Text — Video Video — Text

Method R@1 1T R@51 R@Q101T MdR | MnR | R@1 1 R@51 RQ101 MdR | MnR |
Late fusion 52 169 277 320 721 54 176 265 310 724
Modality Complete

Gabeur et al. 35 15.8  26.1 350 765 2.5 112 186 47.0 101.1
Nagrani et al. 38 161 256 350 752 2.8 121 18.6 46.0 972
Wang et al. 35 16.1 259 350 76.6 3.1 11.6 190 46.0 989
Modality Incomplete

Shvetsova et al. 5.1 169 275 330 725 56 172 259 31.0 720
Recasens et al. ' 50 17.1 282 330 732 52 174 265 300 712
Unseen Modality Interaction

This paper 6.0 192 305 28.0 664 6.3 189 290 27.0 659

 We re-implement the method ourselves.

Table 5: Comparison with multimodal learning methods for the retrieval task using all metrics
for MSR-VTT. While multimodal learning methods need modality-complete data to learn the cross-
modal correspondences, our method gives more effective cross-modal fusion for unseen modality
combinations.

A Comparative Results for Retrieval

In Table 4 in the main paper, we summarized the multimedia retrieval results with the Mean Rank
(MnR) averaged between video-to-text and text-to-video. Here, we provide the full comparison
with all the metrics for both text-to-video retrieval and video-to-text retrieval in Table 5. As recent
multimodal learning methods need modality-complete data for training, our model outperforms
these approaches on all metrics by effectively accumulating the information from any modality
combinations.

B Hyperparameter Analysis

Here, we study the effect of hyperparameters used in our model, including the length of feature tokens
k* after feature projection, the number of learnable tokens n,, for feature alignment loss, o and A to
balance the loss terms.

Number of Learnable Tokens n,, for the Feature Alignment Loss. When learning our feature
projection module, we ensure features of different modalities are projected into a common space by
applying a feature alignment loss with n,, learnable tokens. While n,, can be simply equal to the
number of classes for classification task, it serves as a hyperparameter for the regression and retrieval
tasks. We ablate the effect of n,, in Table 6a using the retrieval task. With fewer learnable tokens, the
projected features become less discriminative since many of them with different semantic meanings
need to match the same learable token. Increasing n,, to 128 is effective after which the model is
relatively robust to the choice of this hyperparameter.

Length of Feature Tokens kt*. Our feature projection module projects modality-specific features
into a common space with k* feature tokens for each modality. We investigate the impact of the size
of k* using video classification in Table 6b. With a smaller £*, the module cannot reserve all the
discriminative features for multimodal recognition. However, with a larger £*, the module tends to
also reserve the unimportant features, which result in overfitting. Thus, our model achieves good
performance when k* is in the range of 256 and 1024.

Token Partition in Dual Branch Prediction. In the main paper, we divide the tokens in half
for the dual branches. Here, we test the model’s performance with different partition strategies on
EPIC-Kitchens and report the results in Table 6¢. Dividing the tokens into half delivers the best
performance. While the pseudo-labels can refine the overconfident predictions trained by groundtruth
labels, they may also be noisy for some difficult samples while the groundtruth labels provide the
correct supervision. Thus, making the pseudo supervision and the groundtruth supervision equally
important is beneficial.
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nu  MiRJ l Top-1 (%) 1 Ratio of Lpseudo to Lsupervised Top-1 (%) 1

32 73.2 128 20.9

64 69.3 256 22.3 30:70 22.9

128 662 512 237 50:50 237

256 66.9 1024 22.7 .

512 68.4 2048 21.2 70:30 22.5
(a) Effect of ny (b) Effect of k* (c) Token Partition for Dual Branch Prediction

a Top-1 (%) 1 A x 1073 Top-1 (%)t

0 214 0.0 21.7
2000 21.9 0.1 222
2500 22.8 0.5 22.7
3000 23.7 1.0 23.7
3500 22.5 1.5 22.9
4000 21.0 2.0 22.0
(d) Effect of (e) Effect of A

Table 6: Effecf of Hyperparameters. Note that (a) uses the multimedia retrieval task, while others
use the video classification task. (a) Increasing n, to 128 is effective, then performance plateaus. (b)
Projecting modality-specific features into more tokens results in overfitting, while projecting into less
tokens leads to underfitting. With k*=512, we obtain the best trade-off. (c) While the pseudo-labels
can either be noisy or refine the overconfident predictions, dividing the tokens into half delivers the
best trade-off. (d) For «, any value in the range of 2500 and 3500 results in a good trade-off between
underfitting to the pseudo-labels and overfitting. () A=10"3 delivers the best trade-off between
feature alignment and target task prediction. Default settings are shaded in gray .

Effect of « and ) to Balance the Loss Terms. In Eq. 3, we set «=3000 and A\ = 0.001 for video
classification to balance the losses among pseudo supervision, feature alignment and groundtruth
supervision. Here, we ablate their effects in Table 6d and Table 6e using the video classification task.
For «, any value in the range of 2500 and 3500 results in a good trade-off between underfitting to the
pseudo-labels and overfitting, and the performance improvement over the counterpart without Lpseudo
(i.e., a = 0) is considerable. For A\, with a lower value, the features from different modalities cannot
be aligned effectively, while a larger A\ makes the model focus less on learning the target prediction
task. Thus, A=1073 delivers the best trade-off.

C Ablation

Feature distance with the feature alignment loss Ljig,. The proposed feature alignment loss in
Eq. 1 aims to facilitate the projection of features from distinct modalities into a shared space. We
further verify this claim by computing the feature distance between modalities on EPIC-Kitchens
with the variants of our model used in Table 2 of the main paper. Specifically, we first obtain the
average feature before the multimodal transformer per class for each modality and then compute the
average Euclidean distance between modalities across classes. For RGB & Audio, after adding the
feature projection to the vanilla transformer, the average Euclidean distance reduces from 84.1 to
75.4. For RGB & Flow, the distance reduces from 81.3 to 72.5 and for Audio & Flow, it drops from
83.9 to 76.2. Thus, our feature alignment loss does encourage features of different modalities to be
projected into a common feature space.

Robustness to noise. In the main paper, we show that when applying Gaussian noise N (0, 1) on
one modality for all test samples in video classification, our method is more robust to the noise than
late fusion or a vanilla multimodal transformer. In Table 7, we further impose different amounts of
noise and compare our approach with recent multimodal learning methods which assume all data to
be modality-complete: Gabeur et al. [9], Nagrani ef al. [28], Wang et al. [36], as well as methods
which are robust to some modality-incomplete data: Recasens et al. [29] and Shvetsova et al. [32].
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Model N(0,0.5)  N(0,1)  N(0,2)

Late fusion 14.1 11.2 10.0
Gabeur et al. 13.2 10.1 9.3

Nagrani et al. 16.4 15.5 14.4
Wang et al. 14.9 12.3 10.8
Shvetsova et al. 15.5 134 11.3
Recasens et al. 15.3 13.1 12.0
This paper 20.5 18.0 16.2

Table 7: Robustness to Noise. Our model achieves better results when modalities are corrupted by
severe noise than these prior works.

Model Gabeur e al. Nagrani etal. Wangetal. Shvetsovaetal. Recasensetal. This paper
RGB, Audio, OCR, Speech 90.6 89.7 90.0 90.6 90.5 79.4
RGB, Object, Scene, Face 89.1 88.8 88.9 89.3 89.4 80.3
RGB, Object, Speech, OCR 92.4 90.2 91.5 78.1 774 70.2
RGB, Scene, Audio, OCR 91.0 89.9 90.7 75.3 74.2 70.3
RGB, Scene, Speech 95.6 94.5 95.1 80.2 79.3 74.3
RGB, Object, Audio 96.1 96.0 96.3 82.1 80.3 76.9
RGB, Speech 98.3 98.0 98.8 84.6 83.0 81.4
RGB, Audio 98.0 97.3 98.4 85.3 84.5 79.8

Table 8: Benefit for Modality-Incomplete Testing with multimedia retrieval. Performance is
reported in the mean rank metric, for which the lower the better. While works assuming modality-
complete data overfit to seen combinations (top two rows), those dealing with some modality-
incomplete training data are not generalizable to all combinations. In contrast, our method is the most
effective on all seen and unseen modality combinations.

Model Gabeur et al. Nagrani et al. Wangetal. Shvetsovaetal. Recasensetal. This paper
Image, Depth 1.40 1.39 1.41 1.38 1.41 1.29
Force, Proprioception 1.39 1.37 1.39 1.37 1.39 1.27
Depth, Proprioception, Force 1.48 1.45 1.44 1.37 1.39 1.27
Image, Proprioception, Force 1.47 1.43 1.45 1.32 1.30 1.18
Depth, Force 1.77 1.72 1.79 1.62 1.58 1.47
Depth, Proprioception 1.60 1.52 1.55 1.49 1.43 1.38
Image, Force 1.71 1.64 1.70 1.58 1.52 1.44
Image, Proprioception 1.54 1.50 1.52 1.38 1.35 1.27

Table 9: Benefit for Modality-Incomplete Testing with robot state regression. The performance is
reported in the mean absolute error (MAE), for which the lower the better. While works assuming
modality-complete data overfit to seen combinations (top two rows), those dealing with some
modality-incomplete training data are not generalizable to all combinations. In contrast, our method
is the most effective on all seen and unseen modality combinations.

We conclude that our model achieves better results when modalities are corrupted by severe noise
than these prior works.

Reducing overfitting to specific modality combinations. In Figure 3 in the main paper, we show
our model improves robustness to various unseen modality combinations over a vanilla multimodal
transformer. To further demonstrate our generalizability to different modality combinations and
demonstrate that prior works indeed overfit to the combinations in training, we expand this experiment.
Specifically, we compare our method on both seen and unseen modality combinations with recent
multimodal learning methods which assume all data to be modality-complete: Gabeur et al. [9],
Nagrani et al. [28], Wang et al. [36], as well as methods which are robust to some modality-incomplete
data: Recasens et al. [29] and Shvetsova er al. [32]. The results are reported in Table 8 and Table 9.
Since Gabeur et al. [9], Nagrani et al. [28] and Wang et al. [36] assume modality-complete data, they
obtain worse performance with unseen combinations than with seen combinations (top two rows),
even with additional modalities. Thus we conclude these methods overfit to seen combinations. Since
Shvetsova et al. [32] and Recasens et al. [29] aim to be robust to some modality-incomplete training
data, they benefit from some modality combinations. However, these methods are not generalizable
to all combinations. In contrast, our method is the most effective on all seen and unseen modality
combinations.
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D Unseen Modality Interaction Benchmarks

In the main paper, we present the modalities available in each split for the three unseen modality
interaction benchmarks 1. Here, we list the number of samples in each split in Table 10.

Task Training Split 1 Training Split 2 Val Testing
Modalities #Samples Modalities #Samples
RGB 31,213  Audio 31,216

Video Classification [6] RGB 31,213 Flow 31,216 6,750 6,641
Audio 31,213 Flow 31,216

Robotic State Regression [18] Image, Depth 52,577 Proprioception, Force 52,577 20,874 17,738

Multimedia Retrieval [39] RGB, Object, Scene, Face 4,811 RGB, Audio, OCR, Speech 1,702 127 765

Table 10: Unseen modality interaction benchmarks for video classification, robotic state regression
and multimedia retrieval with the datasets, modalities and number of samples per split.
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