
Appendix1

A Implementation Details2

A.1 Experimental Environment3

Software and hardware environment:4

• CUDA version: 11.15

• cuDNN version: 8.0.56

• PyTorch version: 1.10.17

• GPU: Nvidia RTX 30908

• CPU: Intel Xeon Platinum 8180 @ 2.50 GHz × 29

A.2 Training Detail10

Our model is implemented in PyTorch using the PyTorch Lightning framework. During the training11

stage, we resize the input image to 640 x 512 and the source views to N = 4. To train our model, we12

employ the Adam optimizer on a single Nvidia 3090 GPU. Initially, the learning rate is set to 10−413

and gradually decays to 10−6 using a cosine learning rate scheduler. Throughout the training, we use14

a batch size of 2 and set the number of rays to 1024. To enhance the sampling strategy, we apply a15

coarse-to-fine approach with both Ncoarse and Nfine set to 64. The Ncoarse points are uniformly16

sampled between the near and far plane, while the Nfine points are sampled using importance17

sampling based on the coarse probability estimation. Regarding the global feature volume fv, we18

set its resolution to K=128. For inference on DTU, the image resolution is set to 800 x 600. For19

datasets such as BlendedMVS [1], ETH3D [2], and Tanks & Temples [3], we maintain the original20

image resolution. Training our model requires approximately 3 days on a single Nvidia 3090 GPU.21

Moreover, when constructing larger models such as the large and xlarge models by stacking more22

layers, the training time will naturally increase due to the increased model size.23

A.3 Mesh and Point Cloud Generation24

Following the settings employed in VolRecon [4], we generate depth maps from virtual viewpoints by25

shifting the original camera along its x-axis by d = 25 mm. Subsequently, we perform TSDF fusion26

and applied the Marching Cubes algorithm to merge all the rendered depths into a voxel grid with27

a resolution of 1.5 mm and extract a mesh representation. For point cloud generation, we initially28

generate 49 depth maps by leveraging the four nearest source views. These 49 depth maps are then29

fused together to form a unified point cloud.30

B Technical Details and Discussion31

B.1 Discussion of Hitting Probability32
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Figure 1: Hitting probability compression.

The attention score in ReTR can be33

interpreted as the probability of a ray34

being hit. However, when using soft-35

max, the attention scores for each ray36

are forced to sum up to 1, implying37

that every ray should be considered a38

hit. To gain further insights, we exam-39

ine the distribution of attention scores40

for rays that are not hitting. Figure 141

illustrates the results, demonstrating42

that the transformer intelligently em-43

ploys a wider distribution to model44

rays that do not hit. The underlying45

rationale is that the transformer treats the surrounding air as a medium that contributes to the color.46
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Sample Points scan 24 scan 37 scan 40 scan 55 scan 63 scan 65 scan 69 scan 83 scan 97 scan 105 scan 106 scan 110 scan 114 scan 118 scan 122

16+16 1.09 2.49 1.51 1.09 1.62 1.64 0.97 1.35 1.43 1.05 1.21 0.77 0.72 1.27 1.28
32+32 1.06 2.30 1.46 0.97 1.35 1.53 0.89 1.38 1.34 0.92 1.10 0.74 0.60 1.10 1.17
64+0 1.11 2.39 1.43 1.06 1.36 1.62 0.94 1.28 1.31 0.91 1.12 0.78 0.64 1.18 1.20

128+0 1.39 2.36 1.54 1.01 1.18 1.65 0.97 1.26 1.26 0.83 1.10 0.84 0.62 1.09 1.15

Table 1: Chamfer distance of a number of different sampling points, results are shown for each scan
under different settings.

When a ray does not hit, the transformer aggregates information from the surrounding air to obtain47

the color from these mediums.48

B.2 Hierarchical Volume Sampling through Attention Map49

Given that our framework does not incorporate weights as seen in traditional frameworks like NeRF50

or NueS, we refine the original hierarchical sampling strategy by substituting the weights with the51

attention scores of each point. This approach, as discussed in the main text, is both straightforward52

and impactful. Additionally, we highlight that our method exhibits greater robustness in terms of the53

number of sampling points compared to the current state-of-the-art techniques, thereby offering an54

additional advantage within our framework.55

B.3 Continous Positional Encoding Proof56

To imbue our system with positional awareness of actual distance. we initially derive the formula for57

the attention score, denotes as s of features in xi and xj :58

s = (ffi + pi)WqW
⊤
k (ffj + pj)

⊤, (1)

where p represents the positional encoding in x. We subsequently expand Eq. (1) as follows:59

s = (ffi )WqW
⊤
k (ffj )

⊤ + (ffi )WqW
⊤
k (pj)

⊤ + (pi)WqW
⊤
k (ffj )

⊤ + (pi)WqW
⊤
k (pj)

⊤, (2)

where the fourth component of Eq.(2) denotes the interaction between two locations, and WqW
⊤
k60

represents the trainable parameters. To ensure our MLP actual positional awareness, we need to make61

the function satisfy the following conditions:62

(pi)(pj)
⊤ = f(tj − ti), (3)

where tj − ti denotes the distance between xi and xj . When we apply our positional encoding (PE),63

the fourth component of Eq.(2) can be simplified as:64

(pi)(pj)
⊤ = [sin(βti/10000

2i/D), cos(βti/10000
2i/D)]

× [sin(βtj/10000
2i/D), cos(βtj/10000

2i/D)]⊤,
(4)

65

(pi)(pj)
⊤ = sin(βti/10000

2i/D)sin(βti/10000
2i/D)

+ cos(βtj/10000
2i/D)cos(βtj/10000

2i/D).
(5)

By applying the sum-to-product identities, we obtain:66

(pi)(pj)
⊤ = cos(β(tj − ti)/10000

2i/D), (6)

where (tj − ti) represents the actual distance between xi and xj . Thus, continuous positional67

encoding enables the attainment of actual positional awareness.68

C Additional Experimental Results69

Here we show additional experiment results:70

C.1 Visualization Supplementary71

Due to space limitations, we provide additional visual results for the experiments in this section.72

Specifically, we present the results for sparse view reconstruction in Fig. 3 and full view recon-73

struction of the point cloud in Fig. 5. Furthermore, we include the per-scene results for the number74

of sampling points in Tab. 1.75
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Models Mean scan 24 scan 37 scan 40 scan 55 scan 63 scan 65 scan 69 scan 83 scan 97 scan 105 scan 106 scan 110 scan 114 scan 118 scan 122

ReTR-B 1.17 1.05 2.31 1.44 0.98 1.18 1.52 0.88 1.35 1.30 0.87 1.07 0.77 0.59 1.05 1.12
ReTR-L 1.16 0.98 2.26 1.59 1.00 1.14 1.56 0.90 1.35 1.26 0.86 1.06 0.78 0.57 1.01 1.07

ReTR-XL 1.15 0.96 2.26 1.64 0.94 1.19 1.59 0.86 1.32 1.25 0.85 1.02 0.75 0.55 1.02 1.11

Table 2: Result of ReTR-Base, ReTR-Large and ReTR-XLarge evaluated on DTU under 3 views
setting. We report chamfer distance, the lower the better.

Method PSNR↑ MSE↓ SSIM↑ LPIPS↓
MVSNeRF* 25.92 0.003 0.89 0.19
VolRecon* 23.37 0.004 0.80 0.30

ReTR-B 25.88 0.004 0.83 0.28
ReTR-L 26.03 0.003 0.84 0.27

ReTR-XL 26.33 0.003 0.84 0.27
Table 3: Novel View synthesis result on DTU, * denotes our reproduced result.

C.2 Error Bar of ReTR76

In order to assess the reproducibility and robustness of our model, we conduct three separate training77

runs using different random seeds. The corresponding results are presented in Figure 2. These results78

demonstrate that our model exhibits consistent performance across multiple training runs, indicating79

good reproducibility. Moreover, the minimal variance observes in the results further underscores the80

robustness of our model.81

C.3 Effectiveness of Stacking Transformer Blocks82

To explore the potential of simulating more complex light transport effects, we extend our learnable83

rendering approach by stacking multiple layers of transformer blocks. Specifically, we introduce two84

variations: ReTR-L, where we stack two transformer blocks, and ReTR-XL, where we stack three85

transformer blocks. This allows us to experimentally evaluate the effectiveness of a more complex86

rendering system. The results of these experiments are summarized in Tab. 2. The findings indicate87

that by overlaying multiple layers of transformers, we can simulate complex lighting effects and88

achieve more powerful results. This demonstrates the potential of our approach to capture intricate89

light transport phenomena and enhance the overall rendering capabilities.90

C.4 Novel View Synthesis91

In order to assess ReTR’s performance in Novel View Synthesis, a task where many multi-view stereo92

techniques struggle, we conduct a quantitative comparison with VolRecon [4]. The novel views are93

generated during the full reconstruction for fusing the point clouds as we discussed in the main paper.94

Our results demonstrate a significant improvement over VolRecon in terms of novel view synthesis, as95

shown in Tab. 3. Additionally, we provide visualizations of novel view synthesis and depth synthesis96

in Figure 4. It has been challenging to achieve high-quality results simultaneously in rendering-based97

studies and reconstruction-based studies, with few methods excelling in both aspects. However, the98

results achieved by our proposed framework, ReTR, are highly promising, which suggests that a99

learnable rendering approach based on transformers can effectively integrate both tasks, yielding100

impressive results on both fronts within a unified framework.101

D Limitations102

Our method requires approximately 30 seconds to render a depth map and image with a resolution103

of 600 × 800. Similar to other rendering-based methods such as IBRNet [5], VolRecon [4], and104

MVSNeRF [6], our approach has limitations in terms of efficiency. While learning-based rendering105

offers enhanced capabilities, it does introduce additional training parameters compared to traditional106

volume rendering techniques. Stacking multiple layers of our model can improve performance;107

however, it also increases training time due to the larger model size. It is important to strike a balance108

between achieving higher rendering quality and maintaining reasonable computational efficiency.109

Further research and optimization efforts can be explored to enhance the efficiency of our method,110
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Figure 2: Error bar on 3 runs of Ours (ReTR).

potentially through techniques such as model compression, parallelization, or hardware acceleration.111

Acknowledging these limitations, we aim to provide a comprehensive understanding of the trade-offs112

between rendering quality, efficiency, and model complexity within our proposed framework.113

E Broader Impacts114

The proposed ReTR framework not only enables accurate surface reconstruction through learnable115

rendering but also generates high-quality novel views. These capabilities open up possibilities for116

various downstream applications in fields such as virtual reality (VR), robotics, and view synthesis117

with geometry. While these applications offer numerous benefits, it is important to acknowledge that118

they also come with ethical considerations. As authors of the ReTR framework, we are committed119

to promoting ethical practices and responsible development. We recognize the potential for misuse,120

such as generating content without consent, and we prioritize fair representation and responsible121

usage of the technology. We strive to adhere to ethical guidelines and contribute to the development122

of responsible AI practices. It is crucial to ensure that technological advancements are leveraged123

for the betterment of society while minimizing potential negative impacts. By maintaining a focus124

on ethics, fairness, and responsible development, we aim to ensure that ReTR and its applications125

are aligned with the principles of responsible AI and contribute positively to the broader scientific126

community and society as a whole.127
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Figure 3: Comparison of VolRecon and ReTR in sparse view reconstruction with 3 input views.

View Synthesis Depth Synthesis View Synthesis Depth Synthesis

Figure 4: View synthesis and depth synthesis visualization of our proposed ReTR.
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Figure 5: Visualization of full view generalization of a point cloud of our proposed ReTR.
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