ 𝐶𝐿

(
𝐵
(𝑖)
𝑁,𝑇
+𝑉 (𝑖)

𝑁,𝑇

)
. (6)

In other words, the upper bound in Theorem 2 is optimal up to a constant.4

4.4 Regret Bound of Explore-then-Commit

This section analyzes the EtC algorithm. We introduce an error function E(𝑁,𝑇) that characterizes
the rate of regret, which can be obtained by considering (𝐵 (𝑖)

𝑁,𝑇
+𝑉 (𝑖)

𝑁,𝑇
)1/2.

Assumption 2. (Error function5) There exists a continuous function E : R2 → R+ that is decreasing
in 𝑁 such that ∥�̂� (𝑖) − 𝜃 (𝑖) ∥Σ (𝑖) = Θ̃ (E(𝑁,𝑇)) as 𝑁,𝑇 →∞.

3One of the omitted examples is the case where eigenvalues decay slightly slower than Example 1. The other
example is the case where eigenvalues decay exponentially but has a noise term.

4Note that the constant here can depend on model parameters.
5The coherent rank 𝑘∗

𝑁
as well as 𝐵 (𝑖)

𝑁,𝑇
, 𝑉
(𝑖)
𝑁,𝑇

are discrete in 𝑁,𝑇 , and the error function E(𝑁,𝑇) is
introduced to circumvent the issues related to this discreteness.

6



Assumption 2 is satisfied in Examples 1 and 2. In particular, for Example 1 in Proposition 1, the
error function is given as E(𝑁,𝑇) =

√︁
𝑇𝑎/𝑁 + 𝑇−𝑎, while for Example 2 in Proposition 1, it is given

as E(𝑁,𝑇) =
√︁
𝑇𝑐 (1−𝑏)/𝑁 .

Theorem 4. Suppose Assumptions 1–2. Suppose that we run the EtC algorithm (Algorithm 1). Then,
regret (2) satisfies

𝑅(𝑇) = 𝑂 (𝐿 (𝑇, 𝐾)),

as 𝑇 →∞ with some 𝛼 > 0. where 𝐿 (𝑇, 𝐾) is such that

𝑁∗ = min
𝑁
{𝑁 : 𝑁 ≥ 𝑇 E(𝑁/𝐾,𝑇)}. (7)

Specifically, for Example 1 in Proposition 1, we have 𝐿 (𝑇, 𝐾) = max(𝑇 (2+𝑎)/3𝐾2/3, 𝑇1−𝑎/2), whereas
for Example 2 in Proposition 1, we have 𝐿 (𝑇, 𝐾) = 𝑇 (2+𝑐 (1−𝑏) )/3𝐾2/3.

Proof sketch of Theorem 4. We show that the regret-per-round is𝑂 (1) during the exploration phase.
Moreover, regret-per-round is 𝑂 (E(𝑇0/𝐾,𝑇)) during the exploitation phase. The total regret is
𝑇0 + 𝑂 (E(𝑇0/𝐾,𝑇))𝑇 , and optimizing 𝑇0 by using the decreasing property of E(𝑁,𝑇) in 𝑁 yields
the desired result. □

4.5 Matching Lower Bound

We show that this choice of 𝑇0 as a function of 𝑇 is indeed optimal.
Theorem 5. Suppose Assumptions 1–2. Assume that we run the EtC algorithm (Algorithm 1). For
any choice of 𝑇0, the following event occurs with strictly positive probability as 𝑇 →∞:

𝑅(𝑇) = Ω̃ (𝐿 (𝑇, 3)) .

Proof sketch of Theorem 5. We explicitly construct a model with 𝐾 = 3. Let 𝜖𝑇 = E(𝑇0/𝐾,𝑇).
In the model, the Σ (1) , Σ (2) , Σ (3) are identical, and the only difference is that the first coefficients
𝜃
(1)
1 = 1, 𝜃 (2)1 = Θ(𝜖𝑇 ), 𝜃 (3)1 = 0. All other coefficients are set to zero. Roughly speaking, the gap is���⟨𝑋 (𝑖) (𝑡), �̂� (𝑖)⟩ − ⟨𝑋 ( 𝑗 ) (𝑡), �̂� ( 𝑗 )⟩��� = {

Θ(1) (𝑖 = 1, 𝑗 = 2, 3)
Θ(𝜖𝑇 ) (𝑖 = 2, 𝑗 = 3) .

The regret-per-round during the exploration phase is Θ(1) due to a misidentification of the best arm
between arm 1 and arms {2, 3}. The regret-per-round during the exploitation phase is Θ(𝜖𝑇 ) due to
a misidentification of the best arm between arm 2 and arm 3. □

5 Adaptive Explore-then-Commit (AEtC) Algorithm

In the prior section, we demonstrated that the optimal way to minimize EtC’s regret is by selecting
𝑇0, with 𝑇0 balancing the exploration and the exploitation. However, this requires knowledge of the
covariance matrix’s spectrum, which can be difficult to obtain in advance in certain scenarios. This
section explores the way to adaptively determines the extent of exploration required.

5.1 Estimator

We assume that Σ (𝑖) follows the data-generating process of Example 1 or 2 in Proposition 1. We use
𝛽𝑇 to denote that

𝜆
(𝑖)
𝑗

= 𝐶𝜆 𝑗
−𝛽𝑇 , (8)

with some constant 𝐶𝜆 > 0. We have 𝛽𝑇 = 1+1/𝑇𝑎 for Example 1, and 𝛽𝑇 = 𝑏(< 1) for Example 2.
Balancing exploration and exploitation in an overparameterized model is challenging for the following
reasons. First, the number of features 𝑝 is very large or even infinite6. Second, the trace is heavy-tail

6Namely, 𝑝 = ∞ for for Proposition 1 (1) or 𝑝 = 𝑇𝑐 in for Proposition 1 (2).
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because the decay is not very fast. As a result, a naive use of a traditional method does not work.
We address this issue by utilizing two estimators. The first estimator is on the trace tr(Σ̂ (𝑖) ) that we
extracted from overparameterization theory [Bartlett et al., 2020], whereas the second estimator is
on the estimated decay rate 𝛽𝑇 that derives from Bosq [2000], Koltchinskii and Lounici [2017].

For an arm 𝑖 ∈ [𝐾] with 𝑁 = 𝑇0/𝐾 draws, we define an estimated eigenvalues 𝜆 (𝑖)1 , ..., 𝜆
(𝑖)
𝑁
> 0 from

an empirical covariance matrix Σ̂ (𝑖) := 𝑁−1 ∑𝑁
𝑗=1 𝑋

(𝑖)
𝑗
(𝑡)𝑋 (𝑖)

𝑗
(𝑡)⊤. We define the empirical trace to

be tr(Σ̂ (𝑖) ) = ∑
𝑗 𝜆
(𝑖)
𝑗

. The following lemma states the consistency of the estimated trace under very
mild conditions.
Lemma 6. (Error bound of empirical trace) Suppose Assumption 1. Suppose the data generating
process (DGP) of Example 1 or Example 2 in Proposition 1. Then, for any𝐶poly > 0, with probability
at least 1 − 1/𝑇𝐶poly , we have the following as 𝑇 →∞:

|tr(Σ (𝑖) ) − tr(Σ̂ (𝑖) ) |
tr(Σ (𝑖) )

= 𝑂
©«
√︃∑

𝑗 (𝜆
(𝑖)
𝑗
)2∑

𝑗 𝜆
(𝑖)
𝑗

ª®®¬ = 𝑜(1). (9)

Moreover, the following bounds the estimation error of each eigenvalue.
Lemma 7. Suppose Assumption 1. For any 𝛿 ∈ (0, 1), for any 𝐶poly > 0, with probability at least
1 − 1/𝑇𝐶poly , we have the following for any 𝑗 = 1, ..., 𝑝 as 𝑇 →∞:���𝜆 (𝑖)𝑗 − 𝜆 (𝑖)𝑗 ��� = 𝑂 (√︂

tr(Σ (𝑖) )
𝑁

)
. (10)

Lemma 7 implies the estimator of each eigenvalue is 𝑜(1) if we choose 𝑁 ≫ tr(Σ (𝑖) ). However, even
if we choose a large 𝑁 , the error is still non-negligible for the tail of eigenvalues where |𝜆 (𝑖)

𝑗
−𝜆 (𝑖)

𝑗
| is

very small7. Consequently, 𝜆 (𝑖)
𝑗

for large 𝑗 are not necessarily consistent, so as to the effective rank
and the coherent rank estimated from them. To address this, we estimate the decay rate 𝛽𝑇 , and then
estimate the subsequent statistics.

Let the estimated decay rate be 𝛽𝑇 = (1/𝜏)∑𝜏
𝑘=1 log(𝜆𝑘/𝜆𝑘+1)/log((𝑘 + 1)/𝑘). Theoretically, 𝛽𝑇 is

consistent for any constant 𝜏 > 1. In practice, we can use a reasonable constant 𝜏, such as 𝜏 = 10,
for robustness. To estimate the effective ranks, we use the following form

𝜆
(𝑖)
𝑘

= 𝜆
(𝑖)
1 𝑘−𝛽𝑇 .

Namely, we consider empirical analogues of the effective rank for 𝑘 as

�̂�𝑘 (Σ (𝑖) ) :=
tr(Σ̂ (𝑖) )
𝜆
(𝑖)
𝑘+1

, and 𝑅𝑘 (Σ (𝑖) ) :=
(tr(Σ̂ (𝑖) ))2∑
𝑗>𝑘 (𝜆

(𝑖)
𝑗
)2
.

We also define an estimator for the coherent rank as �̂�𝑁 := min{𝑘 ∈ N ∪ {0} | �̂�𝑘 (Σ (𝑖) ) ≥ 𝑁}.
Further, we define estimators of 𝐵 (𝑖)

𝑁,𝑇
, 𝑉 (𝑖)
𝑁,𝑇

of Eq. (4) as

𝐵
(𝑖)
𝑁,𝑇

:= 𝜆 (𝑖)
�̂�𝑁
, and 𝑉 (𝑖)

𝑁,𝑇
:=

(
�̂�𝑁

𝑁
+ 𝑁

𝑅
�̂�𝑁
(Σ (𝑖) )

)
,

Note that the estimators �̂�𝑘 and 𝑅𝑘 use the trace tr(Σ̂ (𝑖) ), which is a sum of eigenvalues, instead of
the partial sum of the eigenvalues that constitutes the effective rank of Eq. (3). Despite this change,
this does not affect8 asymptotic consistency of the coherent rank estimator �̂�𝑁 .

The following lemma states that small 𝜏 suffices to assure the quality of 𝛽 (𝑖) . We study a convergence
rate of 𝛽 (𝑖) and the other estimators as follows.

7Remember that we consider Σ (𝑖) = Σ (𝑖) (𝑇) that depends on 𝑇 . Tail of eigenvalues are 𝑜(1) to 𝑇 as well.
8This is because

∑
𝑗 𝑗
−𝛽𝑇 with 𝛽𝑇 < 1 or 𝛽𝑇 ≈ 1 is tail-heavy.
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Algorithm 2 Adaptive Explore-then-Commit (AEtC)
while 𝑡 = 1, 2, 3, ... do

Observe 𝑋 (𝑖) (𝑡) for all 𝑖 ∈ [𝐾].
Choose 𝐼 (𝑡) = 𝑡 − 𝐾 ⌊𝑡/𝐾⌋.
Receive a reward 𝑌 (𝐼 (𝑡 ) ) (𝑡).
if 𝑡 ∈ {⌊𝑒𝑁 ⌋ | 𝑁 ∈ N, 𝑁 ≥ log𝑇} then

if Stop(𝑡/𝐾) then
𝑇0 ← 𝑡.
Break.

end if
end if

end while
for 𝑖 ∈ [𝐾] do
�̂� (𝑖) ← (X(𝑖) )⊤ (X(𝑖) (X(𝑖) )⊤)−1Y(𝑖) .

end for
for 𝑡 = 𝑇0 + 1, ..., 𝑇 do

Observe 𝑋 (𝑖) (𝑡) for all 𝑖 ∈ [𝐾].
Choose 𝐼 (𝑡) = argmax𝑖∈[𝐾 ] ⟨𝑋 (𝑖) (𝑡), �̂� (𝑖)⟩.
Receive a reward 𝑌 (𝐼 (𝑡 ) ) (𝑡).

end for

Lemma 8. Suppose Assumption 1. Suppose DGP of Example 1 or Example 2 in Proposition 1.9
Assume that we choose 𝑁 = 𝑁 (𝑇) such that tr(Σ (𝑖) )/𝑁 = 𝑜(1) for all 𝑖. Then, for any 𝐶poly > 0,
with probability at least 1 − 1/𝑇𝐶poly , we have

|𝜆 (𝑖)
𝑘
− 𝜆 (𝑖)

𝑘
|

𝜆
(𝑖)
𝑘

= 𝑜(1),

as 𝑇 →∞ for all 𝑘 ∈ [𝜏]. Moreover, it implies |𝛽𝑇 − 𝛽𝑇 | = 𝑜(1) and

max

{
𝐵
(𝑖)
𝑁,𝑇

𝐵
(𝑖)
𝑁,𝑇

,
𝑉
(𝑖)
𝑁,𝑇

𝑉
(𝑖)
𝑁,𝑇

}
= 𝑇𝑜 (1) . (11)

Eq. (11) states that the estimated rate of error is accurate as 𝑇 → ∞. To see this, for Example 1
in Proposition 1, the estimated error rate is 𝑇𝑜 (1) (

√︁
𝑇𝑎/𝑁 + 𝑇−𝑎), whose exponent approaches to√︁

𝑇𝑎/𝑁 + 𝑇−𝑎 as 𝑇 →∞.

5.2 Adaptive Explore-then-Commit (AEtC)

The Adaptive Explore-then-Commit (AEtC) algorithm is described in Algorithm 2. Unlike EtC, the
amount of exploration in AEtC is adaptively determined based on the stopping condition:

Stop(𝑖) (𝑁) =
{
𝑁 > 𝐶𝑇 tr(Σ̂ (𝑖) ) ∩ 𝑁𝐾 ≥ 𝑇

√︃
𝐵
(𝑖)
𝑁,𝑇
+𝑉 (𝑖)

𝑁,𝑇

}
,

and Stop = ∩𝑖∈[𝐾 ]Stop(𝑖) , where 𝐶𝑇 = 𝐶𝑇 (𝑇) is a function of 𝑇 that slowly diverges to +∞. The
first condition 𝑁 > 𝐶𝑇 tr(Σ̂ (𝑖) ) ensures that 𝑁 is large enough to have consistency on the estimators,
whereas the second condition 𝑁𝐾 ≥ 𝑇

√︃
𝐵
(𝑖)
𝑁,𝑇
+𝑉 (𝑖)

𝑁,𝑇
balances the exploration and exploitation. The

following theorem bounds the regret of AEtC.
Theorem 9. Suppose Assumption 1. Suppose DGP of Example 1 or Example 2 in Proposition 1.
Then, for any 𝑐 > 0, the regret (2) when we run the AEtC algorithm (Algorithm 2) with a sufficiently
slowly diverging 𝐶𝑇 is bounded as follows as 𝑇 →∞:

𝑅(𝑇) = 𝑂 (𝐿 (𝑇, 𝐾)𝑇𝑐),
where 𝐿 (𝑇, 𝐾) is the function defined in Theorem 4.

9Note that DGP of Example 1 or 2 implies the existence of the error function of Assumption 2.
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Theorem 9 states that, we can choose arbitrarily small 𝑐 > 0 and the exponent of the regret of AEtC
approaches that of EtC (Theorem 4). Note that the condition 𝑁 ≥ 𝐶𝑇 tr(Σ̂ (𝑖) ) should not dominate
the balance between exploration and exploitation: For example, 𝐶𝑇 = 𝐶 log𝑇 for any𝐶 > 0 suffices.
In practice, a constant 𝐶𝑇 works.

Proof sketch of Theorem 9. We can derive that Eqs. (9), (10), and (11) for all 𝑁 ∈ [𝑇] that hold
with probability at least 1 −𝑂 (1/𝑇) by setting 𝐶poly = 2 and taking a union bound over 𝑁 , and thus⋂

𝑖∈[𝐾 ]

⋂
𝑁≥𝐶𝑇 tr(Σ̂ (𝑖) )

log
©«
√︃
𝐵
(𝑖)
𝑁,𝑇
+𝑉 (𝑖)

𝑁,𝑇√︃
𝐵
(𝑖)
𝑁,𝑇
+𝑉 (𝑖)

𝑁,𝑇

ª®®¬ = log(𝑇𝑜 (1) )

 (12)

holds. Under this event, the stopping time of AEtC and EtC are at most 𝑇𝑜 (1) times different. Given
this, the proof of the theorem is easily modified from the proof of Theorem 4. □

Figure 2: Comparison of methods on four DGPs. Smaller regret indicates better performance. The
solid lines are the mean of 10 repetitions and the bands represent the standard deviation.

6 Simulation

We consider two setups: (𝐾, 𝑝, 𝑇) = (2, 200, 500) and (𝐾, 𝑝, 𝑇) = (10, 200, 1000). For each setup,
we consider a covariance matrix Σ (𝑖) = 𝑐 (𝑖) Σ̄ where 𝑐 (𝑖) ∼ Uni( [0.5, 1.5]) and a base covariance
Σ̄ for each 𝑖 ∈ [𝐾], which represents a heterogeneous covariance among the arms. The base
covariance Σ̄ follows the following configurations: DGP 1: Σ̄ = diag(𝜆1, ..., 𝜆𝑝), 𝜆𝑘 = 𝑘−0.5, DGP
2: Σ̄ = diag(𝜆1, ..., 𝜆𝑝), 𝜆𝑘 = exp(−𝑘) + 𝑇 exp(−𝑇)/𝑝, DGP 3: Σ̄ = diag(𝜆1, ..., 𝜆𝑝), 𝜆𝑘 = 𝑘−1+1/𝑇 ,
and DGP 4: Σ̄𝑖, 𝑗 = 0.3 and Σ̄𝑖,𝑖 = 0.7 for 𝑗 ≠ 𝑖 ∈ [𝑝]. Note that the DGPs 1 and 3 correspond
to Examples 2 and 1 in Proposition 1. DGP 3 is benign as well, while DGP 4 is not. We generate
𝑋 (𝑖) (𝑡) from a centered 𝑝-dimensional Gaussian with covariance Σ (𝑖) , 𝜃 (𝑖) from a standard normal
distribution which yields non-sparse parameter vectors, and 𝑌 (𝑖) (𝑡) by the linear model (1) with the
noise with variance 𝜎2 = 0.01. We compare proposal (AEtC, 𝐶𝑇 = 2) to ESTC [Hao et al., 2020],
LinUCB [Li et al., 2010, Abbasi-Yadkori et al., 2011], and DR Lasso Bandit [Kim and Paik, 2019].
Figure 2 illustrates the accumulated regret 𝑅(𝑡) in relation to the round 𝑡 ∈ [𝑇]. In the first three
benign DGPs, the AEtC consistently outperforms the other methods. In DGP 2, the advantage of
AEtC is insignificant because the regret of any method is already small. This is because in DGP 2,
a model with exponentially decaying behavior, only a small fraction of eigenvalues are important.
However, AEtC performs significantly better than its competitors in DGP 1 and DGP 3, where the
eigenvalues have a heavy-tail distribution. In a non-benign example of DGP 4, the proposed method
is still comparable to LinUCB, which demonstrates the utility of an interpolating estimator.
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